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Abstract. This paper presents a conceptual model for designing an al-
gorithm animation system for constrained domains. We define a hierar-
chy of users and a model for supporting each type of users. The hierar-
chy includes naive programmers, advance programmers, end users, and
groups of end users. This paper also describes a few systems that realize
the conceptual model within two domains: the domain of computational
geometry and the domain of distributed algorithms.

1 Introduction

A major challenge in the area of algorithm animation is how to build systems
which significantly facilitate the creation of algorithm visualizations regardless
of the algorithms’ complexity. One possible solution is to restrict the domain the
algorithm animation system is designed for. In a constrained domain, knowledge
regarding the type of objects and the type of operations prevalent in this domain,
can be embedded into the system. As a result, the system can provide built in
ways to visualize these objects and to animate the operations on them. Thus,
large parts of the programmer’s tasks can be automated.

This automation allows the programmer to be free from having to design
and implement the visual aspects of the animation. Instead, the system makes
decisions about how graphics is done. This is the major departure from general-
purpose algorithm animation systems [3-6,18,19] where no assumptions are
made regarding the building blocks that make up the animations. In this latter
case, the programmer needs to specify the exact shape of each object and the
exact transition each object goes through during the animation.

Freeing the programmer from implementing the visual aspects has a couple
of benefits. The animation can be produced very fast, usually in a matter of
days or even hours, since large parts of the process are left for the system to
resolve. Moreover, this is done regardless of the complexity of the algorithm
being visualized. This is an important point because complicated algorithms are
those that gain the most from visualization.

As expected, the major disadvantage of automation is a limited flexibility.
Not every algorithm can be animated and not every animation can be generated



for a given algorithm. Often, users want to have a say in how the animation
should look. Choices made by the system might not necessarily be appealing to
the user, who might find an automatic system too restrictive. We will show in
the sequel that a certain amount of flexibly can be obtained nevertheless.

In our conceptual model we define a hierarchy of users. Naive programmers
care only about the contents of the visualization and are not concerned with
the presentation aspects. Advanced programmers want, in addition, to be able
to easily modify and extend various visualization aspects. End users experiment
with an algorithm to understand its functioning, and should be able to run the
animation as an interactive experience. Finally, groups of end users should be
able to collaborate with each other.

This conceptual model has been realized in three algorithm animation sys-
tems built for two constrained domains. GASP [21] and GASP-II [17] were built
for the domain of computational geometry; VADE [12] was built for the domain
of distributed algorithms. These two domains were chosen because they represent
domains in which algorithms are difficult to comprehend.

In the geometric domain even the simple task of imagining in one’s mind a
three-dimensional geometric construction can be hard. In many cases the dy-
namics of the algorithm must be understood to grasp the algorithm and even
a simple animation can assist the geometer. Degeneracies and robustness prob-
lems, which are common in geometry, add to the complexity of programming
and debugging geometric code. The visual nature of geometry makes it one of
the areas of computer science that can benefit greatly from visualization.

Distributed algorithms are difficult to understand due to the added com-
plexity of the inter-process communication and synchronization. Many activities
occur concurrently at various sites. Moreover, the activities depend on each other
in many ways. Each state depends not only on the individual process, but also on
the messages arriving from other processes. Visualization can give some insight
to the way this inter-process communication takes place.

We will show below that though the systems differ, they follow the same con-
ceptual model. In the next section we describe the general conceptual model. In
Section 3 we present the realization of the model in the domain of computational
geometry. In Section 4 we discuss the realization of the model in the domain of
distributed algorithms. We conclude in Section 5.

2 Conceptual Model

We define four sets of users of any algorithm animation system. They are naive
programmers, advanced programmers, end users, and groups of end users. Naive
programmers can choose to be isolated from any decisions of a graphical nature
and concentrate solely on the contents of the animation. Advanced program-
mers want to be able to easily modify and extend various visual aspects of the
animation in order to produce animations which better fit what the program-
mers think is most useful. End users experiment with an algorithm animation
in order to understand the algorithm’s functioning. They should be able to run



the animation as an interactive experience. Finally, groups of end users wish to
collaborate.

Accordingly, the algorithm animation system should provide an appropriate
interface for each of these users. Domain-dependent libraries should be provided
for naive programmer. An external graphical user interface should be given to
the advanced programmers in order to facilitate the modification of the visual
aspects. An interactive environment should let end users run the animation.
Finally, tools for collaboration should be provided for groups.

In order to allow naive programmers to generate animations quickly, we dis-
tinguish between what is being animated and how it is animated. The naive
programmer need only specify what is being animated and need not be con-
cerned with how to make it happen on the screen. For example, the creation
of an object is to be distinguished from the way it is made to appear through
the animation. It can be created by fading into the scene, by traveling into its
location, by scaling up from a point to its full size, etc.

The libraries provided by the algorithm animation system contain a set of
building blocks relevant to the domain. The naive programmer should only write
short snippets of code that contain calls to functions of the system’s libraries.
This code includes the contents of the animation and defines its structure. It
does not contain the visual aspects of the animation. The algorithm animation
system generates an appropriate animation from this code. For instance, only
three lines of code are necessary to produce the animation of the creation of the
polyhedron shown in Figure 1(a) (or the animation shown in Figure 1(b)).

Fig. 1. The creation of a polyhedron (two possible styles)



To enable that, the system’s libraries support the objects prevalent in the
domain and the common operations on them. In fact, several visualizations, or
styles, are supported for each operation, one of which is the default chosen by
the animation system. If the advanced programmer wishes to change any of the
visual aspects of the animation, this programmer can do it through a graphical
interface, called the style panel. There is no need to modify or write any code.

Note that the animation is still generated automatically by the animation sys-
tem. But, a different animation is produced, to better reflect the programmer’s
taste or to better illustrate a specific algorithm. The ease of generating vari-
ous animations allows advanced programmers to easily experiment with many
visualizations for the same algorithm.

Figure 1 illustrates two of the possible styles for creating a polyhedron. In
Figure 1(a) the polyhedron is created by fading into the screen, while in Fig-
ure 1(b) it is created by scaling up from a point to its full size. Changing one
field in the style panel allows the creation of 1(b) instead of 1(a).

End users can experiment with an algorithm animation in an environment
such as the one illustrated in Figure 2(a). The environment consists of a control
panel through which the execution of the animation is controlled, animation win-
dows where the algorithm runs, and a text window which contains explanations
which accompany the animation. It is possible to run the animation forwards and
backwards, to fast-forward through some parts of the animation and single-step
through others.

Collaboration is useful both in the work place and in electronic classrooms
where distance learning is gaining more popularity. In this environment the par-
ticipants sit each in front of his or her computer and they collaboratively explore
an algorithm while viewing its dynamic behavior.

In our model, two modes of distributed visualization are supported: inde-
pendent visualization and collaborative visualization. In the first mode, each
participant controls the animation running on his or her machine and no syn-
chronization is applied. In collaborative visualization, the animations running
on all the machines are synchronized with the animation of the instructor. In
this case, the participants are more limited. They cannot fast-forward or rewind
the animation whenever they wish to. However, they can still modify the style of
the animation they view. This is illustrated in Figure 2 where three snapshots of
screens taken at the same time are shown. The three participants, in this case an
instructor and a couple of students, work collaboratively, yet each is viewing a
different animation style. In particular, different colors and transparency values
are chosen by the users. Moreover, the user at the bottom views a different unit
of the algorithm, since this user rewound the algorithm to a previous atomic
unit.

Any participant in the group can initiate an electronic discussion at any
point during a collaborative session. An electronic discussion is more than a text
exchange since the text is accompanied with an appropriate visualization. This
is the way students can ask questions in electronic classrooms and programmers
who work together can share ideas.
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Fig. 2. An algorithm visualization in a distributed session



3 Realization of the Model in Computational Geometry

The last few years have seen a growing awareness to the need and to the impor-
tance of visualization in computational geometry [1,7,14,17,21]. In this domain,
the scenes of interest are built out of geometric objects (e.g., polygons, polyhe-
dra, spheres, cylinders, lines and points) and displays of data structures (such
as lists and trees of various forms). A standard animation in the domain is built
out of operations on these objects.

GASP [21] and GASP-II [17] realize the general model described above.
GASP provides the interfaces for the naive programmer, the advanced program-
mer and the end user. GASP-II’s main contributions are the support for groups
collaborating over the network and the improvement of the interface provided
to advanced programmers.

To realize the conceptual model for geometric computation, it is only re-
quired to supply appropriate libraries to be used by naive programmers. These
libraries provide a rich set of animation tools for visualizing operations common
in the domain. The objects contained in these libraries include three—dimensional
geometric objects, two—dimensional geometric objects, combinatorial objects,
views, text and titles. For example, for modifying polyhedra, the library pro-
vides functions for adding faces and vertices, removing faces and vertices, joining
polyhedra, splitting polyhedra etc. The animation system can produce various
visualizations for every operation, as discussed above.

Rather than going into detail describing the libraries, we will illustrate its
use via a case study, which is a visualization of an algorithm for polyhedron
realization for shape transformation [15]. This visualization [16] was selected as
an example of an algorithm which is not basic. It is one of several animations
created by GASP or GASP-II and presented at the video session of the annual
symposium of computational geometry.

The realization algorithm proceeds in two steps, illustrated in Figures 3(a)-
(b). First, each given polyhedron is iteratively simplified by removing a low—
degree vertex from the 1—skeleton graph of the polyhedron, and re-triangulating
the resulting hole, until a 4-clique graph (representing a tetrahedron) results.
During the visualization, which is illustrated in Figure 3(a), the selected vertex
blinks in blue. Its cone of faces smoothly drives away from the polyhedron,
creating a black hole in it. Next, the hole created is re-triangulated, where the
new faces fade-in in blue, to distinguish them from the old (red) faces. Finally,
the highlighted vertex and its cone of faces fade out.

During the second step, the process is “reversed” and the vertices are re-
attached, this time in a convex fashion. During the visualization, which is illus-
trated in Figure 3(b), a new vertex, shown in green, appears in a base position.
It smoothly drives away from the base to its final position. Then, the blue faces
which were previously created while the vertex was detached, fade out. Finally,
new faces attaching the vertex to the polyhedron are added, such that convexity
is maintained. The new faces are colored magenta to distinguish them from the
blue / red faces.



Finally, Figure 3(c) demonstrates a resulting shape transformation, where a
house is transformed into an icosahedron. Each transformation is carried out by
replacing the old polyhedra with a new one, until the final polyhedra is attained.

(c) The resulting shape transformation

Fig. 3. Animation of the realization algorithm

The major issue here is how fast it is to generate the animation. The code
that generates the animation of the first step (Figure 3(a)) consists of ten lines
of C code. It is shown in Figure 4. The code that generates the animation of the
second step (Figure 3(b)) is twelve lines of C code. The code that generates the
animation of the metamorphosis (Figure 3(c)) is four lines of C code.

The code in Figure 4 consists of calls to functions included in GASP-ITI’s
libraries. Note that no parameters of a graphical nature are required. The pro-
grammer need only specify the parameters which are related to the geometry
(e.g., the vertices and the faces of the polyhedron). All the visual aspects of the
visualization are left as empty slots that the algorithm animation system fills up.



(/* Remove the selected vertex */ )
GASP_Begin_atomic(split_atomic_name) ;
GASP_Split_mesh (new_mesh_names, previous_mesh_name,
remove_vert_no, remove_vertices);
GASP_Write_to_text_view ("TEXT",
"During the simplification phase, a low-degree vertex
is removed and its vertex—graph is re-triangulated."
GASP_End_atomic();

/* Re-triangulate the hole */
GASP_Begin_atomic (add_atomic_name) ;

GASP_Add_faces (new_mesh_names[0], face_no, faces);
GASP_End_atomic();

/* Remove the detached cone */

GASP_Begin_atomic (remove_atomic_name) ;
GASP_Remove_object (new_mesh_names[1]);

\GASP_End_atomic() ; )

Fig. 4. The code of the simplification visualization

For instance, the code does not include the colors used, the number of frames
used, the fact that objects are created be fading in, etc. These parameters can
later be modified in the external style panel.

4 Realization of the Model in the Domain of Distributed
Algorithms

The domain of distributed algorithms is another domain where visualization in
one’s mind of an execution of an algorithm is highly non-trivial. Moreover, in
this domain users can greatly benefit from an algorithm animation.

There is, however, an inherent difficulty in implementing an algorithm ani-
mation system within a distributed asynchronous environment. In asynchronous
distributed systems it is not possible to determine the precise structure of the
execution based on the views of the execution that are obtained by the pro-
cesses [11]. Each process in the system can only “remember” its own actions.
It can also gain knowledge about actions performed by other processes through
inter-process communication. It cannot, however, compute the relative timing
of the actions performed by different processes. Moreover, no form of interac-
tion among the processes in an asynchronous system can provide precise timing
information.

An algorithm animation system cannot overcome these inherent limitations.
The animation processes are just more processes in the distributed environment.
The goal of an algorithm animation system for distributed environments is thus
to produce a visualization that reflects as closely as possible the real execution
of the algorithm.

The algorithm being visualized changes dynamically and the animation sys-
tem needs to receive updates of the state from different sites. Since a true in-
stantaneous snapshot is impossible, a “possible” (or consistent) snapshot should
be constructed. Roughly speaking, we call a snapshot of the system consistent if



it describes a state that appears in a possible execution of the system that starts
in the state at which the invocation of the snapshot actually happened, and ends
in the state at which the snapshot algorithm completed its computation.

There exist several algorithm visualization systems for parallel or distributed
algorithms [2,8-10,13,20]. Here we briefly present VADE [12], our visualization
system which realizes the general conceptual model described above. Unlike the
geometric domain, where it is sufficient to supply domain-dependent libraries in
order to apply to the conceptual model, here we need also guarantee consistency.

The objects common in the domain of distributed algorithms and thus the
ones supported by VADE’s libraries are network related objects. They include
graphs, nodes, links (i.e., communication channels) and various types of mes-
sages and tokens which the nodes exchange over the links. VADE can produce a
visualization for numerous operations defined on these objects. Again, the sys-
tem chooses default styles for the visualization of objects and operations. The
style can later be modified in an external style panel.

In [12] we describe the model of computation that our system is defined for.
We also define the notion of visualization consistency that captures the sense in
which the animation system is required to faithfully depict the execution. Using
visualization consistency we can rearrange the sequence of events in a run. We
discuss a couple of ways to implement visualization consistency.

We illustrate the task of creating a visualization by describing a case study in
which we simulate an Automatic Transport System (ATS). The ATS consists of
a close dual-lane railroad system. The terminals are located along the railroad.
Several cars can move on the railroad. In addition, there is a central control
station (CCS) which has data links to all the terminals. Each terminal and each
car are equipped with a display showing the stops along the cars’ route. In front
of each car there is an arrow-display which indicates whether it moves clockwise
or counter-clockwise.

Figure 5 presents a few snapshots from the animation of this case study.
Figure 5(a) shows the system immediately after a passenger arrived at Terminal
2 and pressed the Terminal 1 button. This button changes its color to blue. The
terminal sends a request for a car to the CCS, animated by sending a marker over
the appropriate link. Figure 5(b) illustrates the marker moving towards the CCS.
In Figure 5(c) the request is received by the CCS and cars are sent from Terminal
3 and from terminal 4 to terminal 2. In Figure 5(d) the cars move towards the
target terminal. Figure 5(e) illustrates the arrival of another passenger, this time
at Terminal 3, which has no available cars. The appropriate button is pressed,
and the request for a car is sent to the CCS. Finally, Figure 5(f) shows the arrival
of a car at Terminal 2.

The programmer has very little work to do in order to create the above
animation. This is both because the programmer need not be concerned with
maintaining the consistency of the animation, and because the programmer is
free from dealing with the graphical aspects of the animation which are deter-
mined by the system (and can be modified via the style panel). For instance, the
code (in Java) animating the pressing of a button is shown in Figure 6.
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import ui.*;

import geometry.*;

import network.NetProtocol;

import java.awt.*;

public class TrainPressButton implements AnimationAction {

static TrainAnimCommonData commData;
public String perform(StringBuffer args[], int argsNurm nimationProcess ap){
if (argsNum != 1){
return NetProtoco. BAD_ARGUMENTS_NUM_REPLY;

String neighbour = new String(args[0]);

NetGraph graph = ap.parent.framedArea[0].GUIScreen.graph;
int idx = graph.getNode(ap.processIndex).index.intValue();

NetNode nd = commData.getCurrentNode(graph, neighbour, idx);
nd.setState(commData.BUTTON_PRESSED, graph.getAnimStyle());

ap.parent.framedArea[0]. GUIScreen.paint(
ap.parent.framedArea[0]. GUIScreen.getGraphics() );

return NetProtocol. OK_REPLY;

Fig. 6. The code of TrainPressButton class

5 Conclusions

We have presented in this paper a conceptual model for constructing an algo-
rithm animation system for constrained domains. In a restricted domain, knowl-
edge regarding the type of objects and the type of operations prevalent in that
domain can be embedded into the system, thus enabling the creation of systems
that let others use them comfortably.

We have also reviewed systems that realize this model in two specific domains
— that of computational geometry and that of distributed algorithms. These do-
mains have been chosen as representatives to domains which can greatly benefit
from visualization. In geometry this is because of the difficulties in visualizing in
one’s mind three-dimensional scenes, along with extensive use of data structures
which are heavily pointer-based and problems of degeneracies and robustness.
Distributed algorithms are difficult to understand due to the added complexity
of the interprocess communication and synchronization.

The major advantage of dealing with constrained domains is the automation
it enables. This automation leads to time saving and facilitates the creation of
animations for highly complex algorithms. The major disadvantage is that such
algorithm animation systems are limited in scope.

In the future we intend to realize this model in other constrained domains,
candidates being topology, databases and networks.
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