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Abstract

In designing a heterogeneous database systems, one of the main
technical challenges is developing techniques for ensuring global com-
mit. That is, guaranteeing that a transaction spanning multiple indi-
vidual database management systems (DBMSs) either commits at all
the participating DBMSs or at none of them. Previous work in this
area typically assumes that the participating DBMSs do not provide a
mechanism for interacting with their commit facilities. While this is
true in many cases, in practice there are systems which support a pro-
grammatic interface to their commit protocols. We refer to database
systems offering such facilities as externalized commit DBMSs.

The focus of this paper is on commit protocols for these systems.
We propose two new commit protocols for externalized commit DBMSs.
The first may be used to obtain global commit in heterogeneous database
systems composed of DBMSs with different 2-phase commit protocols
(e.g., centralized and linear). The second protocol is more general, and
ensures global commit even if the participating DBMSs employ 3-phase
commit protocols. The more general protocol also preserves database
autonomy, since it does not block a DBMS upon failure of another sys-
tem. We describe both protocols in detail and prove their correctness.
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1 Introduction

Heterogeneous database systems allow not only the physical distribution of
the data but also its logical distribution. There are many environments where
a collection of autonomous databases which need to cooperate with each other
already exists. These environments, and the problems involved in integrating
a heterogeneous collection of databases have already been discussed in the
literature (for example, see [8]). Although there has been much work in this
area, many open problems remain. One of these open issues is support for
atomic commit in heterogeneous database systems.

In considering commit protocols for heterogeneous database systems, we
need to distinguish between two possible models of database system operation.
The commit protocol for a database management system (DBMS) may be
said to be either externalized or non-externalized. By externalized we mean
that there exists a mechanism by which a process outside of the DBMS can
take part in commit decisions, as well as recover after failures. Typically,
such a mechanism is a library call interface. For example, users of Sybase’s
Open Client DB Library [17] may write an application program which sends a
“PREPARE TRANSACTION” command to the database servers; user-coded
Open Servers may inquire whether a particular transaction committed or not
by issuing a stat_zact() call. !

Systems which do not provide such facilities are said to have a non-ex-
ternalized commit protocol. Most previous work on heterogeneous commit
protocols assumes the commit protocols of the individual DBMSs are of this
type. We briefly survey previous work on non-externalized commit protocols
in Section 2.

The focus of this paper is the development of global commit protocols for
heterogeneous database systems composed of DBMSs which externalize their
commit protocols. We believe the importance of externalized-commit systems
will increase because they will become more prevalent. We argue that this will
be so because, in the near future, centralized databases will be replaced by
distributed ones, which usually externalize their commit protocols. Unfortu-
nately, externalized commit databases have not been examined in detail in the
past. Work in this area has consisted mostly of the various standardization
efforts supported by industry (i.e., LU 6.2 [9], or OSI’s TP service [19]). How-
ever, at this point it is not clear to us that any one standard will be chosen;
furthermore, even if one becomes dominant in the database world, there are
many other storage systems of interest (e.g., transactional file systems, mail
repositories) that will very likely not follow the standard.

The main contributions of this paper are two novel heterogeneous commit

'For further detail see the “Two Phase Commit Example Program” in the Open Client
DB Library Reference Manual for Sybase [17].



protocols for externalized commit database systems. The first may be used in
an environment where the individual DBMSs have any combination of the fol-
lowing types of two-phase commit protocols (2PC): hierarchical, centralized,
decentralized, or linear. The protocol depends on a set of assistant processes
(agents) to ensure the correctness of the mechanisms. We also present a more
general protocol that allows the integration of DBMSs having either two or
three-phase commit protocols (3PC). This second protocol has a higher perfor-
mance overhead than the first. However, in addition to its increased generality,
it has the following advantage: any participating DBMS will not be stopped
by the failure of any process external to that DBMS, thus preserving database
autonomy. We prove the correctness of both protocols.

In the following section we present a partial overview of previous research in
heterogeneous commit protocols and recovery techniques for non-externalized
databases. In Section 3 we formally define our model. In Section 4 we describe
how to obtain global commit in heterogeneous DBMSs using a variety of 2PC
algorithms. In Section 5, we extend this result to include both 2PC and 3PC
systems. We conclude by highlighting the results of this paper and discussing
directions for future research. For the sake of completeness and consistency
of terminology, in Appendix A we review the various homogeneous commit
protocols to which we refer in this paper.

2 Non-Externalized Commit Databases

Many conventional databases do not make public their commit protocols and
the concomitant states. The basic problem in merging the commit protocols
of such databases is the unavailability of a visible wait state. Yet, we want
to ensure atomicity and durability. In [11] it is shown that if autonomy of
the local database systems is preserved, in general it is impossible to perform
atomic commitment. In this section we outline some of the previously proposed
approaches to this problem. As we will see below, if a database does not
externalize its commit protocol, one must sacrifice functionality in order to
construct a heterogeneous database system.

One obvious way to deal with the heterogeneous commit problem is to mod-
ify the databases. We can do this either by forcing all databases in the system
to adopt a single commit protocol (converting the heterogeneous database into
a conventional distributed database as far as commit goes), or by forcing local
transactions to be managed by the global manager (which creates a bottleneck
in the system). At any rate, modifying the databases is not always a feasible
alternative.

In a recent survey of heterogeneous database transaction management [3]
three categories of approaches are presented: redo (the writes of the failed sub-
transaction are reexecuted), retry (the entire subtransaction is run again) and
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compensate (the effects of a committed subtransaction are erased by executing
a compensating transaction at a later time). We describe each of the three
approaches below.

Most of the redo approaches have suggested limiting data access to enforce
correct recovery. In [4] it is proposed to divide the data items into globally-
updatable items and locally-updatable ones; moreover, transactions modifying
globally-updatable data items would not be allowed to read locally-updatable
items. A similar solution is used by [20] in their 2PC Agent Method method.
The drawback of this kind of approaches is that they restrict access to the
objects in the databases.

The retry approach proposed in [12] involves re-running a failed subtrans-
action (if another one committed at a different site). However, as pointed
out in [3], one needs to make sure that any values the original subtransaction
reads were not passed to other subtransactions; it must also be true that the
subtransaction is repeatable (i.e., if it is tried a sufficiently large number of
times it will commit). Once again, these conditions may not be met in some
environments.

For compensation to be an acceptable approach, one has to give up the
demand for atomicity and choose a new correctness criterion. An example
of this is the work on Sagas [5]. Clearly, compensating approaches are not
generally applicable.

Yet another class of solutions to our problem lie in implementing 2PC by
simulating the wait state. In [1] this is accomplished by modifying a global
subtransaction so that it will send a message to the global transaction manager
before committing. Moreover, the recovery mechanism is modified to give the
global transaction manager exclusive access to the database after a site failure.
There are several disadvantages to this approach: The databases must allow
the execution of a remote application in the middle of a transaction, and
it must be possible to grant exclusive access to a single user after a failure.
The most severe problem is that the local database might be blocked if the
global manager fails, and this has serious implications on autonomy. A related
approach is presented in [6].

3 The Model

We assume our heterogeneous database is composed of individual homoge-
neous DBMSs, each of which externalizes its commit protocol. We assume
that each DBMS uses one of the commit protocols described in Appendix A
as its local commit protocol. No modifications are made to the participat-
ing database systems. Furthermore, none of them is ever aware of being part
of a heterogeneous database system. We expect participating DBMSs to be
distributed. We depict the architecture of the system in Figure 1. For exam-
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ple, participating distributed database DB1 in Figure 1 is composed of three
processes, each potentially at a different site. We denote the three single-site
database processes forming distributed DBMS DB1 by db11, db12, and db13.

With each participating DBMS we associate an agent (a process that will
aid in the commit operation). As far as the DBMS processes are concerned,
the agent is yet another database process (i.e., dbl1l views the agent for DB1
as being similar to say db12). There is a global manager that controls all the
agents in the heterogeneous DBMS. The agents need not know about each
other for the protocol in Section 4. They must have this information for the
protocol studied in Section 5.

global manager

dbll dbl2 dbl3 db21 db22 db23
(2PC or 3PC) (2PC or 3PC)

Figure 1: The Database Model

We define a local transaction as a transaction residing in a single distributed
database. (Note that a local transaction may be executed in several sites
if the participating DBMS is a distributed one.) The participating DBMSs
process local transactions in their usual manner. Transactions spanning data in
multiple individual DBMSs are called global transactions. Global transactions
are submitted to the global manager, which in turn contacts the agents at the
relevant DBMSs. Each agent starts a local transaction, and we assume that
the agent becomes the transaction coordinator.

We expect each externalized commit DBMS to support two types of com-
mands: those necessary for the commit processing (e.g., start transaction, vote
to abort), as well as those required for recovery (e.g., a command to find out
what commit decision was taken for a given transaction). For example, in the
next two sections we assume that the transaction interface allows an EXEC



statement (to start a local transaction), READ and WRITE operations, a
PREPARE (3PC DBMSs only), ABORT, COMMIT, and a STATUS_REQ
(request information about the commit status of a transaction).

The goal of the protocols described in the next two sections is to achieve
a global commit. By this we mean that all DBMSs will either commit or
abort a given global transaction. In Figure 2 we remind the reader of the five
correctness requirements of an atomic commitment algorithm (see [2]).

1. All processes that reach a decision, reach the same one.
2. A process can not reverse its decision after it has reached one.

3. The commit decision can only be reached if all processes voted OK.

4. If there are no failures and all processes voted OK, the decision will be
to commit.

5. Given any execution schedule containing failures (of the type that the
algorithm is designed to tolerate), if all failures are repaired and no new
failures occur for a sufficiently long time, then all processes will eventually

reach a decision.

Figure 2: Correctness Criteria for Commit Protocols

As in homogeneous DBMS, there are several possible kinds of failures in
heterogeneous DBMSs: transaction failures, system failures, media failures,
process failure, site failures and communication failures. Our first protocol
(Section 4) tolerates the same types of failures as 2PC protocols. The protocol
presented in Section 5 assumes a reliable network and fail-stop site failures. In
all cases we assume that, upon failure, local database processes behave in the
manner prescribed by the local protocol (i.e., database processes follow the
local termination protocol). See Appendix A for the description of 2PC and
3PC protocols and their recovery behaviors.

4 Merging 2PC Databases

In this section we consider a heterogeneous database composed of 2PC data-
bases only. In practice, this is the most common case. We first describe how
to integrate a variety of 2PC protocols. Next we comment on the integration
of the recovery mechanisms. Finally, we prove our global protocol correct.

We start by presenting the global protocol. The global transaction manager
runs a centralized 2PC protocol with the agents as participants. The global
manager plays the role of coordinator. Below, we consider some versions of
2PC and describe how each local algorithm can be meshed with the global
one.



Hierarchical: Adding a global transaction manager is similar to adding a new
root to which all the local roots are connected. The agent waits for a message
from the global transaction manager. When the agent gets the message, it
forwards the message to the local processes. After collecting the answers from
the local processes, the agent returns the answer to the global manager.

Centralized: The agent for each DBMS serves as the coordinator for the
local transaction. When the global transaction manager sends its EXEC re-
quest, the agent sends the same request to the local database processes. If all
the local processes reply OK to the agent, it then sends an OK to the global
transaction manager. Otherwise the agent sends back a NOK. If the global
transaction manager receives OK’s from all the agents, it then tells all of them
to COMMIT (or to ABORT otherwise). Each agent passes along the global
message to the local processes.

Decentralized: The main difficulty in this case is that the initial message
that the coordinator sends to the participants has two roles: it starts the com-
mit process, and it also communicates to the others that the initiating process
is willing to commit. Consider the following scenario: the global transaction
manager asks its agent at the decentralized commit database to EXEC. If our
agent now sends an OK to the local processes (OK and NOK are the only
two kinds of messages it can send), the local processes will not only start the
commit process, but also decide whether to commit or not. The agent can no
longer enforce an ABORT decision if such a message were to be sent by the
global transaction manager. A possible solution, shown in Figure 3, is to have
an auxiliary process that collaborates with the agent. When the agent receives
the EXEC message from the global coordinator, the agent sends a local OK
to the local processes (including the auxiliary one). All the local processes
exchange OK or NOK and the agent then knows whether the local database
commits or not. The agent then sends OK or NOK to the global transaction
manager. When the latter then sends an ABORT or COMMIT, the agent can
tell the auxiliary to send NOK or OK to all the other local participants.

auxiliary %
) O
! \

Ny

7
agent ‘%
Figure 3: Decentralized 2PC
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Linear: Here the COMMIT decision is made by the rightmost participant in
the linear chain. We again need the help of an auxiliary process, which we force
to be the rightmost participant in any commit involving a global transaction.
(See Figure 4.) Our agent process starts the commit process; if an intermediate
participant decides to abort, the auxiliary process eventually learns of it and
tells the agent, who then informs the global manager. If all participants decide
to commit, the auxiliary tells the agent, who then informs the global manager,
and waits for the latter’s reply, either a COMMIT or an ABORT; the agent
then forces the auxiliary to send the appropriate response back down the chain
of participants. There is an important point to be made here. In linear
2PC, the participants in the chain must have some knowledge regarding the
next participant in the chain. In the above algorithm, we assume that the
information is not pre-determined, but rather, that the process that starts the
commit protocol specifies the linear order in its initiating OK command.

O <
® - - &
agent auxiliary

Figure 4: Linear 2PC

In [18] we formalize the protocol outlined above.

We now turn to the subject of recovery. We consider the recovery of database
processes, agent processes, and that of the global manager. When a process
recovers from a failure, it activates a termination protocol. If the process is
a database one, it runs the local termination protocol (since it is not aware
of the global transaction). However, when an agent recovers after a failure it
must make sure that the local decision is consistent with the global one. The
agent takes part in the both the local termination protocol and the global one
(which is the termination protocol of a centralized 2PC database). Clearly,
the agent needs to act as a participant in the global termination protocols, and
as a coordinator in the local one. The agent first checks its log to find out its
state before it failed. If it was in a commit state or in an abort state, it sends
the local processes its decision. But, if the state was wait, the agent asks the
global manager what action to take. The agent then passes the decision along
to the local participants. A global manager recovering from a failure initiates
the termination protocol of a coordinator in a centralized 2PC.

Theorem 1 The algorithm presented above meets the correctness conditions
1-5 given in Figure 2.



We prove this theorem by first showing that our modifications to the local
commit protocols have not affected their correctness and then showing that
the combined protocol is error-free.

We first show that our modifications do not affect the correctness of the
local protocols. It is easy to see that this claim is true when the local 2PC
is either hierarchical or centralized (because we only added a new process).
However, for the cases of decentralized and linear 2PC, we have to show that
the addition of the auxiliary process does not interfere with the correctness of
the commit protocol. But in both linear and decentralized 2PC our auxiliary
and agent processes act as just two more processes involved in the commit
decision. The communication that goes on between them is transparent to the
participants (other than perhaps a longer delay in the auxiliary’s response),
and thus cannot affect their decisions. And of course, agent and auxiliary obey
all the rules of the protocol.

All that remains now is to justify the correctness of the global protocol.
From the point of view of the global manager, the protocol is a hierarchi-
cal 2PC, since it is not aware of the internal variation of 2PC that each local
database uses. The non-agent participants of the local databases are not aware
of the hierarchy. The agents, however, are the only participants to have the
knowledge that the protocol is neither a hierarchical 2PC nor any other vari-
ation. But, all the agent is doing (sometimes with the help of an auxiliary)
is (1) getting instructions from the global manager and passing them to the
local participants, and (2) collecting answers from the local participants and
sending an answer to the global manager. This is exactly what an intermedi-
ate node in a hierarchical 2PC scheme does. Therefore, by a reasoning similar
to that of the correctness proof for hierarchical 2PC we can show that our
protocol is correct. O

5 Merging 2PC and 3PC Databases

In this section we consider the more general case of integrating databases using
either 2PC or 3PC protocols. This case presents more of a challenge than the
2PC one, and results in a more interesting solution. As before, our global
manager engages in a multi-phase protocol with the agents, and the latter
integrate the local commit protocols into the global one.

This section is ordered as follows. We begin by suggesting why it might be
impossible to use a global 2PC protocol between the global manager and the
agents. We then consider the use of a 3PC protocol as the global one, and show
that a straightforward use of 3PC is not adequate either. (This preliminary
discussion of faulty protocols serves not only to emphasize the non-triviality of
the problem but also sheds light on certain features of our protocol.) Finally,
we present a new global protocol that does perform correctly; this protocol



requires four phases and the use of auxiliary processes.

Consider using a 2PC algorithm between the global manager and the agents
as the basis for the global commit protocol. As before, there is an agent
process at each database (again, each database may be distributed among
multiple sites); it is the agent’s responsibility to communicate with the global
transaction manager using the global commit algorithm, and to interact with
the local processes using the local commit protocol. The messages between
the global transaction manager and the agent responsible for a given 3PC
database are: an EXEC from manager to agent, an OK or NOK as reply, and
a COMMIT/ABORT decision message from the manager. At some point, the
agent has to send a PREPARE message to the processes of its database as
part of the local 3PC protocol. This message has to be sent either before or
after the agent receives the COMMIT message from the global transaction
manager.

Suppose the agent sends out the PREPARE message before it has received
the COMMIT/ABORT message from the manager. Consider the scenario
depicted in Figure 5. There are two participant databases DB1 and DB2,
where DB2 uses a local 3PC. DBI has 3 processes: 2 database processes (db-
processl1 and db-process12), and one agent (agent 1); similarly for DB2. The
global manager sends the initial EXEC and DB1’s agent receives it, obtains
local agreement to abort and replies NOK to the manager. In the meantime,
DB2’s agent also receives the manager’s EXEC and sends a PREPARE to its
local participants. Assume that all sites fail except for the participant sites of
DB2 (i.e., the global manager, all agents, and all DBI1 sites fail). Since the
processes residing in sites of DB2 are in the prepare state, after they timeout
they contact each other and decide to commit. Thus, this protocol fails.

Consider now what happens if the agent sends the PREPARE message
after it receives the global manager’s COMMIT message. Again, we have two
local databases DB1 and DB2, DB2 being a 3PC one. Now, let us examine
the sequence of events shown in Figure 6. The global transaction manager
sends the initial EXEC, and the agents for both DB1 and DB2 obtain local
agreement to commit and send an OK to the manager. The manager then
sends a COMMIT to both agents. The agent at DB1 receives the COMMIT
message and makes sure its database commits. However, before DB2’s agent
can receive the COMMIT message we have the same widespread failure as
before. The processes residing in sites of DB2 are all in the wait state at this
point. DB2 processes can only decide among themselves what to do, which is
to abort. Thus, once again the protocol fails.

The reason that a straightforward application of 2PC can not work as global
protocol is that the protocol states in the situation just described do not have
their usual meanings. Normally, the wait state represents the willingness of
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the participant to commit while the prepare state represents the willingness
of the other participants to commit. However, in the first case above, the
prepare state does not always represent the willingness of participants in other
databases to commit, while in the second case, the willingness to commit of
the non-local participants is not represented.

Having ruled out 2PC, let us try to use 3PC as a global protocol. Con-
sider the following commit protocol: The global manager sends out the initial
EXEC. Each agent sends the EXEC message to the local processes. When the
agent receives the OK responses from the local processes, it sends OK to the
global transaction manager. After obtaining the PREPARE command from
the global manager, the agent relays it to the local processes only if the local
database uses a 3PC protocol; otherwise it immediately sends the ACK. When
the agent receives the COMMIT message from the global manager, it forwards
the message to the local processes.

Assume now that DB1 and DB2, both using 3PC, take part in the trans-
action, as illustrated in Figure 7. After receiving the EXEC command and
polling their local processes, both databases’ agents answer OK. All processes
are now in a wait state. The global manager now sends a PREPARE com-
mand. The agent at DB2 receives it, sends out a PREPARE message to the
local processes, which then enter the prepare state. Meanwhile, the agent at
DBI1 fails and does not receive the manager’s PREPARE message. At this
point, DB2’s agent also fails. The processes in DB2 run the termination pro-
tocol and commit. However, when the processes in DB1 run the termination
protocol they abort. Again, the protocol fails.

The problem is that in a 3PC protocol one assumes that each participant
knows where the other participants are and can always reach them. However,
here a process does not know about processes in other participating databases,
and thus cannot reach them during the termination protocol. In effect, by
having the local processes communicate information to the global coordinator
only through their agent, a single site failure (the agent’s) is equivalent to a
network partition. So, although our failure model allows only site failures,
we reach a situation resembling a communication failure, which 3PC does not
tolerate (see [2]).

We must ensure that site failures are not equivalent to network partition.
We can start by having every process know about every other participating
process. This simple fix does not work. For example, even if we assume that we
can send the identities of all the participants as part of the EXEC message, we
still run into difficult translation problems: participants belonging to different
databases employ different message formats, the same global transaction will
result in different transaction ID’s locally, the databases possibly use dissimilar
election protocols, etc. Moreover, for some databases, the local coordinator
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Figure 7: 3PC as the Global Protocol - Case I

agent 1

might still be alive, and thus their participants are not ready to enter an
election protocol.

We now add yet another modification to the protocol just presented. We
place an auxiliary process at every site of every database as shown in Figure 8.
These auxiliary processes act just like another process in the local distributed
database, and participate in the local commit protocol. But these auxiliary
processes are actually aware of the existence of the global manager, the agents
and other auxiliary processes in the system. Therefore, in time of trouble,
they can contact these processes.

In the absence of failures, our new protocol is identical to the 3PC one
presented above. Consider now what happens if one of the agents of the 3PC
databases fails. At that point, the local participants plus the associated aux-
iliary processes undertake an election protocol to select the new transaction
coordinator. The selected coordinator could be one of the local database pro-
cesses or one of the auxiliaries. The difficult case is if the selected coordinator
is one of the former, all of which are unaware of the global nature of the trans-
action. When the new coordinator asks all the local database processes and
auxiliaries what their state is, the database processes answer truthfully, but
the auxiliaries may have to do some work before answering. Each auxiliary
process may have to contact its cohort (i.e., the global manager, remote agents,
and remote auxiliaries) to determine the state of the global transaction.

If an auxiliary process is in the prepare state, it informs the local coordi-
nator about it. If the auxiliary process is in the wait state, it must find out
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Figure 8: The Modified Model

if there is another process in its cohort which is in a prepare state. If so, the
auxiliary reacts as though its state is prepare. This is done to guarantee that
the local database does not decide to abort while other databases decide to
commit. By answering prepare to the local coordinator the auxiliary ensures
that its local database proceeds to commit the global transaction. Alterna-
tively, if the auxiliary cannot find anyone else who is in the prepare state, it
tells the local coordinator that the auxiliary is in a wait state, which results
in an abort decision by the local coordinator.

However, there is still a problem (depicted in Figure 9). Suppose that we
have two 3PC databases. The global manager reaches the prepare state. It
sends the PREPARE message to the agents. At this point, both the global
manager and the second database’s agent fail. The agent of the first database
receives the PREPARE, sends it to all the local processes. Now the first agent
dies. The first database’s processes (real and auxiliary) proceed to commit
(since the auxiliaries are in the prepare state they agree to this). Now, all of
the processes related to the first database die. At this time the participants
at the second database realize their agent is gone. The auxiliaries there try to
contact their cohort processes, but they cannot find any in a prepare state (all
of the cohort processes in the first database are dead). The second database
proceeds to abort, and now the protocol fails. The problem is that some of
the auxiliary processes are not aware that others are in a prepare state. Thus,
under failure conditions, some remote auxiliaries might have forced a previous
commit.

Finally, we present a correct global protocol. As before, we place an aux-
iliary process at every site of every database, and each auxiliary acts as a
regular participant. However, there is one crucial difference with the protocol
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presented above. The auxiliary processes are all going to transfer to a new
state, the prepare_to_prepare state, before any of the real database processes
moves to the prepare state.

We now describe in more detail the actions of our protocol when the local
database follows a 3PC local protocol. (We address the 2PC case later.) The
protocol is also sketched in Figure 10. During local transaction processing the
auxiliary processes do not have work to do. In a global transaction, the global
manager sends an EXEC to the agents. The agents send a local EXEC to the
database participants and to the local auxiliary processes. If they all reply OK,
the agent sends an OK to the global manager. If the latter receives OK from
all the agents, it sends a PREPARE_TO_PREPARE message to all the agents,
who then send an equivalent message to the auxiliaries (but not to the other
participants). The auxiliaries acknowledge the PREPARE_TO_PREPARE,
and once their agent receives their acknowledgements, it informs the global
manager of that fact. The global manager now sends a PREPARE to all the
agents, who forward it to all the local participants (including the auxiliaries).
Everyone sends an ACK to the agent, who forwards it to the global man-
ager. When ACKs are received from all agents, the global manager issues a
COMMIT message to all agents, who in turn send COMMITs to every local
participant.

Consider what happens during a site failure. There are three possible
cases: (1) the site may contain the global manager; (2) the site may hold
a participating database process and its associated auxiliary; or (3) the site
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may have the agent for that database (and possibly a participating database
process). If the global manager’s site fails, the agents and auxiliaries follow
the usual 3PC election algorithm to select a new global manager. In (2), the
auxiliaries follow the local commit protocol. If the failed site held the agent
process, the auxiliary processes have extra work to do. In this last case all
the processes in the database (as well as all local auxiliaries) enter into the
usual 3PC election protocol to select the new local coordinator. The election
protocol results in a new coordinator (which may or may not be an auxiliary
process). If an auxiliary is selected, it becomes the new agent and all proceeds
as before. The difficult case occurs when a regular database process is selected
as coordinator. Indeed, we now have a coordinator that has no idea that
the ongoing transaction is a global one. So, when it enters the termination
protocol it will not contact other databases for consensus.

When a non-auxiliary is chosen as coordinator, the auxiliary process at the
new coordinator’s site becomes the agent for the database. When the local
termination protocol starts, the newly selected coordinator asks everyone what
state they are in. The auxiliary process that became the new agent now has
an additional task.

If this new agent is in the wait state it contacts the global manager and
registers itself as the new agent. The next message from the global manager
is either a PREPARE_TO_PREPARE or an ABORT. (Remember, a global
manager failure at any point results in the election of a new one, so the agent
will always eventually receive either one of the two messages). If an ABORT
is received, the new agent tells the coordinator that its state was wait, which
forces a local abort. If a PREPARE_TO_PREPARE is received, the new agent
goes to the prepare_to_prepare state, and forwards this message to all other
auxiliaries at its database. Upon acknowledgement from all other auxiliaries,
the agent forwards an acknowledgement to the global manager. When the
global manager receives the acknowledgements from all the agents, it then
sends a PREPARE back to them. At this point the agent can finally reply to
the local coordinator. The agent tells the latter that the agent is in a prepare
state, which forces a local commit. Note that an agent being in a prepare state
implies that all others in the cohort are at least in prepare_to_prepare state
(i.e., either in prepare_to_prepare, prepare, or commit). Therefore none of the
other databases can abort this transaction.

However, if the new agent is in the prepare_to_prepare state it again contacts
the global manager and registers itself as the new agent. The new agent then
acts as if it had just received the PREPARE_TO_PREPARE message in the
above case.

If the new agent is in the prepare, commat, or abort state, it again registers
itself with the global manager. The agent then communicates its state to the
local coordinator.
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2PC databases are easy to integrate into the above scheme. As we indicated
in the previous section, there is also an agent at each 2PC database. If the
agent fails, the local processes will block, and processing will stop until the
agent process recovers, in which case it will follow the usual 2PC recovery
procedure.

Finally, we consider the case of total failure of a database. When a par-
ticipant at the recovered machine starts up, it looks for another process who
can tell it what the result of the transaction was. If an auxiliary process is
contacted, the latter will know to ask the global transaction manager what to
do. If another participant is contacted (and can give an answer), that par-
ticipant must have also contacted an auxiliary process. The reason for this
is as follows. In 3PC, the only participant that can determine (by itself) the
outcome of a transaction is the participant that can be sure it died last. But
since every participant and its associated auxiliary process die at the same
time (remember, we assume site failures only), the participant cannot be sure
it was the last process alive. Only auxiliaries are willing to tell others what
the outcome of the transaction was.

For a Pascal-like description of the protocol just presented we refer the
reader to [18].

Two final comments. First, since the global manager might fail at any
time in the middle of a transaction, multiple election rounds might take place.
Clearly, this process can take a long time. Therefore, we have to increase the
timeout period of the local databases to a suitably large value. (The timeout
period of a database is not usually hard-coded.) In theory, we need an interval
large enough to allow n global manager failures, where n is the number of sites
in the system. In practice, one would need to worry about only a reasonable
number of failures.

Secondly, even if all the participating databases are 2PC, the participants
may wish to use the global commit algorithm presented in this section instead
of the 2PC one of the previous section for autonomy reasons. The 2PC global
algorithm may force a database to block because of the actions of a remote
site (say, the global coordinator failing), which has a definite impact on the
autonomy of the participating databases. Since the protocol just presented
does not block a database upon failure of another one, it may be the algorithm
of choice for autonomous environments.

It is not hard to verify that the protocol presented is non-blocking, and we
state this below as a theorem. (We consider 3PC databases only.)

Theorem 2 In the absence of total failures, our algorithm and its termination
protocol never cause processes to block.
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Proof: If there are no failures, it is trivial to show that the protocol is non-
blocking. We examine now the situation where failures occur. First, consider
the case where the global manager has not failed. If there are local database
failures, the local (non-blocking) termination protocol drops these processes
from consideration and the protocol continues. If there is a failure at the site
of the local coordinator, the local processes elect a new local coordinator and
proceed. The auxiliary at the same site becomes the new agent, and the global
manager can continue its protocol communicating with it, until a decision is
reached.

We now turn to the situation where the global manager fails. The agents
and auxiliaries initiate the global termination protocol and elect a new global
manager. The elected global manager asks the agents for their local states.
Each possible combination of states (or lack of response from a failed agent or
auxiliary) causes the manager to activate a single termination rule. Thus, if the
newly elected manager does not fail, the operating processes reach a decision
and there is no blocking. Otherwise, a new invocation of the termination
protocol will be initiated until all processes reach a decision or there is a total
failure. O

We now prove the correctness of the integrated commit protocol described
above. Recall the five requirements for correctness listed in Figure 2. We first
discuss Requirements 2-5 in Theorem 3, and then address Requirement 1.

Theorem 3 The proposed protocol satisfies the correctness Requirements 2-5
given n Figure 2.

Proof: Requirement 2 states that once a process makes a decision it may not
reverse it. Assume a process makes its decision. If the process does not fail,
by inspection of the protocol it is easy to see that the process can never undo
the commit/abort decision. If the process fails after making the decision, it
will read its log and decide in the same manner.

We now verify the third correctness criterion (i.e., the commit decision can
only be reached if all processes voted OK). Suppose that a process voted NOK
(or did not vote). If that fact is noted by the local agent, it will communicate
it to the global manager and an abort decision will be reached. If the agent
fails before contacting the global manager, the latter will decide to abort. If
the global manager failed before receiving word of the NOK vote, it would
never have told any agents to move to the prepare_to_prepare state. Hence,
when a new global manager is chosen, it will decide to abort the transaction.

Requirement 4 says that, if there are no failures and all processes voted
OK, a commit decision will be reached. It is easy to verify this requirement
by inspection of the protocol.
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The last criterion requires us to show that, given any execution schedule
containing failures, if all failures are repaired and no new failures occur for
a sufficiently long time, then all processes will eventually reach a decision.
If a process has not failed, then by Theorem 2 (which states the protocol is
non-blocking) it will eventually reach a decision. If the process failed, when it
recovers it reads in its log its state at the time of failure. If it failed before it sent
OK, or if it sent NOK, it decides to abort. If it received COMMIT or ABORT
before it failed, it can also make a decision. Otherwise, the process needs the
help of other processes. Recall that our protocol tolerates site failures only.
Therefore, when a site recovers, both the database process and the auxiliary
process at that site are recovered. The auxiliary process can communicate with
the processes in its cohort and ask for the decision, even if all sites in the local
database failed. If there is no total failure, then (by Theorem 2) a decision
either has already been made or is being made and the auxiliary will eventually
learn about it and adopt the decision. Once the auxiliary knows the decision, it
will relay it to the database process. In a total failure situation, blocking takes
place until: a process can recover independently, a process knows it was the
last process to fail, or all processes are repaired. In the first case, the process
eventually passes the decision along to others. In the second case, the process
knows which was the final global manager and waits for it to recover and then
learns of its decision (either the global manager already reached a decision or
it will do so after executing the termination protocol). In the last case, the
processes wait for all others to recover. Then the final global manager can be
identified, and it can inform others of its decision or execute the termination
protocol. O

We now consider Requirement 1, i.e., all processes that reach a decision reach
the same one. Proving Requirement 1 for 2PC databases poses no difficulty.
Clearly, there will not be a disagreement between two processes in the 2PC
database by the correctness of 2PC. We claim that no 2PC process can disagree
with the global manager, since the 2PC database agrees to commit or abort
based only on the global manager’s instructions; remember that, unlike 3PC
databases, 2PC databases block upon local coordinator (the agent) failure,
and wait until it is repaired to continue. Below we prove that the global
manager will always agree with 3PC processes. Thus, there is no possibility
of a disagreement between a 2PC and a 3PC process. To simplify the proofs
below, we now omit mention of 2PC databases in them.

We divide time into intervals between the elections of global managers. We
proceed in two steps. The first step (Theorem 5) proves that all decisions
taken within a specific interval are consistent. The second step (Theorem §8)
proves that decisions taken at any interval are consistent with those taken
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in earlier intervals. We consider a local coordinator as having committed at
the :** interval if its agent has consulted with the :** global manager before
reporting to the local coordinator (and this report enables the coordinator to
make a decision). Note that the actual decision can be made after the failure
of that specific global manager.

Lemma 4 When a local coordinator decides to commut, its agent reported
either a prepare or a commit state. When a local coordinator decides to abort,
its agent reported either an abort or a wait state.

Proof: By induction on the number of failures of the local coordinator in
a specific database. (We refer to the period between two consecutive local
coordinator failures as a phase.)

Phase (: Before the first failure has occurred, the local coordinator is the
agent. Thus, it will decide to commit only if its state is commit, and likewise
for an abort.

Phase i Suppose first that the local coordinator decides to commit. At
least one process reported a prepare state or a commit state. That process
must have received a PREPARE message in an earlier phase. Look at the
first phase in which any process in the database got a PREPARE message.
According to our algorithm, at that time all auxiliaries had to be in at least
a prepare_to_prepare state. Therefore, at the :** phase the agent, which is an
auxiliary, cannot report a wait state or an abort state.

Now suppose that the local coordinator decides to abort. Then either some
process reported an abort state or all processes reported a wait state. In the
latter case we are done. However, if some process reported abort then there are
two possibilities. The first one is that the process voted to abort (NOK). In this
case, it is not hard to check that no auxiliary could move from a wait state to a
prepare or a prepare_to_prepare state. This is so because either the NOK vote
was sent to the global manager by an agent (while this agent was acting as local
coordinator), or the global manager never received an OK from the original
agent. In either case the global manager will abort the transaction. The second
possibility is that an ABORT message was received by the reporting process
in an earlier phase. By the induction hypothesis, the agent at this phase is in
either in an abort state or in a wait state. Since it is not in a prepare_to_prepare
state, no other auxiliary process can be in a prepare_to_prepare state (because
the agent is the one which gives the instruction to move to the latter state).
But the reason the agent is in an abort or a wait state is because the global
manager told it to reply in such a manner. Therefore, the global manager
will not tell any auxiliaries to enter the prepare_to_prepare state. Thus, all
auxiliaries (including the i** agent) will not proceed to the prepare_to_prepare
state. O
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Thus, we have shown that the agent can determine the outcome of a local
transaction. We now show that, between global manager failures, all processes
agree.

Theorem 5 All processes that reach a decision within the "

the same one.

interval, reach

Proof:

At the % interval all agents consult with the same global manager which
will not report contradictory decisions. By Lemma 4 we know that the agent
can determine the local coordinator’s decision. Since agents do not obtain
contradicting information and since the local decisions are based on the agents’
information, all local databases that reach a decision, reach the same one. O

Lemma 6 If any operational auxiliary process is in a wait state then no other
process (whether operational or failed) can have decided to commit.

Proof: 1t is obviously true before any termination protocol starts (local or
global). We will verify that, if the above holds before a termination protocol
starts, it will hold after even a partial execution of that protocol. Suppose
by the way of contradiction that a decision to commit was taken before. If
the global manager was the one to take the decision, then according to our
protocol, all operational auxiliary processes must have moved first to a pre-
pare_to_prepare state. If a local manager was the one to make the decision,
then its associated agent must have reported at least a prepare state. But
again, an agent can do so only after all operational auxiliary processes have
moved to a prepare_to_prepare state first. O

Lemma 7 Consider the i'" interval (i > 0). If a process p that is operational
during at least part of this time is in prepare_to_prepare state, then some
process q that was operational in (1 — 1)th interval was in prepare_to_prepare
state then.

Proof: At the beginning of the i** interval, when the new global manager is
selected, if it did not find at least one process in prepare_to_prepare state the
global manager would decide to abort the transaction at that point, and thus

would not send PREPARE_TO_PREPARE messages to any process. O
Theorem 8 Under our protocol, all operational processes reach the same de-
CiSt0N.

Proof: by induction on 7, the :** interval.

For ¢ = 0 (before the first global manager’s failure): We know from The-
orem 5 that all processes that reach a decision in an interval reach the same
conclusion.
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For ¢ > 0: By Theorem 5, all those processes which reach a decision
within the ' interval, reach the same one. It remains to show that this
decision is consistent with previous ones. We distinguish between the different
termination rules that are applied when making the decision. Recall that a
decision might be made either by the global manager or by a local coordinator
during this interval.

Suppose first that a decision is made to abort. Assume also that the reason
to abort is that some relevant process reported its state as being abort. If some
process reports this state because it has voted NOK or it has not voted, then it
is not hard to see that a decision to commit could not have been made earlier
(this follows from Requirement 3 which we already proved). The other possi-
bility is that a process reports abort because it received an ABORT message
earlier. If it received the ABORT message before the current failure of the
global protocol then, by the induction hypothesis, since this process decided
to abort no process could have decided in earlier invocations to commit. How-
ever, if the ABORT message was received during this interval, suppose by way
of contradiction that some process decided to commit in an earlier interval. In
that interval all auxiliaries had to be in at least prepare_to_prepare state, and
therefore no global manager would decide to abort or any agent force its local
coordinator to abort (note that we showed in Lemma 4 that the agent forces
its local coordinator’s decision). Therefore, none of the managers/coordinators
could have sent an ABORT message since then.

Assume now that a decision to abort was made because all relevant pro-
cesses have reported a wait state. By Lemma 6, no process can have previously
committed.

Consider now the case where a decision is made to commit. If a decision
to commit is taken because some operational process reports commit, it is
again not difficult to see that an abort decision could not have been made
earlier. The other possibility is that a decision to commit is made because
some process reports prepare_to_prepare or prepare to the global manager or
prepare to the local coordinator. In the former case the global manager will
make sure before making a decision that all the auxiliary processes go to a
prepare_to_prepare state. In the latter case, we know that the auxiliaries have
already gone through a prepare_to_prepare state. Now suppose that at an
earlier interval some process decided to abort. But in that interval there was
at least one process in prepare_to_prepare state by Lemma 7. Thus, the global
manager could not have decided to abort, nor would it have instructed any
agent to force a local abort. O
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6 Summary

We have discussed the problem of atomic commitment in a system of hetero-
geneous distributed databases. We examined two cases. The first was that of
non-externalized commit databases, for which we only presented a brief liter-
ature survey. The second case, which we have explored in detail, was that of
externalized commit databases.

We presented a novel global commit protocol for heterogeneous databases
composed of distributed databases using any of various 2PC protocols. We did
this by having our global coordinator engage in a centralized 2PC with agent
processes at the participating databases, and showing that we could integrate
the local 2PC protocols into our global one. The advantages of our global
protocol are its simplicity and that it addresses the most important case in
practice.

We then considered database systems using either 3PC or 2PC protocols.
In developing the global commit protocol for this case we required the use of
helping processes at each local database. The overhead of such processes, as
well as the additional exchanged messages and the increased time-out intervals
that our algorithm requires in a real implementation are the negative aspects
of our solution. The main contribution of our work is that we have shown
how to integrate a heterogeneous collection of databases using most of the
commonly studied commit protocols. Furthermore, our protocol does not block
a database because of remote failures, thus preserving local autonomy. We
expect autonomy to become especially important in very large heterogeneous
database environments.

Our future research plans in this area involve the implementation of a
prototype heterogeneous database for a mobile computing environment. Our
prototype will integrate a variety of commercially available databases, as well
as some non-database information sources (e.g., file systems, mail servers)
being developed at MITL. We expect that some of the non-traditional data
sources we are using will employ a variety of non-blocking protocols. (In a
mobile environment there is a need for support of autonomous operation in
the face of potentially frequent failures, which forces the use of non-blocking
protocols.) We expect that the work described in this paper will be of help in
integrating those non-blocking protocols.
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A Commit Protocols

In this appendix we present simplified descriptions of the commit protocols
which we consider in the paper. We concentrate on several variants of the
2PC protocol and on the 3PC protocol. For more details on this subject see

[2].

A.l Centralized 2PC

Centralized 2PC is described in [7] and [10]. One of the participants acts as
coordinator. The algorithm is as follows:

1. The coordinator sends an EXEC message to all participants.
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2. When a participant receives an EXEC, it responds by sending the coor-
dinator the participant’s vote: either OK or NOK.

3. The coordinator decides to commit and sends the COMMIT message to
all participants if all votes are OK and the coordinator does not timeout.
Otherwise, the coordinator sends an ABORT message.

4. Each participant waits for the COMMIT or ABORT message and acts

accordingly.

The processes which belong to a 2PC database can be in one of four states:
an initial state (before they get the EXEC command), a wait state (when they
respond with OK), a commit state (when they receive the COMMIT message),
and an abort state.

A.2 Decentralized 2PC

The decentralized 2PC protocol is presented in [14]. All participating processes
must communicate (i.e., the communication topology is a complete graph).
The coordinator’s role now is only to start the algorithm, not make the commit
decision by itself. The algorithm is:

1. The coordinator sends its vote to all participants.
2. Each participant responds by sending its own vote to all other processes.
3. After receiving all the votes, each process makes a decision.

The states the processes can be in are the same as in the centralized version.

A.3 Linear 2PC

The linear 2PC protocol appears in [7] and [13]. Processes are linearly ordered,
and each needs only to communicate with its neighbors. The algorithm is as
follows:

1. Each process waits for the vote from its left neighbor (except for the
leftmost process which starts the algorithm). If it receives an OK and
its own vote is OK, it forwards the OK vote to its right neighbor.

2. The rightmost process then makes the decision. It sends a COMMIT or
an ABORT to its left neighbor. Each process forwards the message to
its left neighbor.

Once again, the states the processes can be in are the same as in the centralized

2PC case.
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A.4 Hierarchical 2PC

The participants are ordered in a tree. A participant communicates only with
its parents and its children. The root acts as the coordinator. The algorithm

is as follows:

1.

2.

(@]

The coordinator sends an EXEC message to all its children.

When a participant receives an EXEC, it forwards it to its children. A
leaf participant responds by sending the parent the participant’s vote:

either OK or NOK.

If all the votes received by a participant from its children are OK and the
participant itself votes OK, the participant forwards OK to its parent.
Otherwise, it sends NOK.

. The coordinator decides to commit and sends the COMMIT message to

all its children if all votes are OK and the coordinator does not timeout.
Otherwise, the coordinator sends an ABORT message.

Each participant waits for the COMMIT or ABORT message from its
parent. When the participant receives the message, the participant for-
wards it to its children and acts accordingly (committing or aborting the
transaction).

Again, the protocol states are the same as above.

A.5 2PC Recovery Protocol

1.

If the process recovering was the coordinator and if the log contains a
COMMIT or an ABORT record, then the coordinator had decided before
the failure. Otherwise, the coordinator decides to abort by writing an

ABORT record in the log.

. If the process recovering was not the coordinator for the transaction

then:
o If the log contains a COMMIT or an ABORT record, then the
participant had reached its decision before the failure.

o If the log does not contain an OK record, the process decides to
abort.

o Otherwise, the process tries to reach a decision using the termina-
tion protocol (i.e., the process blocks until it can contact another
process that is aware of the decision).
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A.6 3PC Protocol
The 3PC protocol is described in [14], [15] and [16]. It has the advantage

of dealing with coordinator failure without blocking. The algorithm is given
below:

1.
2.

(&3¢

The coordinator sends an EXEC message to all participants.

When a participant receives an EXEC, it responds by sending the coor-
dinator the participant’s vote: either OK or NOK.

The coordinator decides to commit and sends the PREPARE message to
all participants if all votes are OK and the coordinator does not timeout.
Otherwise, the coordinator sends an ABORT message.

. When a participant receives a PREPARE message, it responds by send-

ing the coordinator an ACK.
Each participant waits for the COMMIT or ABORT message from the

coordinator and acts accordingly.

In case of coordinator failure, a new coordinator is chosen (i.e., an election

protocol is followed), and then the algorithm enters its termination protocol:

1.
2.

If some process is aborted, the coordinator decides on abort.
If some process is committed, the coordinator decides on commit.

If no process has received the PREPARE message, the coordinator de-
cides to abort.

. If some process has received the PREPARE message, the coordinator

continues the protocol.

The processes can be in any one of the states mentioned in the 2PC case or

in a new state called the prepare state (when the process acknowledges the

PREPARE message).

A.7 3PC Recovery Protocol

1.

3.

If the recovering participant determines that it had failed before sending

OK, it decides to ABORT.

. If the recovering participant sees that it had failed after receivinga COM-

MIT or ABORT, it knows that it had already decided.

Otherwise, the participant must ask other processes about their decision.

The coordinator’s actions are similar.
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