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Abstract
This paper describes an algorithm for morphing polyhedral surfaces based on their decompositions into patches.
The given surfaces need neither be genus-zero nor two-manifolds. We present a new algorithm for decomposing
surfaces into patches. We also present a new projection scheme that handles topologically cylinder-like polyhedral
surfaces. We show how these two new techniques can be used within a general framework and result with morph
sequences that maintain the distinctive features of the input models.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computational Geometry and Object Model-
ing]: Boundary representations I.3.7 [Three-Dimensional Graphics and Realism]: Animation
Keywords: Metamorphosis, shape transformation, surface decomposition

1. Introduction

Metamorphosis of three-dimensional polyhedral models has
been a lively topic of research for many years. To generate a
pleasing morph sequence, it is usually required to find a good
correspondence between the models before an interpolation
is applied.

A common approach for finding a correspondence be-
tween two given polyhedra is to look for a common em-
bedding of their topologies (i.e., their one-skeleton graphs).
This is done by projecting the models onto a common pa-
rameterization domain, merging their one-skeleton graphs in
this domain, and projecting the merged topology back to the
original models. Various projection domains and projection
techniques have been proposed. For instance, in 8 � 5 the poly-
hedra are projected onto the plane. In 10 the polyhedra are
projected onto the surface of a sphere. In 14 the polyhedra
are projected onto the surfaces of convex polyhedra.

This general approach has a couple of drawbacks. First,
fine correspondence is hard to achieve since the projection is
global. This can result with visible artifacts when features in
one object are transformed into completely different features
on the other. Second, it is necessary to assume that the input
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models are either genus-zero polyhedra or disk-like polyhe-
dral surfaces, for the above algorithms to be applicable. Most
models found in VRML libraries, however, are neither. Mod-
els are rarely two manifolds, let alone genus-zero. Usually,
models are “polygon soups”, consisting of sets of triangles
without any restrictions applied.

To overcome the first shortcoming, it is proposed in 1 that
the user specifies corresponding feature points on the poly-
hedra’s surfaces. This algorithm is shown to generate pretty
morph sequences. However, specifying many points might
make the global embedding impossible, in addition to being
a burden on the user. And, it is still required that the input
models are genus-zero polyhedra.

One way to get over both shortcomings is to decom-
pose the objects compatibly prior to their projection. Then,
a common embedding is found for each compatible pair of
patches. This approach was first proposed by 7 � 16, where im-
pressive morph sequences are produced.

Both 7 and 16 require that the models are decomposed
manually, which might not always be a simple task. More-
over, it is required that the resulting patches are all topo-
logically disks. However, for many models, meaningful de-
compositions necessarily include topologically cylinder-like
patches (i.e., polyhedral models having two closed polygo-
nal boundaries). Think for instance on legs of furniture or
legs of animals. In fact, rotational sweep models or general
sweep objects all consist of cylinder-like patches. In 16 it is
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proposes to cut cylinder-like patches along a cutting line,
thus converting them into disk-like patches. This scheme
works, but might result with visible artifact along the cut.

In this paper we follow 7 � 16 and add two novel aspects.
First, we propose a novel decomposition algorithm for de-
composing polyhedral models. Second, we propose a new
algorithm for projecting cylinder-like patches.

The main idea that underlies our scheme is that given
a model, its components and the way they relate to each
other characterize this model and portray its distinctive fea-
tures. This is supported by observations that the visual sys-
tem tends to segment complex objects at regions of matched
concavities 2. Thus, it is important to morph the meaningful
components of the models to each other.

This is in particular the case when the models belong to
the same family of objects and are highly similar to each
other. In this case the viewer expects that the metamorpho-
sis maintains this similarity throughout the morph sequence.
Figure 1 illustrates this case, by showing a few snapshots
from a movie that morphs a cheetah into a tiger, as gen-
erated by our system. As can be seen, the gradual changes
are hardly noticeable. (The animals are colored according to
their decompositions.)

The rest of the paper is organized as follows. In Section 2
we give some definitions and describe the general algorithm.
The next four sections describe the various steps of our al-
gorithm. Section 3 describes the decomposition algorithm.
Section 4 describes the algorithm for projecting cylinder-
like patches. Section 5 reviews some well-known disk-like
projection algorithms and presents a comparative study. Pre-
serving continuity across patch boundaries is described in
Section 6. Results are presented in Section 7. Finally, con-
clusions are drawn in Section 8.

2. General Algorithm
We begin this section with a few definitions and then outline
our algorithm. Let S be a polyhedral surface with n vertices.

Definition 2.1 Decomposition: S1 � S2 ������� Sk is a decomposi-
tion of S iff (i) � i � 1 � i � k, Si 	 S, (ii) � i, Si is connected.
(iii) � i � j � i 
� j � 1 � i � j � k, Si and S j are face-wise disjoint
(i.e, the patches can only intersect in a vertex or along an
edge) and (iv) � k

i  1Si � S.

Definition 2.2 Decomposition graph: Given a decomposi-
tion S1 � S2 ������� Sk of a surface S, a graph G � V � E � is its rep-
resentative decomposition graph iff each patch Si is repre-
sented by a vertex vi � V and there is an arc between two
vertices in the graph iff the two corresponding patches share
an edge in S.

Definition 2.3 Compatible decomposition: Given two sur-
faces S and T , their decompositions S1 � S2 ������� Sk and
T1 � T2 ������� Tk are called compatible if their decomposition
graphs are isomorphic.

Definition 2.4 Disk-like polyhedral surface: A polyhedral
surface is called disk-like if the following requirements hold:
(i) The faces are either disjoint, or they have a single vertex
in common, or they have two vertices and the edge joining
them in common, (ii) Every internal point is homeomorphic
to a disk, and every boundary point is homeomorphic to half
a disk. (iii) The surface is connected. (iv) The boundary of
the surface is a single simple (3D) polygon.

Definition 2.5 Cylinder-like polyhedral surface: A polyhe-
dral surface is called cylinder-like if the following require-
ments hold: (i)-(iii) as in the disk-like case. (iv) The bound-
ary of the surface consists of two disjoint simple (3D) poly-
gons.

Given two models and their compatible decompositions,
our goal is to morph each pair of corresponding patches,
while preserving continuity across patch boundaries. Recall
that the underlying assumption is that the patches represent
the meaningful parts of the objects, thus the boundaries be-
tween them represent the essential features which charac-
terize the objects. A decomposition-based morph maintains
these essential features. Consequentially, having a good de-
composition algorithm is of vital importance to the approach
pursued in this paper.

The algorithm consists of the following stages. First, the
models are decomposed, as described in Section 3. A novel
aspect of our decomposition algorithm is that the level of the
decomposition can be controlled by the end user. Thus, it is
possible to decompose the objects top-down. In other words,
the system first decomposes the objects into a small num-
ber of patches, and then selected patches are further decom-
posed. For instance, the animals are first decomposed into
their major organs (e.g., head, body, tail, legs), and then each
part is further decomposed (e.g. the head is decomposed into
the nose, ears etc.). This minimizes the need for manual cor-
rections to the decompositions.

Once the polyhedra are decomposed compatibly, the prob-
lem of finding a global parameterization is broken down into
finding a parameterization for each pair of corresponding
patches. At this stage each patch is classified as disk-like
or as cylinder-like, and accordingly, the patches are embed-
ded onto their corresponding parameterization domains, as
described in Sections 4–5. Disk-like patches are projected
to the plane while cylinder-like patches are projected to an
ideal cylinder. (In case we get other types of patches, they
are further decomposed.) It is essential to maintain conti-
nuity across the boundaries of the patches, as described in
Section 6.

The projected topologies are merged on their parameteri-
zation domains in a conventional manner, i.e. 10 � 14, and the
merged topology is projected back onto the original objects.
This merged topology is the correspondence we were seek-
ing.
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Figure 1: Metamorphosis of a cheetah into a tiger

Having established a correspondence, the models are in-
terpolated, to produce the metamorphosis, using any stan-
dard interpolation scheme. In the examples, we use linear
interpolation. In the next sections we elaborate on each step
of the algorithm.

3. Surface Decomposition
Given S, a polyhedral surface with n vertices, the goal is to
decompose S into k disjoint patches S1 ������� Sk whose union
gives S.

In the past, convex decompositions 3 and watershed de-
compositions 12 were proposed. In this section we describe
a new algorithm for surface decomposition. A major benefit
of our algorithm is that the number of output patches can be
controlled, thus avoiding over-segmentation. The algorithm
is particularly suitable for morphing since a small number of
meaningful patches is needed, and in our case the user can
determine this number.

The algorithm gets as input a three-dimensional model
(e.g., in VRML) and a parameter specifying the upper bound
on the number of final patches. This parameter can be � in
case the user prefers that the system determines the suitable
number of patches.

The major decision the algorithm needs to make is
whether two given faces should belong to the same patch
or not. Possible considerations are convexity 3 and curva-
tures 12. Another possible consideration is the proximity of
the faces.

Our underlying assumption is that distant faces, both in
terms of physical distance and in terms of angular distance,
are less likely to be in the same patch than faces which are
close together. We therefore define the distance between two
faces F1 and F2 as follows. If F1 and F2 are adjacent, then:

Distance � F1 � F2 � � � 1 � δ ��� 1 � cos2 � α ����� δPhys Dist � F1 � F2 �
The first part of the distance definition measures the angu-

lar distance, where α is the dihedral angle between the faces.
Note that the expression � 1 � cos2 � α ��� reaches its maximum
at Π � 2 and its minimum at 0 (or Π). Thus, coplanar (or close
to coplanar) faces are considered close to each other and are
more likely to belong to the same patch. The second part of
the formula measures the “physical” distance. It is the sum
of the distances between the centers of mass of the two faces
and the midpoint of their common edge. Note that we choose
not to take the distance between the face centers which de-
pends on the dihedral angle. The latter peaks at 0 and gets its
minimum at Π � 2, which would be the opposite of what we
are trying to achieve. The δ is a weight parameter that allows
the user to trade off the two distances.

The distance definition is extended to non-adjacent faces
in the following manner. If F1 and F2 are non-adjacent, then:

Distance � F1 � F2 � � min
F3 � F1 � F2

� Distance � F1 � F3 ��� Distance � F3 � F2 ���
The main idea of the algorithm is to iteratively improve

the decomposition by transferring faces from one patch to
another. In other words, unlike previous algorithms in which
the decomposition is determined and cannot be changed, our
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algorithm iterates on switching faces locally as long as the
value of some global function is being improved. This is sim-
ilar to the concept that underlies the K-means clustering al-
gorithm.

The algorithm consists of four steps: preprocessing, elect-
ing the initial representatives of the patches, determining
the decomposition, and reelecting the representatives. Steps
3 and 4 are iterated until convergence or until some pre-
defined number of iterations is performed. We elaborate on
each of these steps below.

1. Preprocessing: During preprocessing the distances be-
tween all the adjacent faces are computed. In addition, the
faces’ normals are fixed when the model is wrongly oriented,
and the disconnected components of the model are found.
Obviously, the number of patches in the final decomposition
should be at least the number of disconnected components.

2. Electing the initial representatives of the patches: Each
patch is represented by one of its faces. In principle, the
initial representatives of the patches could be chosen ran-
domly. In practice, however, there are a couple of reasons
for carefully choosing these representatives. First, our algo-
rithm converges to local minima, which makes the initial de-
composition critical for the the final quality of the decom-
position. Second, good initial representatives mean that the
algorithm will converge after a small number of iterations.

The goal is to maximize the distances between the ini-
tial representatives. Initially, one representative is chosen for
each disconnected component. It is the face having the min-
imal distance between its center of mass and the center of
mass of its component. If the number of required patches is
less or equal to the number of representatives, we are done.

Otherwise, the model should be further decomposed. We
calculate, for each representative, the minimum distances to
all the faces (e.g., using Dijkstra’s algorithm). A new repre-
sentative is added so as to maximize the average distance to
all the existing representatives on the same connected com-
ponent. New representatives are added one by one, until the
required number of representatives (i.e., patches) is reached.
In case the user specifies that the system should automati-
cally determine the number of patches, new representatives
are added as long as their distance from any existing repre-
sentative is larger than a pre-defined ε-distance.

3. Determining the decomposition: For each face, the dis-
tances to all the representatives within its connected compo-
nent are calculated. Each face is assigned to the patch whose
representative is the closest. This procedure creates a decom-
position of the given model.

4. Re-electing the representatives: The goal of the algorithm
is to minimize the function

F � ΣpΣ f � patch � p � Dist f p

where Dist f p is the shortest distance from a patch repre-

sentative p to a face f belonging to the patch p represents.
Therefore, ΣpΣ f � patch � p � Dist f p is the sum on the shortest
distances of all the faces to their patch representatives.

In order to converge to a solution, new patch represen-
tatives are being elected. This is done by minimizing the
sum of the shortest distances from each representative to the
faces which belong to the relevant patch. In other words,
for each patch a new representative pnew is elected as the
face (belonging to the patch) that optimizes the function
minp Σ f Dist f p �

In practice, another option is to choose as a new represen-
tative the face whose center of mass is closest to the center
of mass of the patch, as was done in the initialization step.
Obviously, the complexity of the latter is much better. More-
over, our experiments have shown that the decompositions
produced by this technique are often better.

If any patch had its representative changed in Step 4, the
algorithm goes back to Step 3.

Lemma 3.1 All the faces which belong to a single patch are
connected, thus the algorithm produces a legal decomposi-
tion.

4. Embedding Cylinder-like Patches
The result of the surface decomposition algorithm need not
necessarily consist of disk-like patches, nor genus-zero poly-
hedra. In fact, it is often the case that the resulting patches
are topologically cylinder-like. This is the case, for instance,
with most of the patches of rotational sweep or general
sweep objects, as well as with animals, furniture etc. For in-
stance, most of the patches of the cheetah in Figure 1 are
cylinder-like.

In 16 cylinder-like patches are “cut” so that they are trans-
formed into disk-like patches. This, however, might distort
the objects along the cutting line. Figure 2 illustrates this
distortion by showing a morph of a bishop and a cylinder,
both without their tops and bottoms (i.e., they are cylinder-
like). Our algorithm avoids these distortions, as can be seen
in Figure 3.

In 11 the user controls the global evolution of the deforma-
tion of cylinder-like models by specifying two skeletal struc-
tures. This works very well, however, it might not always be
easy for the user.

We propose a novel scheme where the parameterization
domain is an ideal cylinder, i.e. a cylinder with radius 1
and height 1. Our algorithm is based on a recursive divide-
and-conquer scheme and consists of two steps: establishing
boundary correspondence and cylinder embedding.

1. Establishing boundary correspondence: Given a pair of
cylinder-like patches C1 and C2, a correspondence between
their boundaries is first established. Let the boundaries of C1
and C2 be c11 � c12 and c21 � c22 respectively (see Figure 4).

c� The Eurographics Association and Blackwell Publishers 2002.
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Figure 2: Morphing a Bishop and a Cylinder – Cutting the cylinder along a cutting line

Figure 3: Morphing a Bishop and a Cylinder – Our algorithm

The user should first choose two sets of corresponding pairs
of boundary vertices on the opposite boundaries of both
patches, called the anchor vertices. These are the vertices
a1 � c11, a �1 � c12 and their corresponding vertices a2 � c21,
a �2 � c22 and also vertices b1 � c11, b �1 � c12 and their corre-
sponding vertices b2 � c21, b �2 � c22 in Figure 4.

The anchor vertices are first mapped to the boundary
curves of the parameterization cylinder. Then, the other
boundary vertices are mapped according to their relative arc-
length distance from the anchor points on the patches.

The user is allowed to mark more corresponding ver-
tices on the boundaries of the patches. These correspond-

ing vertices are placed on the boundaries of the ideal cylin-
der according to the average of their arc-lengths relative to
the overall lengths of the boundaries. In this case, all the
other vertices are mapped according to their relative dis-
tances from their nearest marked corresponding vertices.

Since the number of boundary vertices on the given
patches may differ, in order to establish a full correspon-
dence between the boundaries, it is necessary to add vertices
on the boundaries of the patches. These vertices are added
by merging the boundaries, similarly to way sorted lists are
merged (see Figure 5).

2. Cylinder embedding (full parameterization): Mapping a
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Figure 5: Merging the boundaries

cylinder-like patch to to an ideal cylinder is done using a di-
vide and conquer approach. We begin with a couple of defi-
nitions.

Definition 4.1 A dividing path of a cylinder-like patch is a
non self-intersecting polyline consisting of a subset of the
surface edges, such that: (i) The path connects two vertices,
one on each boundary of the cylinder-like patch, and (ii) The
path does not intersect the boundary of the patch except at
its end-vertices.

Definition 4.2 A strip is a subsurface of a cylinder-like sur-
face confined by two non-intersecting dividing paths.

The major idea of the algorithm is to decompose the
cylinder-like patch into a set of adjacent narrow strips. These
strips can then be mapped onto the parameterization cylinder
or onto a planar rectangle. It is done as follows.

Given a strip, the two middle vertices (one on each bound-
ary) are found. These are vertices c and c � in Figure 6. The
shortest path between these vertices is constructed, thus “vir-

a1

a'1

b1

b'1

C1

d

c

d'

c'

a1

a'1

b1

b'1

c

d

c'

d'

"ideal" cylinder

Figure 6: A recursive step

tually” cutting the strip into two sub-strips. In the shortest
path algorithm, the weight of each edge is set to its length.
Initially, the strips are defined by the anchor points.

If this shortest path is a legal dividing path and it does
not intersect the strip’s boundaries except at its end-vertices,
the vertices which lie along it are mapped to straight lines
connecting the corresponding boundary vertices, on the ideal
cylinder or on a rectangle. (Recall that the boundary vertices
were already mapped in Step 1.) The locations of the vertices
along the straight line are found proportionally to their edge
lengths, as illustrated in Figure 7.

�
�

0
π(2π)0

1

middle points

c

patch parameterization cylinder 
 c

c'

�
� c''1

c''2

c''1

c''2

c'

 
 

Figure 7: Mapping the inner vertices of a dividing path

Once the vertices along the dividing path are mapped, the
algorithm recurses on the two sub-strips. The recursion is
performed simultaneously on both strips, which belong to
the two input patches. That is to say, simultaneously two di-
viding paths are found, one on each strip. Then, the vertices
of the dividing paths are mapped to the same curve on the
ideal cylinder. Finally, the sub-strips are the input to the next
recursive calls.

At some stage of the recursion it becomes impossible to
find a dividing path, i.e., each path between the two bound-
aries of the strip intersects previously-found dividing paths.
In this case the recursion stops. Note that the recursion stops
on both patches, and not only on the patch the stopping con-
dition is satisfied.

Once the recursion ends, the given cylinder-like patches
are compatibly divided into strips by a set of dividing paths.
The next step of the algorithm is to map the inner vertices of
each strip onto an appropriate strip on the parameterization
domain. The mapping of each strip is done independently
on the other strips. Each strip has a disk topology and can
be mapped using any of the three parameterization methods
for disk-like patches discussed in Section 5 (i.e., barycentric,
harmonic or shape-preserving). Since the strips are typically
narrow and almost planar, it is advantageous to use the shape
preserving parameterization.

Finally, on that common domain, the vertex/edge/face
connectivity graphs of the two patches are merged in a con-
ventional way (e.g. 9). This merge establishes the full cor-
respondence between the given patches. The only differ-
ence between our merge step and previously proposed merge
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steps is that before merging the inner vertices of the strips,
it is necessary to merge the vertices of the dividing paths.
This is done, as before, similarly to merging sorted lists (Fig-
ure 5).

Figure 8 demonstrates the mapping of a cylinder-like
bishop (i.e., a bishop whose bottom and top were removed)
onto the ideal cylinder parameterization domain.

(a) The bishop (b) Mapping onto an ideal cylinder

Figure 8: Mapping a cylinder-like bishop onto the parame-
terization cylinder

5. Embedding Disk-like Patches
Various methods have been proposed for embedding disk-
like patches onto the plane. Harmonic mapping, which at-
tempts to preserve the aspect ratios of the edges, was pro-
posed in 4 � 8. A different approach is to use convex com-
binations for parameterization. This can be done either by
barycentric mapping 16 or by shape-preserving mapping as
proposed in 5 � 6. In Barycentric mapping, every internal ver-
tex is defined as the barycentre of its neighbors. In shape-
preserving mapping, the convex combination is chosen such
that if the triangulation is planar to start with, the location of
the vertices will not change.

We experimented with the above three methods, used
them to parameterize various disk-like patches, and com-
pared their resulting embeddings. To measure the quality
of the parameterization techniques, we define three criteria:
preservation of areas, preservation of angles, and stretching.
These distortion parameters aim at measuring how well the
original geometry is maintained after the embedding.

Let Fi and Fj be two faces of the original surface. Let fi
and f j be their corresponding faces on the parameterization
domain. It is desirable that the ratio of the areas in the origi-
nal surface is preserved in the parameterization domain. The
following parameter measures it

area parameter �"!!!! log # Area � Fi ��� Area � Fj �
area � fi ��� area � f j $ !!!! �

The average value and the maximum value of the above pa-
rameter are calculated over all possible pairs.

The next parameter measures the preservation of the an-
gles. For a given face Fi and its mapped face fi, the angle

preservation parameter is calculated as:

angle parameter � Σ3
j  1 � αi j � φi j � 2wi j

where αi j � j � 1 � 2 � 3 are the angles of fi, wi j are weights and

φi j � k � �&% βk
i j

2π
∑i βk

i j
if vk is an interior vertex

βk
i j if vk is an boundary vertex

where βk
i j is the angle in the original mesh 15. Again, both the

average value and the maximum value are used to evaluate
the parameterization.

The last parameter measures the stretch. i.e. how much
the sampling direction in the parameterization domain is
stretched on the mesh surface, and is described in 13.

Results of using the three parameterization methods are
shown in Figure 9, where a head of an android and a head of
a cheetah are parameterized.

Table 1 summarizes the distortion measures for the above
two models. It can be seen that the harmonic mapping pro-
duces the best results in all three categories. Nevertheless,
the shape-preserving method is very competitive. A major
advantage of the shape-preserving method is that it is proven
to always work. In addition, it should be the method of
choice when the given patch is close to planar. Barycentric
mapping, on the other hand, introduces large distortions.

6. Handling the Boundaries
Since the parameterization of each patch is done separately,
it is important to assure continuity along the boundaries of
the patches. Continuity is essential for avoiding distortions
and cracks along the boundaries during the metamorphosis.

Recall that the parameterization methods we use (both for
disk-like patches and for cylinder-like patches) are based on
placing the boundary vertices prior to placing the inner ver-
tices on the parameterization domain. Thus, placing the ver-
tices lying on the boundaries of the patches should be done
such that each vertex is mapped compatibly in the parame-
terization domain, for each patch for which it belongs. That
is to say, the relative arc-length between the vertices should
be maintained on the parameterization domain.

A boundary vertex is called a branching point if it is
shared by at least three patches 16. Given two 3D models
decomposed compatibly, the number of branching points are
the same for each pair of corresponding patches. The corre-
sponding branching points are first found and mapped to the
parameterization domain. In the case of disk-like patches, it
can either be done by placing them uniformly on the bound-
ary of a regular polygon 9 or by placing them proportion-
ally to the average lengths of the boundary segments in the
original 3D models 16, which is preferable. The other bound-
ary vertices, residing between the branching points, are then
mapped proportionally to their average arc lengths on the
original models.
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(a) model (b) barycentric (c) shape preserving (d) harmonic

Figure 9: Mappings using various parameterization techniques

Barycentric Shape-preserving Harmonic
average maximum average maximum average maximum

Android 1.098 8.340 0.388 3.164 0.361 3.155
Cheetah 1.509 8.212 1.304 6.325 1.272 5.423

(a) Area preserving parameter

Barycentric Shape-preserving Harmonic
average maximum average maximum average maximum

Android 6.732 2149.693 0.036 6.686 0.012 1.302
Cheetah 0.861 194.189 0.145 13.632 0.008 0.494

(b) Angle preserving parameter

Barycentric Shape-preserving Harmonic
average maximum average maximum average maximum

Android 2.105 20.950 1.555 20.950 1.544 20.950
Cheetah 4.173 24.316 3.704 13.899 2.779 9.579

(c) Stretch parameter

Table 1: Comparisons of the parameterization methods according to various distortion measures

This method can be extended to handle the boundaries of
cylinder-like patches. An additional requirement is that the
anchor points, which are used for mapping the cylinder-like
patches, should also be placed compatibly on the parameter-
ization domain. We therefore handle the anchor points simi-
larly to the way branching points are handled.

There is one special case that must be addressed. This is
the case where a patch (either a disk-like or a cylinder-like)
is entirely surrounded by a cylinder-like patch. In this case
there are no branching points on the boundaries since only
two patches share the whole boundary. See Figure 10. There
are two possible ways to handle this case. Either the user

chooses user-defined branching points on the source and on
the target models, or the anchor points (used for mapping the
cylinder-like patches) are used as branching points.

7. Results

Figure 1 shows a few snapshots from a movie that morphs
a cheetah into a tiger. The images also show the decomposi-
tions. This example is selected because a cheetah and a tiger
belong to the same family of animals and thus resemble each
other. As such, the viewer is more likely to notice deforma-
tions in the sequence. This is exactly the case our algorithm
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P'1

P2
P'2

control vertex

P1

Figure 10: Disk-like patches P1 and P �1 surrounded by
cylinder-like patches P2 and P �2, respectively

intends to handle well, since it can take advantage of the
similarity of the decompositions.

Another example is shown in Figure 11 where a duck is
being transformed into a dove. Again, the gradual changes
are hardly noticeable. Figure 12 demonstrates the metamor-
phosis of an align into a dino-pet. To illustrate the final re-
sults, this example is shown without coloring the patches in
different colors. See also the color section.

8. Conclusion
We have described in this paper an algorithm for establish-
ing a correspondence for metamorphosis of polyhedral mod-
els. The algorithm is based on decomposing the input mod-
els into their inherent components. A full correspondence is
found for each pair of compatible patches, while taking care
to preserve continuity across the boundaries.

Our algorithm has two novel aspects. First, a new de-
composition algorithm is presented. This algorithm lets the
user control the number of outcome patches and avoids over-
segmentation. Second, a new parameterization scheme is de-
scribed, which embeds cylinder-like patches onto an ideal
cylinder. The latter algorithm avoids distortions and well
maintains the symmetry of the patches due to its divide-and-
conquer nature. We also reviewed and compared some well-
known embedding algorithms for disk-like patches.

We have shown a few results that demonstrate the quality
of the metamorphosis produced by our algorithm. Of course,
as is always the case with metamorphosis, the expectations
and the evaluation of the metamorphosis are in the eye of the
beholder.
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Figure 11: Metamorphosis of a duck into a dove

Figure 12: Metamorphosis of an alien into a dino-pet
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