
October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

International Journal of Shape Modeling
c© World Scientific Publishing Company

TEMPORAL COHERENCE IN BOUNDING VOLUME HIERARCHIES FOR
COLLISION DETECTION

OREN TROPP
Technion, Department of Electrical Engineering

Haifa, 32000, Israel
troppo@tx.technion.ac.il

AYELLET TAL
Technion, Department of Electrical Engineering

Haifa, 32000, Israel
ayellet@ee.technion.ac.il

http://www.ee.technion.ac.il/∼ayellet

ILAN SHIMSHONI
Haifa University, Department of Management Information Systems

Haifa, 31905, Israel
ishimshoni@mis.haifa.ac.il

http://www.mis.haifa.ac.il/∼ ishimshoni

DAVID P. DOBKIN
Princeton University, Department of Computer Science

Princeton NJ, 08544, USA
dpd@cs.princeton.edu

http://www.cs.princeton.edu/∼dpd

Collision detection is a fundamental problem in computer graphics. In this paper, temporal coherence
is studied and an algorithm exploiting it for bounding volume hierarchies, is presented. We show
that maintaining some of the intersection tests computed in the previous frame, along with certain
information, is able to speedup the intersection tests considerably. The algorithm is able to accelerate
the collision detection for small motions and works as fast as the regular algorithm for large motions,
where temporal coherence does not exist. The algorithm framework can be implemented for any type
of bounding volume hierarchy. To demonstrate this, it was implemented for the OBB and the AABB
data structures and tested on several benchmark scenarios.

Keywords: Collision detection, bounding volume hierarchies, OBB, AABB

1. Introduction

Collision detection is a fundamental problem in computer graphics, as well as in compu-
tational geometry, solid modeling, robotics and molecular modeling 1,2. The goal is to find
efficient techniques for determining whether objects intersect.

Of the many algorithms and data structures used in collision detection 3,4,5,6,7, we fo-

1

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

2 Tropp et al

cus on the Bounding volume hierarchy representation, which is a simple and popular data
structure. The attractiveness of this data structure stems from the fact that it gives rise to a
fast “rejection test”. We explore this representation in a dynamic environment.

There are several possible shapes used in bounding volume hierarchies, such as
spheres 8,9, cones 10,11, prisms 12, k-DOPs 13, axis aligned boxes (AABB) 14 and oriented
bounding boxes (OBB) 15,16.

Our basic premise is that in dynamic environments, objects comprising the scene do
not move much between consecutive frames 17,18,19,13,20. This temporal coherence implies
that collision queries are typically dependent on queries made in previous frames.

Temporal coherence for collision detection was introduced in 17, where Voronoi dia-
gram based data structures were used. In 13, a temporal coherence data structure for bound-
ing volume hierarchies, the front, was propose for k-DOPS. This data structure was further
investigated in 20 for the spherical bounding volume data structure and later in 19 for a
convex hull based data structure. The current work succeeds these methods, extending the
technique, generalizing it for any bounding volume hierarchy and implementing it for OBB
and AABB.

The underlying assumption is that most of the bounding volume intersection tests per-
formed in the current frame were performed in the preceding frame as well. Moreover,
the result of this test, intersection or disjointness, is the same most of the time. There-
fore, rather than processing each collision query from scratch, by comparing the roots of
the bounding volumes and expanding nodes downward, the algorithm “remembers” which
collision tests determined the result before, and starts there. Thus, less bounding volume
intersection tests are performed. To support the scheme, we use a Bounding Volume Test
Tree, proposed in 19,20, which represents the collision tests performed thus far and the
front data structure 19,13,20, which maintains the set of intersection tests that determine the
collision between the objects.

There are various possible ways to update the front 20,19. The question remains whether
certain strategies are better than others. The current paper attempts to answer this question.
Rather then developing a strategy depending on frames, our strategy depends on a bound
on the motion of the objects. The paper provides some empirical evidence to support the
proposed strategy.

To accelerate the intersection tests performed on the front nodes in the next frame, a
novel coherence intersection test is introduced. This test utilizes information saved from
the previous frame to speedup the current intersection test.

In our experiments, we use meshes composed of up to hundreds of thousands of poly-
gons. The models move and can come in close proximity of each other. We show that
our algorithm can run up to twice as fast as the equivalent non-coherence algorithm for
OBB. Moreover, we show that collision detection is accelerated as the number of frames
increases (for the same motion). Thus, the smoother the animation, the greater the benefit
of our algorithm.

The paper makes the following contributions:

(1) A coherence intersection test is introduced. Rather than just maintaining the front,

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 3

some additional data, generated in the previous intersection test, is stored and used to
speed up the test in the next frame.

(2) A statistical analysis of temporal coherence for bounding volumes and its relation to
the size of the objects and the motion between frames, is provided .

(3) Front updating policies are devised empirically from runs on several scenes. Unlike
previous work, which utilize frame-based policies, the proposed policies depend on
the motion performed between frames. Thus, the policies can deal with small and large
motions.

(4) Based on the statistical observations, it is proposed that when large motion is detected,
the algorithm should revert automatically to the basic (non-coherence) algorithm until
it detects smaller motion again. Thus, the algorithm always performs at least as well
as the non-coherence algorithm.

(5) The coherence scheme is implemented for the OBB and AABB data structures.
(6) The insight gained from the statistical observations suggests that experiments on co-

herence algorithms should be run as a function of motion size.

The rest of the paper is structured as follows. Section 2 describes the data structure
and the operations supported for it. Section 3 presents the coherence-based collision de-
tection algorithm. Section 4 describes the coherence intersection test. Section 5 elaborates
on determining the algorithm’s control parameters that yield the best performance. The
experimental results are described in Section 6. We conclude in Section 7.

2. Data Structure

This section describes the major data structures used in the algorithm. It starts with a gen-
eral review of bounding volume hierarchies, then describes the bounding volume test tree
and in particular, the front. Finally, it describes the operations for updating the front of the
bounding volume test tree.

Bounding Volume (BV) Hierarchies:

A BV hierarchy is one of the most prevalent data structures for collision detection, which
gives rise to fast “rejection”. In this representation, each node in the hierarchy is a bounding
volume that bounds a sub-object and in particular, a sub-mesh. Each internal node bounds
all the mesh faces bounded by its two children, the root bounds the whole mesh, and a leaf
bounds at least one triangle. Sibling nodes might overlap, yet each face belongs to only
one node at each hierarchical level.

Given two BV hierarchies, a collision test is performed top-down. Initially, the roots are
tested for disjointness. In the affirmative case, the process stops. Otherwise (intersection),
the descendants of one node are tested against the BV of the other, and the process recurses.
When the BVs of the leaves intersect, a primitive-primitive (i.e., triangle-triangle) collision
test is performed.

The Axis Aligned Bounding Box (AABB) 14 and the Oriented Bounding Box (OBB) 15,16

are popular bounding shapes. An AABB bounds the underlying geometry with the mini-

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

4 Tropp et al

mal bounding box aligned with the major axes of the local (object’s) coordinate system.
Obviously, constructing an AABB hierarchy is simple and fast. However, the AABB fails
to tightly bound the underlying geometry. An OBB hierarchy is more flexible in choos-
ing the orientation of the bounding box. Though this representation is more complex to
compute and check for box-box intersection, the geometry is tightly bounded and thus less
intersection tests are performed overall.

Bounding Volume Test Tree (BVTT):

The intersection tests that should be performed for determining a collision between BV
hierarchies, can be described as a binary tree, the Bounding Volume Test Tree (BVTT) 18.
In this tree, every node represents a single BV-BV intersection test. For instance, the root
of the tree represents the intersection test between the roots of the BV hierarchies of the
given objects.

In a BVTT, every internal node represents a BV-BV intersection test that results in an
intersection. A leaf represents either a BV-BV intersection test between disjoint boxes or a
true intersection between triangles. We denote each BVTT node as intersecting or disjoint,
according to the result of the intersection test represented by this node.

The Front:

A front of the BVTT is a subset of the tree nodes which satisfies the condition that every
path from a leaf to the root contains a single node from this subset. For instance, the sim-
plest front is the root of the BVTT. The largest front contains all the leaves of the BVTT
and only them. Figure 1 illustrates four possible fronts of a single BVTT.

The importance of the front stems from the fact that the temporal coherence algorithm
suggests to start the collision query from the nodes in the previous front rather than from
scratch, as customary. For example, if the objects have not moved since the last frame,
collision can be determined only by repeating the leaf tests of the BVTT, which can be
further accelerated by using the coherence intersection test (discussed below). Skipping
the internal nodes of the BVTT has an added benefit, since these nodes represent tests that
result in intersections between BVs, which are typically more computationally expensive
than tests resulting in disjointness.

For instance, suppose that a collision detection procedure requires the tests represented
by the BVTT in Figure 2. If the search starts from the front in Figure 1(a), 13 BV-BV
intersection tests will be required (as done in the non-coherence algorithm). Starting from
the front in Figure 1(b) requires 12 tests, from 1(c) – 9 tests, and from 1(d) – 10 tests.

Two changes might occur in the front between consecutive frames. First, a disjoint
front node might become intersecting, thus requiring the expansion of its descendants (the
down arrows in Figure 1, with respect to Figure 2). In this case, this node should sprout (or
drop 19) new nodes, and the algorithm should recurse on these nodes. Second, an ancestor
of a front node in the BVTT might become disjoint and thus can be added to the front,
replacing its descendants, as illustrated in Figure 1(d), where the nodes with the up arrows

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 5

(a) (b)

(c) (d)

Fig. 1. Four possible fronts of a BVTT (the black nodes). The down (up) arrows mark nodes that should sprout
(be pruned) in the next frame, shown in Figure 2

Fig. 2. The BVT T of the next frame

can be replaced by their parent (highlighted in Figure 2). In this case we say that the front
is pruned (or raised).

The optimal front contains the lowest collection of nodes that exist both in the current
BVTT and in the next BVTT. Maintaining a good front plays a crucial role in the efficiency
of our algorithm.

Two issues should be addressed in this regard. First, if a previously-disjoint front node
becomes intersecting, should the front be updated (by sprouting)? Second, if two sibling
nodes in the front become disjoint, should the algorithm attempt to prune these nodes?
Though intuitively the answers to these questions are affirmative, too many updates to the
front add computations. This trade-off and the conditions for pruning and sprouting are
discussed below.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

6 Tropp et al

Both 20 and 19 suggest update strategies for the front. Both suggest to sprout the front
up to the level at which the BV’s are disjoint or that they are leaves. As for pruning, in 20

the front is not pruned. If in two or three consecutive frames the front does not increase
in length, the front is rebuilt from scratch. In 19, on the other hand, it is suggested to try
to prune the tree one level at a time if two sibling nodes do not intersect and attempt
to replace them with their parent. Both 20,19 do not provide empirical evidence as to the
quality of these strategies.

Rather then developing a strategy that depends on frames, our strategy depends on a
bound on the motion of the objects. Empirical evidence demonstrates that the magnitude
of the motion is directly related to temporal coherence. The motion magnitude is also used
to reason about the intersection between BV’s.

Sprouting:

Given that a disjoint front node becomes intersecting, should the front be updated? Intu-
itively, if the node’s descendants belong to the BVTT of the next frame, it is beneficial to
sprout the front now, because it will save intersection tests. Unfortunately, the algorithm
has no knowledge regarding the next frame. Therefore, the probability that an intersecting
node remains intersecting should be evaluated.

Let CA be the cost of keeping node A in the front (and processing its subtree), cA be the
cost of testing node A for intersection, and CD be the cost of putting the node’s descendants
in the front and processing them. Let PA be the probability that node A should be in the
front in the next frame. Then,

CA = PA · (cA +CD)+(1−PA) · cA = cA +PACD. (1)

A should be kept in the front iff the expected cost
CA < CD ⇔ PA < 1− cA/CD.

Estimating PA (using Minkowski sums) leads to unavailing expressions. Moreover, CD

is unknown. Therefore, a strategy based on this expression is impractical.
Instead, the ratio between the size of the bounding volumes and a bound on the magni-

tude of the motion from the previous frame is studied. The intuition is that an intersecting
node is likely to repeat only if its two boxes are “large” relative to the movement size.
In addition, this node should be close in the hierarchy to the determining intersection test
nodes. The details are described in the next section.

Pruning:

Pruning is vital for avoiding a situation in which the front can grow but can never shrink.
A front is not as efficient as it should be if it contains two siblings whose parent is disjoint.
Pruning the two siblings produces a smaller front for the next frame and saves a test. When
should the algorithm perform pruning?

Attempting to prune the front nodes is expensive since it requires a non-coherence
intersection test of the parent node. If the parent turns out to be intersecting, the test was
performed in vain.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 7

The goal is to balance the high cost of attempting to prune the front and the cost of
maintaining a good front. We tried several strategies. The approach that yields the best
results is to attempt to prune the front when the objects have moved substantially relative to
the movement size, since the last pruning attempt. The intuition is that pruning is likely to
be successful when the BVTT has changed considerably. The exact condition is described
in the next section.

3. Coherence-Based Collision Detection Algorithm

The key observation is that due to temporal coherence, the front of the previous frame re-
sembles the front of the current frame. Thus, rather than performing all the intersection
tests described in the BVTT tree (i.e., executing the non-coherence algorithm), the algo-
rithm starts from the front of the previous frame. Obviously, this front does not always
match the new BVTT tree and thus needs to be modified by pruning or sprouting.

The magnitude of movement between consecutive frames dominates the changes be-
tween their BVTT trees. Intuitively, if the amount of movement is large relative to the size
of the BVs tested for intersection, the test result can change from disjointness to intersec-
tion and vice versa. Moreover, when large motions occur, the BVs belonging to BVTT
nodes may also change, yielding the coherence information useless. Thus, the magnitude
of the global motion has to be monitored to help decide when to use the coherence infor-
mation and when to disregard it.

Each disjoint node in the front contains additional data that can accelerate the dis-
jointness test in the next frame. This data includes a lower bound, margin, on the distance
between the BVs tested in this node and additional information regrading the separation
between the nodes (e.g., their separating plane).

The algorithm proposed is fast not only because less intersection tests are performed,
but also because the stored data enables it to perform faster BV-BV intersection tests.

We now turn to the general coherence algorithm whose course is described in Algo-
rithm 1. We will then elaborate on each step.

Let eo be the “size” of the smaller object’s bounding volume and e1, e2 be the “size” of
the two bounding volumes in a given BVTT node. In the case of boxes, eo, e1 and e2 are
the longest edges of the corresponding bounding boxes. Let

∣

∣∆x f rame
∣

∣ be an upper bound
on the magnitude of the movement of a point on the object since the last frame.
Stage 1 (lines 1-5): When the motion (∆x f rame) is considered large with respect to the size
of the smaller object (eo) or in the first frame, temporal coherence cannot be used and the
original non-coherence algorithm needs to be applied. Let Pcoherence be an experimentally
determined threshold parameter (Section 5). A motion is considered large relative to the
object’s size if

∣

∣∆x f rame
∣

∣/eo > Pcoherence. (2)

When the non-coherence algorithm is used, BVTT nodes are inserted to the front and
their coherence data is updated. As explained above, this is done by studying the ratio
between the size of the bounding volumes ei, i = 1,2 and a bound on the magnitude of the

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

8 Tropp et al

Algorithm 1 Algorithm overview (for each frame)
1: if the motion is large then
2: Call the no-coherence algorithm
3: Sprout nodes in the front and update coherence data
4: Exit
5: end if
6: for each node in the front do
7: if the node was disjoint then
8: Check whether it is still disjoint using coherence (4.2)
9: else if the node was intersecting then

10: Transform the coordinate systems
11: Perform full non-coherence BV-BV test for the node (4.1)
12: end if
13: if the node is disjoint in the new frame then
14: Keep it in the front
15: else if the node is intersecting in the new frame then
16: Expand the node with the non-coherence algorithm
17: Update the front according to the sprouting policy
18: end if
19: end for
20: if the movement since last pruning is substantial then
21: Attempt to prune the tree
22: end if

motion from the previous frame |∆x f rame|. Since we would like to descend the BVTT as
much as possible, the criterion is to keep in the front the lowest BVTT node such that

∣

∣∆x f rame
∣

∣/ei > Psprout , for i = 1,2, (3)

where Psprout is a threshold. The values of Psprout for different types of BVs are determined
experimentally in Section 5. In the case that the front building process reaches a BVTT
leaf node, it is always inserted into the front. The empirical results given in Section 5 show
that a BVTT-leaf only front (Psprout → ∞) is optimal.
Stage 2 (lines 7-8): If the node was disjoint in the last frame, a coherence BV-BV intersec-
tion test is performed. Specifically, if margin >

∣

∣∆x f rame
∣

∣, then the BVs are guaranteed to
still be disjoint. If this test fails, the next attempt is to separate the BVs using the same sep-
arating axis found in the last frame. This test is BV type specific. Only if both of these tests
fail, an expensive BV-BV intersection test is performed. Details of the implementation of
this stage for the OBB and AABB data structures are described in Section 4.
Stage 3 (lines 9-11): A node is considered intersecting in two cases: either it was intersect-
ing in the last frame or the coherence intersection test (Stage 2) resulted in intersection.
In this case, the algorithm performs a full non-coherence BV-BV test for the node (Sec-
tion 4.1). This test should be preceded by transformation of the coordinate system.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 9

Stage 4 (lines 13-14): If the node is disjoint in the new frame, it is maintained in the front.
Stage 5 (lines 15-18): If the node is intersecting in the new frame, it is expanded by the
non-coherence algorithm. The algorithm needs to determine whether to insert the node into
the front according to Equation 3.
Stage 6 (lines 20-22): After all the nodes of the front have been processed, the algorithm
determines whether to attempt to prune the front. Let ∆xprune be an upper bound on the
movement since the previous pruning. A pruning attempt is performed on the whole front
when:

∣

∣∆xprune
∣

∣/eo > Pprune. (4)

Pprune is determined experimentally in Section 5.

4. Coherence Intersection Test

The framework described above is general for bounding volume hierarchies. For each spe-
cific BV type, a different coherence intersection test (used in Stage 2 of the algorithm)
has to be developed and the data that is stored in the front nodes changes accordingly.
The challenge is to design a test that achieves a considerable speedup with respect to the
non-coherence BV-BV intersection test.

To demonstrate the general applicability of our approach, we present in this section the
coherence intersection tests for the OBB and AABB data structures.

The section starts by describing the standard non-coherence intersection test. Then,
a margin-coherence test that uses a bound on the movement from the previous frame to
check for disjointness, is described. The section concludes with the axis-coherence test,
which is specific for each data structure and assumes that the same separating axis which
separated in frame f is still separating in frame f + 1. Only if these two coherence tests
fail, the expensive non-coherence test is performed.

4.1. Non-coherence box-box intersection test

The separating axis theorem (SAT) states that if two convex polytopes in 3D are disjoint,
then there exists a separating plane between them that is either parallel to a face of either
polytope, or parallel to an edge from each. The separating axis is the normal of this plane.
When the vertices of the polytopes are projected to this axis, the intervals they define do
not overlap. In the case of boxes, there are 15 potential separating planes.

In 15, this test is efficiently performed as illustrated in Figure 3. Axis L is separating if
the distance between the projections of the boxes on it are disjoint. We briefly repeat the
description of the test as presented in 15.

Given two boxes A and B. Let Ai (Bi), i = 1,2,3, be the unit vector directions of the
edges of box A (B). Let ai (bi) be half the length of edge i. Let R be the rotation matrix and
T the translation vector that define the transformation from the coordinate system of A to
that of B.

The algorithm works in the coordinate system whose origin is the center of box A and
the three axes are the edge directions of A. In this coordinate system, matrix [A1,A2,A3] is

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

10 Tropp et al

Fig. 3. L is separating for boxes A and B because their projection intervals on L are disjoint.

the unit matrix, R = [B1,B2,B3] and T is the vector connecting the centers of the boxes.
We define the radius of the projection rA (rB) to be:

rA =
3

∑
i=1

∣

∣aiA
i ·L

∣

∣ , rB =
3

∑
i=1

∣

∣biB
i ·L

∣

∣ . (5)

The distance between the projections of the centers of the boxes is |T ·L|. Thus, Axis
L is a separating axis iff

|T ·L| ≥
3

∑
i=1

∣

∣aiA
i ·L

∣

∣+
3

∑
i=1

∣

∣biB
i ·L

∣

∣ = rA + rB. (6)

This expression can be simplified when L is a direction of an edge or a cross product
between edge directions. For example, if L = A1 ×B2, then

∣

∣a2A2 · (A1 ×B2)
∣

∣ =
∣

∣a2B2 · (A2 ×A1)
∣

∣ = a2 |R32| .

The last equality stems from the fact that in the coordinate system of A, the columns
of the rotation matrix are the edge directions of box B. Using similar simplifications, the
expression in Equation 6 is reduced to:

|T3R22−T2R32| >

a2|R32|+a3|R22|+b1|R13|+b3|R11|.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 11

4.2. Margin-coherence box-box intersection test

For each node in the front, a variable margin, defined as the difference of the inequality of
Equation 6, is maintained:

margin = |T ·L|− rA − rB. (7)

margin is the size of the separating interval on the separating axis L, whose end points are
projections of a vertex of A and a vertex of B (marked EA, EB in Figure 3). Thus,

margin = |(EB −EA) ·L| (8)

Being a projection, margin does not provide the exact distance between EA and EB.
However, since L is a unit vector, the real distance is at least the margin.

Assume that between frames f and f + 1, object B rotates by ∆α (about some axis
passing through the box’s center) and translates by ∆t. Then, the movement of vertex EB,
∆EB, is bounded by

|∆EB| ≤
∣

∣∆x f rame
∣

∣ = |∆t|+∆α ·b, (9)

where b is the maximal distance from the center of the bounding box of B to one of its
vertices and ∆x f rame is the maximal possible movement between the frames for any point
on object B. Since object A is stationary and no point on box B moves more than ∆x f rame,
margin cannot change by more than ∆x f rame. Formally:

margin f +1 =
∣

∣

∣
(E f +1

B −E f +1
A) ·L

∣

∣

∣
=

∣

∣

∣
(E f

B +∆EB−E f
A) ·L

∣

∣

∣
≥

∣

∣

∣
(E f

B −E f
A) ·L

∣

∣

∣
−|∆EB ·L| ≥

∣

∣

∣
(E f

B −E f
A) ·L

∣

∣

∣
−

∣

∣∆x f rame ·L
∣

∣ ≥
∣

∣

∣
(E f

B −E f
A) ·L

∣

∣

∣
−

∣

∣∆x f rame
∣

∣ =

margin f −
∣

∣∆x f rame
∣

∣ . (10)

Therefore, a lower bound on margin f +1 can be computed from the approximated margin
of the previous frame, m̂argin f , by:

m̂argin
f +1

= m̂argin f −
∣

∣∆x f rame
∣

∣ .

If m̂argin
f +1

is positive, then the boxes are still disjoint, along the same separating axis
as in the previous frame. However, if m̂argin

f +1
is negative, a more accurate test must be

performed in order to confirm disjointness. It is quite plausible that the same axis which
separated the two boxes, still separates them. Thus, this axis is tested first. If this fails, the
full intersection test is performed on the two boxes.

Note that
∣

∣∆x f rame
∣

∣ is the same for all the boxes of object B for a given frame. Thus, this
margin test is extremely fast and does not require to manipulate and transform the points
from one coordinate system to the other.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

12 Tropp et al

4.3. Axis-coherence test

It is hereby shown how to efficiently perform an intersection test between boxes A and B
in frame f +1, for OBB and AABB, assuming an intersection test was performed in frame
f and resulted in disjointness. For convenience, assume that A remains stationary between
the frames and only B moved. (It is always possible to transform the coordinate systems
such that the relative movement between A and B becomes a movement of B alone.)

The coherence hypothesis is that the same separating axis found in frame f , is also
separating in frame f + 1. This hypothesis is checked by recomputing all the elements in
Equation 6 (rA, rB and |T ·L|), for the new frame, in a way that relies on the saved data.

OBB:

In this case, for each front node, the previous separating axis, L f , is maintained as a 3×1
unit vector. We keep L f in the coordinate system of object B. Thus, when B rotates, so
does L f . After a rotation between the frames, the rotated L f is not necessarily one of the
15 separating axes of the SAT theorem, nevertheless it can still separate disjoint objects.

Observe that rB does not change from frame to frame because all the terms in Equa-
tion 5 rotate together as part of object B. Therefore, rB can be saved and need not be
computed again.

In order to compute rA, L is transformed from the coordinate system of B to that of
object A, and then once again from the coordinate system of A to that of the specific box in
A. This requires two matrix-vector multiplications.

Let TA and TB be the box centers of A and B, respectively. T ·L is computed by:

T ·L = (TA −TB) ·L = TA ·L−TB ·L.

This holds for any coordinate system because dot products are invariant to coordinate sys-
tem transformations. TA ·L is calculated in the coordinate system of A, since both TA and L
are already known there. As for TB ·L, in the coordinate system of A:

TB = TBint +TBA

L ·TB = L · (TBint +TBA) = L ·TBint +L ·TBA,

where Bint is the position of a box in B’s hierarchy relative to the origin of object B
and TBA is the vector connecting the origins of the two objects.

Both dot products can now be calculated in the coordinate system of our choice. TBint

and L are already known in the coordinate system of B. TBA is the same for all the boxes in
a given frame. Thus, it is preferable to compute the dot products in the coordinate system
of B as well.

Transformation between coordinate systems:

Since typically each object is defined in its local coordinate system, the two objects need
to be transformed into a common coordinate system before the intersection test (Stage 3).

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 13

While often overlooked, this transformation is computationally expensive and has to be
taken into account when evaluating the cost of an intersection test.

It is impossible to maintain the placement of each box relative to its parent, as custom-
ary, because a box is often accessed without previously encountering its parent. Instead,
the data of each node is maintained in the coordinate system of the object. This results
in an extra computational cost when a test is performed without coherence. However, this
cost is more than compensated for by the savings achieved by the coherence test.

Special case - no rotation:

In several applications, it is common that the change between consecutive frames is transla-
tion alone. In this case, the computation is further simplified. Since rA and rB (Equation 5)
do not change and in Equation 6, T f +1 = T f + ∆t, where ∆t is the translation between
frames, the new margin can be computed by:

margin f +1 = L ·T f +1 − rA − rB =

L · (T f +∆t)− rA− rB = margin f +L ·∆t. (13)

This efficiently computes the margin for the separating axis (L f) in frame f + 1 and
can therefore accurately predict if L f is still separating. It can be used to replace the longer
axis-coherence procedure described above.

AABB:

To make the best of coherence, a variant of AABB that uses SAT lite 14 is used. In this vari-
ant, only six out of the fifteen candidate separating planes are tested for separation. These
are the face normals of the boxes. Although the intersection test might err and report on
false intersections, 95% of the disjoint pairs are detected 14. Moreover, this is a conserva-
tive test, since disjointness will be detected while descending the BV hierarchy. Therefore,
while the number of box-box tests is not significantly increased, the computational com-
plexity of each intersection test is considerably reduced.

In the non-coherence case, T ·L should be tested for separation (Equation 6). Because
the boxes move and rotate, T has to be recalculated at each frame, requiring an expensive
matrix-vector product.

Since the separating axis checked in SAT lite is always an edge of a box, we observe
that in the coordinate system of this box, L has only one non-zero element, i. Thus, T ·L
is reduced to Ti. As a result, rather than transforming the vector T using matrix operations,
only Ti needs to be computed. Since this can be done only in the coordinate system in
which L is an edge direction and L might come from either box, the box whose coordinate
system is used should be the box that generated the separating axis. Suppose this box is A.

Once T · L has been computed, rA is simply equal to ai and rB is computed using
Equation 5. If L is still separating, only one axis direction is tested, instead of 4.2 axes on
average 14.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

14 Tropp et al

5. Empirical Analysis of Optimal Parameters

The algorithm described in Section 3 has three numerical parameters that determine the
use of coherence and the optimization of the front: Pcoherence, Psprout and Pprune. We exper-
imentally tested these parameters by calling the algorithm with different values on various
scenarios. The values achieving the highest speedups, are used in our experiments, avoid-
ing any user tuning.

In order to be able to present the results of the different scenarios in the same graph,
the running times are presented as the ratio between the coherence algorithm and the orig-
inal (non-coherence) algorithm. That is to say, minima in the graphs achieve the highest
speedups.

Coherence threshold:

If the movement from the last frame is large relative to the size of the moving object, the
algorithm disregards the coherence data and starts from scratch using the non-coherence
algorithm (Stage 1). Figure 4 shows that the optimum lies around Pcoherence = 0.14 for the
OBB and 0.2 for the AABB. That is to say, when the movement is larger than 0.14 of the
object’s size, coherence should not be used for the OBB.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

P
coherence

ru
nn

in
g

tim
e

ra
tio

torus
pipes
hands
flange

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

1

1.2

P
coherence

ru
nn

in
g

tim
e

ra
tio

torus
pipes
hands
flange

(a) OBB (b) AABB

Fig. 4. When to use coherence?

Similar results are observed in Figures 8-9, where the coherence algorithm is shown to
be faster than the original algorithm for movements smaller than Pcoherence · eo.

Sprouting:

The parameter Psprout helps to determine how far down the BVTT the front should be.
For OBB, the results which show the running time as the function of the value of Psprout

are shown in Figure 5. The running time decreases as a function of the value of Psprout.
Therefore, a leaves-only front strategy, which is also simpler to implement, is used.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 15

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

P
sprout

ru
nn

in
g

tim
e

ra
tio

torus
pipes
hands
flange

Fig. 5. Performance of OBB as a function of Psprout

For AABB, a bounding box of a single triangle is a 3D box (in contrary to the OBB,
where it is a 2D box). Therefore, a box is an extremely poor bounding volume for a triangle,
resulting in many erroneous intersecting results. As a result, tree expansion often continues
until the triangle-triangle test, where no efficient coherence test exists. The sprouting policy
is thus to keep in the front the lowest-level boxes (rather than triangles), because boxes have
coherence data and a fast disjointness test.

Pruning:

The parameter Pprune determines when the algorithm should attempt to prune the front. This
is done when the relative motion since the previous pruning is larger than Pprune (Stage 6).
Figure 6 shows the performance as a function of Pprune. The optimum is achieved around
Pprune = 0.17 for the OBB data structure and Pprune = 0.15 for the AABB data structure.
These values are stable across the different scenarios and are therefore used by us in our
experiments.

6. Experimental Results

This section describes the results obtained by our algorithm for the OBB and AABB data
structures. In the implementation, the RAPID software package is used 21. For AABB, the
SAT lite algorithm is used with the necessary code modifications 14. The tests are executed
on a Pentium 4 1.8Ghz processor. The code is compiled with Microsoft visual studio 6.0
under the standard optimizations for speed.

It is important to note that in the experiments, our coherence based algorithms are
compared to their non-coherence variants. We do not attempt to choose the best bounding
volume (for which there are mixed results in the literature) but rather, to show the advan-
tages of temporal coherence.

As before, the running times are presented as the ratio between the coherence algo-
rithm and the original (non-coherence) algorithm. Movement sizes are given in units of

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

16 Tropp et al

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

P
prune

ru
nn

in
g

tim
e

ra
tio

torus
pipes

0.02
hands

0.04
flange

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

P
prune

ru
nn

in
g

tim
e

ra
tio

torus
pipes

0.02
hands

0.04
flange

(a) OBB (b) AABB

Fig. 6. Performance as a function of Pprune

(a) The torus model (b) The flange model

(c) The pipes model (d) The hand model

Fig. 7. Benchmarks

∆x f rame/eo (i.e., the motion size relative to the size of the moving object).
In our experiments, several standard benchmarks are used, each consisting of a moving

object within a stationary environment (Figure 7). Table 1 describes some characteristics of
the scenarios. For each scenario, the number of triangles of the stationary environment and
the moving object are given. For each path, the number of frames, the median movement
size and the percentage of movements which are larger than 10% of the moving object’s
largest edge of its bounding box (eo), are displayed.

In the original paths, the motion size varies considerably from frame to frame. As
coherence is highly dependent on the size of the motion, the algorithm should be tested
as a function of a typical movement size. Therefore, for each benchmark scenario, similar
paths, each having a different motion size, are produced by interpolating the original path.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 17

Model Pipes Torus Hand Flange
Triangles Env 143690 98114 169944 990
Triangles Obj 143690 20000 404 5306
Number of frames 3954 3001 2528 1018
AABB:
Median motion size 0.133 0.018 0.148 0.16
% of large motions 61.52 0 60.15 71.48
OBB:
Median motion size 0.09 0.018 0.147 0.137
% of large motions 43.21 0 60.15 62.9

Table 1. Characteristics of the scenarios

Each test is performed 70 times and the results are averaged.
Figure 8 compared our OBB algorithm to the original algorithm for some typical move-

ments. As expected, the smaller the movement, the more beneficial the coherence algorithm
is. For instance, for a movement of 0.05 of the object’s size, our algorithm is twice as fast
as the original non-coherence algorithm for the hand scenario. This experimental result is
important, since it predicts the efficiency of our algorithm for new scenarios with a known
movement distribution. Figure 9 shows our results for AABB.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

movement size ratio

ru
nn

in
g

tim
e

ra
tio

torus
pipes
hands
flange

Fig. 8. Performance for different movement sizes using the OBB data structure.

Finally, Table 2 compares the coherence and non-coherence algorithms on the original
benchmark scenarios and for interpolated scenarios for motion size of 0.03. Some of the
original scenarios contain very large movements between frames (often much larger the the

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

18 Tropp et al

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

movement size ratio

ru
nn

in
g

tim
e

ra
tio

torus
pipes
hands
flange

Fig. 9. Performance for different movement sizes using the AABB data structure.

object itself) and are not ideal for our algorithm. Even so, the results clearly demonstrate
that the coherence algorithm is always faster. The advantage of the coherence approach on
OBB varies from a factor of 2 for the Torus and the Flange and 1.1 for the Pipes model
(which includes many very large movements). For the interpolated scenarios, the results
are naturally better, yielding speedups factors of 1.27–2 for OBB and speedups factors
of 1.04–1.26 for AABB. The difference between OBB and AABB is caused by the fact
that AABB bounds the underlying models poorly, resulting in many triangle-triangle tests,
where coherence cannot help.

Algorithm Original Interpolated 0.03
Torus Pipes Hand Flange Torus Pipes Hand Flange

OBB non-coherence 1550 1150 1300 3355 1143 4389 6110 6894
OBB coherence 748 1050 951 1783 674 3449 3006 3878

AABB non-coherence 2834 850 1950 2684 1925 4897 7808 7123
AABBlite non-coherence 2200 682 1512 2003 1545 3735 6263 5486

AABB coherence 1562 672 1381 1812 1231 3480 5634 5283

Table 2. Comparison between the coherence and non-coherence algorithms for several scenarios

In conclusion, while temporal coherence is highly dependent on the size of the move-
ment between frames, it can still be used on any scenario and increase performance. This
is because the loss of performance due to a large movement is usually marginal, while the
gain when the movement is small is substantial.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

Temporal Coherence in Bounding Volume Hierarchies For Collision Detection 19

7. Conclusion

This paper has presented a general framework for exploiting temporal coherence in bound-
ing volumes hierarchies for collision detection, using the front data structure. Within this
framework, a novel coherence intersection test is introduced. This test speeds up the com-
putation by using data, the margin and the separating axis, saved from the previous frame
in the front.

The paper further explores the front data structure, proposing new front updating poli-
cies, which depend on the motion performed between frames.

In addition, the paper presents a statistical analysis of temporal coherence for bounding
volumes and its relation to the size of the objects and the motion between frames. Based
on these statistical observations, it is proposed when to use coherence and when to revert
to the non-coherence tests, thus resulting in an algorithm that always performs at least as
well as the non-coherence equivalent.

To demonstrate the benefit of the general framework, the algorithm was implemented
for two bounding volume data structures, the AABB and the OBB. It is shown that the
speedup is dominated by the velocity of the object within the scene. The slower the velocity
with respect to the size of the object, the higher the speedup.

It is also shown that the speedup for the OBB is more significant than that achieved for
the AABB. This is because the savings are gained by avoiding to perform intersection tests,
which are more costly for OBB. Moreover, since OBBs have tighter bounding volumes,
disjointness is discovered higher in the hierarchy, where coherence lasts longer, and less
triangle-triangle tests are performed.

It is important to point out that the paper does not attempt to choose the best bounding
volume but rather, to demonstrate the advantages of temporal coherence.

In the future, it is possible to test the general scheme for other bounding volume
schemes, such as k-DOPs. Other applications, such as path planning, can also benefit from
utilizing this technique.

Acknowledgements

This work was partially supported by European FP6 NoE grant 506766 (AIM@SHAPE),
by the Israeli Ministry of Science, grant 01-01-01509 and by the S. Langberg Research
Fund. The pipes and the torus models are courtesy of the Gamma group at UNC; the hand
model is courtesy of the Boeing corporation; the flange model is courtesy of the Parasol
Laboratory, Texas A&M university.

References

1. M. Lin and S. Gottschalk. Collision detection between geometric models: A survey. In Proc. of
IMA Conference on Mathematics of Surfaces, pages 37–56, 1998.

2. P Jimenez, F Thomas, and C Torras. 3D collision detection: a survey. Computers and Graphics,
25:269–285, 2001.

3. D.P. Dobkin and D.G. Kirkpatrick. Fast detection of polyhedral intersection. Theoret. Comput.
Sci., 27:241–253, 1983.

October 5, 2006 15:59 WSPC/INSTRUCTION FILE TSTD-06

20 Tropp et al

4. J. Cohen, M. Lin, D. Manocha, and K. Ponamgi. I-COLLIDE: an interactive and exact collision
detection system for large-scaled environments. In Proc. ACM Int. 3D Graphics Conf., pages
189–196, 1995.

5. M. Held, J.T. Klosowski, and J.S.B. Mitchell. Evaluation of collision detection methods for
virtual reality fly-throughs. the 7th Canad. Conf. Computat. Geometry, 14:36–43(2):205–210,
1995.

6. S. Ar, G. Montag, and A. Tal. Deferred, self-organizing BSP trees. In Eurographics, pages 269–
278, 2002.

7. S. Ar, B. Chazelle, and A. Tal. Self-customized BSP trees for collision detection. Computational
Geometry: Theory and Applications, 15(1-3):91–102, 2000.

8. P.M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection. ACM
Trans. on Graph., 15(3):179–210, 1996.

9. I.J. Palmer and R.L. Grimsdale. Collision detection for animation using sphere trees. ACM
Trans. on Graph., 14(4):105–116, 1995.

10. Y.C. Chen. An introduction to hierarchical probe model. Technical report, Dept. of Mathematical
Sciences, Purdue Univ, 1985.

11. H. Samet. Spatial Data Structures: Quadtrees, Octrees, and Other Hierarchical Methods.
Addison-Wesley, Redding, Mass., 1989.

12. J. Ponce and O. Faugeras. An object centered hierarchical representation for 3d objects: The
prism tree. Computer Vision, Graphics, and Image Processing, 38:1–28, 1987.

13. J.T. Klosowski, M. Held, J.S.B. Mitchell, H. Sowizral, and K.Zikan. Efficient collision detec-
tion using bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and
Computer Graphics, 4(1):21–36, 1998.

14. Gino van den Bergen. Efficient collision detection of complex deformable models using AABB
trees. J. Graph. Tools, 2(4):1–13, 1997.

15. S. Gottschalk, M.C. Lin, and D. Manocha. OBBTree: a hierarchical structure for rapid interfer-
ence detection. In . ACM SIGGRAPH, pages 171–180, 1996.

16. G. Barequet, B. Chazelle, L.J. Guibas, J. Mitchell, and A. Tal. BOXTREE: a hierarchical repre-
sentation for surfaces in 3D. In Proc. Eurographics, pages 387–396, 1996.

17. M. Lin and J. Canny. A fast algorithm for incremental distance calculation. In IEEE Int. Conf.
on Robotics and Automation, pages 1008–1014, 1991.

18. M.A. Otaduy and M.C. Lin. CLODs: dual hierarchies for multiresolution collision detection. In
Proc. of Eurographics Symposium on Geometry Processing, pages 94–101, 2003.

19. S.A. Ehmann and M.C. Lin. Accurate and fast proximity queries between polyhedra using con-
vex surface decomposition. Computer Graphics Forum, 20(3):500–511, 2001.

20. T.-Y. Li and J.-S. Chen. Incremental 3D collision detection with hierarchical data structures. In
VRST ’98, pages 139–144, November 1998.

21. http://www.cs.unc.edu/∼geom/obb/obbt.html.

