
The Visual Computer manuscript No.
(will be inserted by the editor)

Idan Shatz · Ayellet Tal · George Leifman

Paper Craft Models from Meshes

the date of receipt and acceptance should be inserted later

Abstract This paper introduces an algorithm for seg-
menting a mesh into developable approximations. The al-
gorithm can be used in various applications in CAD and
computer graphics. This paper focuses on paper crafting
and demonstrates that the algorithm generates approx-
imations that are developable, easy to cut, and can be
glued together. It is also shown that the error between
the given model and the paper model is small.

Keywords Paper-craft models · segmentation

1 Introduction

Many people enjoy crafting models out of paper. The
paper layout needed for the task is usually generated
by hand or interactively by various companies. The ad-
vent of huge libraries of 3D models makes it desirable to
perform this task automatically. The challenge is to seg-
ment a given model into parts that can be approximated
by developable surfaces, thus having the property that
they can be unfolded onto the plane without stretching,
creasing or tearing. Such a segmentation can be utilized
in other applications in addition to paper crafting, in-
cluding texture atlas generation and model fabrication
from sheets of material.

A segmentation algorithm that enables the creation
of paper-craft models should satisfy the following re-
quirements:

Idan Shatz
Department of Electrical Engineering, Technion
E-mail: shatzi@tx.technion.ac.il

Ayellet Tal
Department of Electrical Engineering, Technion
Tel.: +972-4-8294651
Fax: +972-4-8295757
E-mail: ayellet@ee.technion.ac.il

George Leifman
Department of Electrical Engineering, Technion
E-mail: gleifman@@tx.technion.ac.il

Fig. 1 Paper-craft models

1. Each part must be approximated by a developable
surface.

2. The boundaries between these approximations should
be easy to cut and glue together.

3. The error defined as a function of the difference be-
tween the original model and its paper-craft model,
should be small.

4. The number of parts should be small.

Over the last decade, many methods have been pro-
posed for segmenting meshes. They can be divided by the
type of segmentation they produce [20]: texture atlases
and other characteristic patches or meaningful compo-
nents.

The methods for generating texture atlases usually
focus on near planar charts [15,11,5,4,6,18,13,19,2,25,
24], which are too restrictive for our purpose. Meth-
ods that produce other characteristic patches [23] fail
in generating smooth boundaries and do not necessar-
ily produce developable segments. Meaningful compo-
nents, as produced by [21,27,9,26,14,12,17,8], are not

2 Idan Shatz et al.

developable, and thus cannot be used for paper-crafting.
These general approaches are thus insufficient for our
problem.

In the seminal paper of [16], a method is proposed
for producing strip-based approximation segmentation
of meshes. This method manages to generate very pretty
paper-craft models. However, strip-based approximations
create long and jagged boundaries that can be difficult
to cut and glue, contradicting Requirement 2. In [7],
an algorithm for mesh segmentation into nearly devel-
opable meshes is introduced and used for creating cloth
objects. However, in cloth, differently from paper, the
stretch factor tolerates both non-developable segments
and non-exact boundaries. Thus, Requirements 1 and 2
are less critical. Moreover, in cloth, many of the details
of the objects are lost, and therefore Requirement 3 is
often violated.

The current paper presents a novel algorithm for seg-
menting a given mesh into explicitly developable parts
that can be easily cut and glued together, satisfying
Requirements 1–4. The algorithm has three key ideas.
First, each segment is approximated by a surface that
is guaranteed to be developable. Second, the approxima-
tions are modified so as to guarantee that neighboring
approximations intersect at their boundaries, thus pro-
hibiting stretching. Third, the algorithm extracts the an-
alytical boundaries between the approximations, making
the boundaries intuitive and easy to cut and glue. The
segmentations produced by the algorithm were used to
create several paper-craft models, as illustrated in Fig-
ure 1.

The rest of the paper is structured as follows. Sec-
tion 2 outlines the algorithm. Sections 3–5 elaborate on
several stages of the algorithm. Section 6 displays results.
Section 7 summarizes the paper.

2 Algorithm Overview

Setup: The aim of the algorithm is to segment a mesh
into a small number of segments that can be well ap-
proximated by developable surfaces, whose boundaries
can be easily cut and glued.

A surface is developable if it has a zero Gaussian cur-
vature at all points. Since this definition does not provide
a practical algorithm for generating a segmentation, our
algorithm uses two types of surfaces known to be devel-
opable: a planar surface and a conic surface, following [7].
Our general scheme, however, can incorporate other pre-
defined types of developable surfaces.

A planar surface is defined by a normal vector n and
a constant d, by

< n, x >= d. (1)

There are several ways to define a conic. We define it
as follows: Let c be the center of the cone base, n be the
cone axis, d be the distance of a point x from the cone,

θ be a constant angle between the cone normals and the
cone axis, rx be the normalized projection of x on the
cone base in the axis direction, and nx be the normal of
the cone at x. Then, a conic (n, c, d, θ) is defined by:

< nx, x − c >= d, (2)

where rx and nx are defined as follows:

rx =
(x − c)− < (x − c), n > n

||(x − c)− < (x − c), n > n||
,

nx = rx · sin θ + n · cos θ.

Note that a planar surface is a special case of a conic,
where a conic (n, 0, d, 0) is a plane (n, d). We distinguish
between these two types of surfaces because a plane is
easier to approximate.

Definition 1 A Segment Si of a mesh S is a connected
sub-mesh Si ⊆ S.

Definition 2 A Segment approximation: Given a
segment Si ⊆ S, its approximation Ei is a conic (/plane)
associated with Si.

Given a mesh, the algorithm segments it into disjoint
segments S1, S2, · · ·SK whose union gives S, such that
each segment Si is approximated by Ei. The distance
between a mesh vertex v and an approximation Ei, is
defined as the distance between the vertex and its pro-
jection along its nv direction. (If v is not on Ei, nv is the
direction of the normal of the closest point on Ei.)

Distance(v,Ei) = ||v − ProjEi
(v)||. (3)

The total squared error associated with a mesh and
its paper-craft model is defined as the sum of distances
from a vertex to the approximations it is associated with,
over all vertices:

Error(mesh, papermodel) =
K∑

i=1

∑

v∈Si

(Distance(v,Ei))
2.(4)

Algorithm: The algorithm begins with an initial over-
segmentation of the mesh into trivial developable seg-
ments. This initial segmentation is iteratively modified,
by decreasing the number of segments, while increas-
ing the error (Equation 4). Each such iteration approx-
imates the current segments, by fitting each segment to
a conic(/plane), using weights specific to our problem.

Once the segmentation is determined, the approxima-
tions are modified, in order to accommodate for “good”
boundaries. Then, the analytical boundaries between the
approximations are computed, therefore not restricting
the boundaries to pass through edges of the original
mesh. The five stages of the algorithm are briefly de-
scribed below and explained in detail in the subsequent
sections.

Paper Craft Models from Meshes 3

1. Computation of an initial segmentation: Initially, a
planar surface is associated with every face of the
mesh, making it a trivial segmentation into devel-
opable segments with zero error. Then, neighboring
segments are merged if the error (Equation 4) is smaller
than a pre-defined error. At the end of this stage, the
model is over segmented with a very small error.

2. Iterative segmentation modification: The initial seg-
mentation is iteratively modified by applying two op-
erations successively. First, neighboring segments are
merged, thus decreasing the total number of segments.
Second, the fit between each new segment and its
conic approximation is optimized. While the first op-
eration increases the error, the second decreases it. In
each iteration, the total error is allowed to increase,
until either a pre-defined error or a pre-defined num-
ber of segments is reached. This stage is described in
detail in Section 3.

3. Boundary refinement: The previous stage approxi-
mated each segment by a conic (/plane) indepen-
dently. As a result, neighboring approximations might
not intersect each other, or might intersect each other
at boundaries that are far from the boundaries be-
tween their corresponding segments. The current stage
of the algorithm modifies the approximations, so as
to take the boundaries into account, as discussed in
Section 4.

4. Extraction of analytical boundaries: At this stage, the
analytical boundaries between the conic approxima-
tions are computed. These boundaries are important
for two reasons. First, conic edges are easy to cut-
and-glue, in contrary to jagged mesh boundaries. Sec-
ond, analytical boundaries guarantee that neighbor-
ing conics meet, which is a vital requirement in paper-
crafting (Requirement 2). This stage is discussed in
Section 5.

5. Segment drawing: After finding the analytical bound-
aries between segments, they are projected to the
plane and printed, adding cuts to conic rings.

Pre-processing: The algorithm described above can be
applied to the full mesh. However, two pre-processing
steps improve the results. First, a symmetry plane of
the model is found, when it exists. The algorithm is ap-
plied to half of the model, and the result of the segmen-
tation is duplicated. Second, an existing segmentation
into meaningful components (e.g., [9]) is used and the
algorithm is applied to each component separately. Both
pre-processing steps make paper-crafting more intuitive,
since users prefer to work on “semantically meaningful”
components, such as the “left and right arm, the “‘left
and right leg” etc.

The symmetry plane is determined by finding the
principal axes of the mesh. There are two types of sym-
metry: rotation and reflection. Any axis of a rotation
symmetry through the origin, as well as the normal of
the reflection symmetry plane through the origin, is a
principal axis [10]. The algorithm first finds the princi-

pal axes of the model using PCA. The Hausdorff distance
between the reflected sets of points on both sides of the
reflection plane is then used to evaluate the accuracy
of reflection symmetry plane. If the distance is smaller
than a threshold, the plane is used as a symmetry plane.
Otherwise, the algorithm is applied without symmetry.

The following sections elaborate on Steps 2, 3 and 4.

3 Iterative segmentation modification

This stage (Stage 2) applies an iterative region growing
approach, using a variant of the K-means algorithm [3].
Every iteration of the algorithm performs the following
operations:

1. The faces of the mesh are re-distributed into the cur-
rent segments. This is done by assigning each face
to the conic approximation that best fits it. (In the
first iteration, the approximations found in Stage 1
are used.)
The error associated with a face is defined as a func-
tion of its distance from the approximation and the
distance of the normals.

2. Each segment is re-approximated by a plane or a
conic, using a standard non-linear squared optimiza-
tion procedure [22].
Then, the algorithm goes back to Step 1, until either
a pre-set number of iterations (10) is reached or until
the error does not change from the previous iteration.
In this case, the algorithm proceeds to Step 3.

3. Neighboring segments are merged and approximated,
until the current error bound is reached.
The error bound is increased and the algorithm goes
back to Step 1.

Below, we elaborate on each of these operations.

Step 1: A face is assigned to a segment if the average
distance between its vertices and the segment’s approxi-
mation is small. The distance depends both on the pro-
jection distance (Equation 3) and on the match between
the face normals and the approximation, which was em-
pirically found to be important. Specifically, let Ei be
the approximation of a given segment Si and f be the
face whose distance to Ei we wish to compute. Then,

dist(f,Ei) = NormDiff(f,Ei) ·
∑

v∈f

Distance(v,Ei),(5)

NormDiff(f,Ei) = 1+λ
∑

v∈f

(1 − | < NEi
(v), N(f) > |),

where NEi
(v) is the normal of Ei at the projection of v

on Ei, N(f) is the normal of f , and λ is a user-defined
parameter. This step is performed in a Breadth-First
Search (BFS) manner, thus guaranteeing connectivity.

4 Idan Shatz et al.

Step 2: Given a set of vertices associated with normals,
the optimization function attempts to fit both the best
conic and the best plane to this set. The surface having
the smaller error is chosen. Each face f is assigned a
weight ω(f), which is the normalized area of the face.
The area “hints” to the importance of the face vertices.
The function optimized in this step is given by:

argminn,d,c,θ

∑

f

(ω(f)Dist(f,E(n, d, c, θ)))2 (6)

Step 3: To decrease the number of segments, neighboring
segments are merged. The segments selected for merging
are those whose merge causes the smallest projection er-
ror (Equation 4).

4 Boundary refinement

When two segments intersect in a boundary along edges
of the mesh, there should be an analytical boundary be-
tween their approximations, close to the boundary edges.
However, as the error between an approximation and its
corresponding segment grows, it might not be satisfied,
as illustrated in Figure 2. It is clear that approximating
each segment separately cannot suffice.

Fig. 2 The problem with boundaries

The challenge is to bring the analytical boundary be-
tween adjacent approximations as close as possible to the
boundary between their corresponding segments. This is
done by considering the boundaries in the optimization
process. The distance between the projections of bound-
ary vertices on the adjacent approximations, is added to
Equation 6 and each approximation Ei is optimized by:

argminn,d,c,θ

∑

f∈Ei

(ω(f) · Dist(f,E(n, d, c, θ)))2

+β
∑

u∈boundary

(ω̄(u)ProjError(u))2. (7)

In Equation 7, u is a boundary vertex adjacent to Seg-
ments Si and Sk. Denote the projection of u on Ei (Ek)
by ui (uk). We define the projection error of u by ProjError(u) =
||ui−ProjEi

(uk)||. (ω̄(v) will be defined later.) Note that

this second term is 0 when the approximations are per-
fectly aligned.

At every optimization iteration, the algorithm in-
creases the value of β. (When β −→ ∞, the approxima-
tions will meet, but the projection error will grow.) The
algorithm terminates when β gives a sufficiently small
error, so that the boundaries of the approximations are
close. In the implementation, β is initialized to 0 and
increased by 0.1 at every iteration, where convergence is
reached after 10-20 iterations.

Note that this stage of the algorithm is similar to the
previous stage (Section 3). Both perform the optimiza-
tion described in Equation 7, with the only difference
being the value of β. However, it is important to per-
form these two stages separately since the addition of
the second term (β > 0) requires a stable segmentation.

“Flat boundaries”: When the boundaries of adjacent ap-
proximations have similar normals, their analytical bound-
ary becomes unstable. This situation, which might be
counter-intuitive, is illustrated in Figure 3. The approxi-
mations are drawn in yellow and green and the analytical
boundary between them in red. The blue region demon-
strates how the red boundary moves when the yellow ap-
proximation changes slightly. It is shown that the blue
region increases when the normals at the boundary of
the approximations are similar.

Fig. 3 Sharp (left) vs. flat (right) boundary

To understand this behavior, assume that we are given
two planar surfaces p1 and p2, having normals n1 and
n2, respectively. Assume also that p1 moves in the direc-
tion of its normal n1 by ∆d1, as illustrated in Figure 4.
The movement of the boundary between p1 and p2, is
described by Equation 8

∆d =
∆d1

‖n1 × n2‖
. (8)

A boundary is called flat when α ≈ 0◦ (‖n1 × n2‖ ≈
0). It can be seen from Equation 8 that when α ≈ 0◦,
a small movement of p1 (∆d1) will result in a large ∆d.
Therefore, the projection error of a flat boundary vertex
(∆d1) will cause a large error in the analytical boundary
(∆d). To handle it, the weights ω̄ in Equation 7 should

Paper Craft Models from Meshes 5

Fig. 4 p1 moves by ∆d1 in direction n1

depend on ∆d. In our implementation, the weight of a
boundary vertex u is set to

ω̄(u) =
1

‖n1 × n2‖ + ε
.

5 Analytical boundary extraction

At the end of Stage 3, the projections of the bound-
aries of two adjacent segments on their approximations,
are close to each other. However, the exact analytical
boundary between the approximations, has not yet been
extracted. This is the goal of the current stage (Stage 4).

Given two adjacent mesh segments Sl and Sk and
their approximations El and Ek, respectively, comput-
ing the analytical boundary between El and Ek can be
done analytically, by calculating the intersections be-
tween conics. However, three issues need to be addressed.
First, an analytical boundary might consist of several
disconnected curves, out of which only the relevant curve
should be extracted. Second, out of the relevant curve,
only a sub-curve should be extracted, as illustrated in
Figure 5(a), where the boundary of the approximation of
the cyan segment consists of sub-curves of the green, yel-
low and blue analytical boundaries. Third, in case of “flat
boundaries”, the analytical boundaries might diverge, as
demonstrated by the green curves in Figure 5(b). While
the first two issues can be handled analytically, the third
cannot.

Therefore, instead of computing the boundaries ana-
lytically, the following procedure is utilized.

1. The analytical branching points – the intersection
points between three approximations – are computed.
These are the red points in Figure 5. Every pair of
two consecutive branching points are considered the
endpoints of a sub-curve that will build up the com-
plete boundary. If two approximations intersect in a
full ring (i.e., the boundary between the upper leg
and the lower leg of the dino-pet in Figure 7), any
point on the ring can be chosen as the first and the
second endpoints.

2. We are given two endpoints v̄i and v̄i+N on the bound-
ary, their corresponding vertices on the mesh vi and
vi+N , and the set of vertices vi, vi+1, · · · , vi+N be-
tween them. The curve between v̄i and v̄i+N is com-
puted by iterating on the following three steps until
convergence. At time t,

(a) Analytical boundaries in green, blue and yellow

(b) Disconnected analytical boundary

Fig. 5 Analytical boundaries

(a) ∀j, i ≤ j ≤ i + N, project vj(t) onto El, to get
v̂j(t).

(b) ∀j, i ≤ j ≤ i + N, project v̂j(t) onto Ek, to get
ṽj(t).

(c) Smooth by setting

vj(t + 1) =
ṽj−1(t)+ṽj(t)+ṽj+1(t)

3 .
The first two operations move the current mesh bound-
ary vertices toward the analytical boundary. Conver-
gence is proved in Appendix A. The last operation
smooths and shortens the boundary by averaging the
points.

Intuitively, the convergence speed depends on the an-
gle between the boundaries. For sharp boundaries, op-
erations (a) and (b) quickly converge to the analytical
boundaries, while for flat boundaries, this convergence is
slower.

In the special case, where the analytical boundary
between two segments consists of several disconnected
boundaries (Figure 5(b)), the boundary we are seeking
should smoothly connect the two disconnected analyt-
ical boundaries (the dashed black line in Figure 5(b)).
This case is handled automatically by operation (c). An-
other desirable outcome of this operation is the collapse
of small loops on the boundary.

6 Results

Figures 6–7 present some results of the algorithm. It can
be seen that the requirements set in Section 1 are sat-
isfied. (1) Each part is developable and can be unfolded

6 Idan Shatz et al.

(a) original model (b) paper-craft model (c) part layout

Fig. 6 Paper-craft models of Venus (700 faces), a CAD model (11K faces) , and a hand (25K faces)

Paper Craft Models from Meshes 7

(a) original model (b) paper-craft model (c) part layout

Fig. 7 Paper-craft models of the dino-pet (3.5K faces) and the duck (1100 faces)

(a) Our algorithm (b) [Mitani & Suzuki] (c)[Julius et al]

Fig. 8 Comparison

8 Idan Shatz et al.

into a paper (Figures 6–7(c)). (2) The boundaries go
along piece-wise conic edges and are easy to cut and
glue. (3) Visually, the difference between the paper-craft
model and the mesh is pretty small. Below we present
the measured error. (4) The number of pieces is relatively
small.

In Figure 6, no pre-processing was applied to the
models, while in Figure 7, both symmetry and segmen-
tation into meaningful components were used in a pre-
processing stage. (However, the algorithm identified the
cylindrical features of meshes, such as the legs, hands,
and neck even without pre-processing.)

In terms of accuracy, our algorithm has the advantage
that the error can be bounded, by setting the maximum
error in Stages 1 and 2 of the algorithm. In particular,
the maximum error was set to 0.05 (for all the models),
normalized by the size of the model.

Figure 8 compares the results of our algorithm to
those of [16] and [7]. It can be seen that in [7] many of
the details disappear, including the front legs, the tail
and the protrusion of the rear leg. It can be concluded
that the error is large (though it is not supplied). In [16],
the paper-craft model presents the details. In this case,
the error can be compared numerically. The RMS (root
mean square) error measured by Metro [1] between the
original model and the paper-craft model (projecting the
vertices onto the approximations) of the bunny is 0.0077,
compared to 0.0126 reported by [16].

As for the other requirements: Cutting and gluing
is easier when cones are used, rather than long triangle
strips [16]. It worth noting that other algorithms have
attempted to smooth the mesh boundaries [9,7]. How-
ever, these boundaries are restricted to the edges of the
mesh, and thus are bound to be jagged. In our algorithm,
the analytical boundaries solves jagginess.

Finally, our algorithm produces 35 parts for the bunny,
while [16] produces 33 parts, thus this aspect is compa-
rable. In [7], only 10 parts are produced, which is accept-
able for cloth, but cannot suffice for creating an accurate
model from paper.

Our algorithm has several other desirable properties.
First, since conics are used, the paper model is rela-
tively smooth. Moreover, the paper model looks smooth
even when the input mesh contains very few triangles
(e.g., only 912 faces in Venus in Figure 6). Second, when
a part is thin (i.e., the hands of the dino-pet in Fig-
ure 7), it is modeled by a single planar part. This makes
paper-crafting much easier for the user. Third, it can
be observed that regions with many details have more
segmented than regions with less details. This property
helps reducing the number of pieces, while preserving the
details of the model. Finally, the use of symmetry, when
it exists, makes paper crafting intuitive.

Two parameters need to be set by the user: the max-
imum error allowed and λ, which specifies the weight
given to the normals. The first parameter makes it pos-
sible to generate different segmentations of different ac-

curacy for a given mesh, so that the effort is suitable for
children at various ages. To produce the paper-craft ex-
amples shown in this paper, the error was set to 5% of
largest axis of the model’s bounding box and λ was set
to 5. The exception is the bunny, for which λ was set to
3. Thus, almost no parameter tweaking was necessary.

For the actual gluing of the paper-craft , the gluing
instructions are printed on the reverse side of the paper.
In particular, the segment number is printed within the
segment and the numbers of the neighbors are printed
along the corresponding boundaries. Theses numbers guide
the user in assembling the parts. Because of the piece-
wise smooth boundaries, it is easy to understand where
each sub-boundary begins and ends.

7 Conclusion

This paper introduces an algorithm for segmenting a
mesh into developable components. The algorithm has
three key ideas. First, each segment is approximated
by a surface that is guaranteed to be developable. Sec-
ond, the approximations are modified so as to guaran-
tee that neighboring approximations indeed intersect at
their boundaries. This is important when making pa-
per craft models, where stretching is prohibitive. Third,
the algorithm extracts the analytical boundaries between
the approximations, making the boundaries intuitive and
easy to cut and glue.

In addition to satisfying Requirements 1-4, our al-
gorithm has other benefits. First, the user can set pa-
rameters that indicate the required level of difficulty.
Thus, the algorithm trades-off error for the number of
pieces. Second, thin parts are modeled as planar sur-
faces. Third, symmetry and meaningful components are
exploited, which facilitate the understanding of the user.
Fourth, the resulting models are piece-wise smooth. Fi-
nally, regions with many details are allocated more pieces
than regions with fewer details.

The segmentations produced by the algorithm are
used to create several paper layouts from existing 3D
meshes. The resulting paper-craft models are presented
and compared to the results of other algorithms.

In the future, the algorithm can be extended to in-
clude other developable surfaces, such as swept surfaces
with extrusion. Moreover, although the aim of our algo-
rithm is paper-crafting, it might worth examining whether
this method is suitable also for other applications, such
as texture mapping, where the developability constraint
can be relaxed and therefore the number of charts can
be reduced.

The technology described in this paper is patent pend-
ing.

Paper Craft Models from Meshes 9

References

1. Cignoni, P., Rocchini, C., Scopigno, R.: Metro: measuring
error on simplified surfaces. Computer Graphics Forum
17(2), 167–174 (1998)

2. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational
shape approximation. ACM Trans. Graph. 23(3), 905–
914 (2004)

3. Duda, R., Hart, P., Stork, D.: Pattern Classification.
John Wiley & Sons, New York (2000)

4. Garland, M., Willmott, A., Heckbert, P.: Hierarchical
face clustering on polygonal surfaces. In: SI3D ’01: Pro-
ceedings of the 2001 symposium on Interactive 3D graph-
ics, pp. 49–58 (2001)

5. Guskov, I., Vidimce, K., Sweldens, W., Schroder, P.: Nor-
mal meshes. In: SIGGRAPH, pp. 95–102 (2000)

6. Igarashi, T., Cosgrove, D.: Adaptive unwrapping for in-
teractive texture painting. In: SI3D ’01: Proceedings of
the 2001 symposium on Interactive 3D graphics, pp. 209–
216 (2001)

7. Julius, D., Kraevoy, V., Sheffer, A.: D-charts: Quasi-
developable mesh segmentation. In: Computer Graph-
ics Forum, vol. 24, pp. 581–590. Eurographics, Blackwell,
Dublin, Ireland (2005)

8. Katz, S., Leifman, G., Tal, A.: Mesh segmentation using
feature point and core extraction. The Visual Computer
21(8-10), 865–875 (2005)

9. Katz, S., Tal, A.: Hierarchical mesh decomposition using
fuzzy clustering and cuts. ACM Trans. Graph. (SIG-
GRAPH) 22(3), 954–961 (2003)

10. Kleppner, D., Kolenkow, R.J.: An Introduction to Me-
chanics. McGraw-Hill (1973)

11. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to
dense polygon meshes. In: SIGGRAPH ’96: Proceedings
of the 23rd annual conference on Computer graphics and
interactive techniques, pp. 313–324 (1996)

12. Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., Seidel, H.P.:
Intelligent mesh scissoring using 3d snakes. In: Pacific
Conference on Computer Graphics and Applications, pp.
279–287 (2004)

13. Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares
conformal maps for automatic texture atlas generation.
In: SIGGRAPH, pp. 362–371 (2002)

14. Liu, R., Zhang, H.: Segmentation of 3d meshes through
spectral clustering. In: Pacific Conference on Computer
Graphics and Applications, pp. 298–305 (2004)

15. Maillot, J., Yahia, H., Verroust, A.: Interactive texture
mapping. In: SIGGRAPH, pp. 27–34 (1993)

16. Mitani, J., Suzuki, H.: Making papercraft toys from
meshes using strip-based approximate unfolding. ACM
Trans. Graph. 23(3), 259–263 (2004)

17. Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B.,
Rossignac, J.: Plumber: A multi-scale decomposition of
3d shapes into tubular primitives and bodies. Proc. of
Solid Modeling and Applications pp. 139–158 (2004)

18. Sander, P., Snyder, J., Gortler, S., Hoppe, H.: Texture
mapping progressive meshes. In: SIGGRAPH, pp. 409–
416 (2001)

19. Sander, P., Wood, Z., Gortler, S., Snyder, J., Hoppe, H.:
Multi-chart geometry images. In: Eurographics/ACM
SIGGRAPH symposium on Geometry processing, pp.
146–155 (2003)

20. Shamir, A.: A formalization of boundary mesh segmen-
tation. In: Proceedings of the second International Sym-
posium on 3DPVT (2004)

21. Shlafman, S., Tal, A., Katz, S.: Metamorphosis of poly-
hedral surfaces using decomposition. Computer Graphics
Forum 21(3), 219–228 (2002)

22. Taubin, G.: Estimation of planar curves, surfaces, and
nonplanar space curves defined by implicit equations

with applications to edge and range image segmentation.
IEEE Transactions on Pattern Analysis and Machine In-
telligence 13(11), 1115–1138 (1991)

23. Wu, J., Kobbelt, L.: Structure recovery via hybrid varia-
tional surface approximation. Computer Graphics Forum
24(3), 277–284 (2005)

24. Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh
segmentation driven by gaussian curvature. The Visual
Computer 21(8-10), 659–668 (2005)

25. Zhou, K., Synder, J., Guo, B., Shum, H.Y.: Iso-charts:
Stretch-driven mesh parameterization using spectral
analysis. In: Eurographics/ACM SIGGRAPH sympo-
sium on Geometry processing, pp. 45–54 (2004)

26. Zhou, Y., Huang, Z.: Decomposing polygon meshes by
means of critical points. In: MMM, pp. 187–195 (2004)

27. Zuckerberger, E., Tal, A., Shlafman, S.: Polyhedral sur-
face decomposition with applications. Computers and
Graphics 26(5), 733–743 (2002)

A Convergence of analytical boundaries

In Section 5, a three-step procedure was proposed for con-
verging to the analytical boundaries. We show that the first
two steps, which project the mesh vertices onto the approxi-
mations, indeed converge.

Given a vertex v on segments Sl and Sk, let v(t) be the
value of the vertex found in Step 3 at iteration t − 1 and
ProjEl

(v(t)) = v̂(t) be the projection of v(t) on El. It is easy
to see that the nearest point on El to v is the projection of
v onto El. We define the mutual distance of v(t) from both
approximations by

Dist(v(t), El ∪ Ek) =

= max{Distance(v(t), El), Distance(v(t), Ek)}.

Lemma 1 The mutual distance Dist(v(t), El ∪ Ek) =
= Distance(v(t), El), t > 1.

Proof After the first iteration, v(t) resides on Ek, therefore
its distance from Ek is zero and the mutual distance must be
the distance from El.

Lemma 2 The mutual distance decreases with each itera-
tion, i.e., Dist(v(t + 1), El ∪ Ek) < Dist(v(t), El ∪ Ek).

Proof Let nk(v) be the normal of Ek at ProjEk
(v), αkl(v)

be the angle between nk(v) and nl(v), linek(v(t)) be the
line from Ek’s apex to v(t), circlek(v(t)) be the cross sec-
tion through v(t) that is parallel to the axis of Ek’s, and
vc(t) be the intersection of linek(v(t + 1)) and circlek(v(t)).
See Figure 9(a).

The distance between v(t) and line [v(t + 1), v̂(t)] is
sin(αkl(v̂(t)))‖v(t) − v̂(t)‖. Therefore,
‖v(t + 1) − v(t)‖ ≥ sin(αkl(v̂(t)))‖v(t) − v̂(t)‖.

When αkl(v̂(t)) > 0, ‖v(t + 1) − v(t)‖ > 0. From the
triangle inequality:
‖v(t) − v̂(t)‖ + ‖v̂(t) − v(t + 1)‖ ≥ ‖v(t + 1) − v(t)‖ > 0.

As a result, one of the summands must be positive. If the
first summand is positive, ‖vc(t)− v̂(t)‖ < ‖v(t)− v̂(t)‖. This
stems from the fact that vc(t) resides on circlek(v(t)) and
on linek(v(t)) and thus vc(t) is the nearest point to v̂(t) on
circlek(v(t)). (Figure 9(b) illustrates the case where v̂(t) is
external to the cone).

If the second summand is positive,‖v(t + 1) − v̂(t)‖ <
‖vc(t) − v̂(t)‖. This stems from the fact that vc(t) is on
linek(v(t + 1)) and v(t + 1) is the projection of v̂(t) on Ek,
and thus {v(t + 1), v̂(t), vc(t)} is a right triangle with a right
angle at v(t + 1). Consequently, when αkl(v̂(t)) > 0,

‖v(t + 1) − v̂(t)‖ < ‖v(t) − v̂(t)‖. (9)

10 Idan Shatz et al.

This fact can be used to show convergence:

Dist(v(t + 1), El ∪ Ek) =
(Lemma 1) = Distance(v(t + 1), El)

= ‖v(t + 1) − Projl(v(t + 1))‖
(nearest point) ≤ ‖v(t + 1) − Projl(v(t))‖
(Equation 9) < ‖v(t) − Projl(v(t))‖

= Distance(v(t), El)
(Lemma 1) = Dist(v(t), El ∪ Ek).

When αkl(v̂(t)) = 0, Ek and El are parallel. If they do
not intersect, the procedure converges to the nearest points
on them.

(a) Definitions

(b) vc(t) is the nearest point to v̂(t) on circlek(v(t))

Fig. 9 Proof illustration

