Algorithm Visualization For Distributed Environments *

Yoram Moses 1
Dept. of Applied Math
The Weizmann Inst. of Science

Zvi Polunsky
Dept. of Applied Math
The Weizmann Inst. of Science

Ayellet Talt
Dept. of Electrical Engineering
Technion — Israel Institute of Technology

Leonid Ulitsky?
Dept. of Applied Math
The Weizmann Inst. of Science

Abstract

This paper investigates the visualization of distributed al-
gorithms. We present a conceptual model and a system,
VADE, that realizes this model. Since in asynchronous dis-
tributed systems there is no way of knowing (let alone, vi-
sualizing) the “real” execution, we show how to generate a
visualization which is consistent with the execution of the
distributed algorithm. We also present the design and im-
plementation of our system. VADE is designed so that the
algorithm runs on the server’s machines while the visual-
ization is executed on a web page on the client’s machine.
Programmers can write animations quickly and easily with
the assistant of the VADE’s libraries.

Keywords: visualization of algorithms, program visualiza-
tion, algorithm animation, visualization in education, dis-
tributed algorithms.

1 INTRODUCTION

Algorithm visualization can assist in the design of algo-
rithms, in the debug process, and while teaching algorithms
to students and colleagues. When distribution is added to
the environment, the importance of visualization is further
increased. Distributed algorithms are difficult to understand
due to the added complexity of the interprocess communi-
cation and synchronization. Many activities occur concur-
rently at the various sites. Moreover, the activities depend
on each other in many ways. Each state depends not only
on the individual process, but also on the messages arriving
from other processes.

Users can use a visualization in order to convey informa-
tion about the way an algorithm might work. Programmers
can use a visualization to debug their code; most standard
debuggers do not support distributed programming in natu-
ral ways. Students can get a better insight into the algorithm
and understand the way distribution is handled.

Visualization has been added to various phases of dis-
tributed computing [13]. It was added to parallel debuggers
(e.g., [17], [18]), as well as to performance and monitoring
tools (e.g., [12], [21], [11], [9], [10]). Algorithm animation
systems aim to visualize higher-level abstract events than

*Work has been supported by the Israeli Ministry of Science
Grant 8544-3-97
fyoram@wisdom.weizmann.ac.il
tayellet@ee.technion.ac.il, http://www.ee.technion.ac.il/~ayellet
8ulitsky@wisdom.weizmann.ac.il
http://www.wisdom.weizmann.ac.il/~ulitsky

those of debuggers and monitors. This is in the case of se-
quential algorithms (e.g., [7], [4], [25], [5], [27], [6], [1], [23]),
as well as in case of distributed and parallel algorithms (e.g.,
[24], [20], [26], [2], [14], [15]).

In asynchronous distributed systems there is no way to
know what the “real” execution is. Each process in the sys-
tem can “remember” only its own actions during the execu-
tion of the algorithm. It can also gain knowledge of actions
performed by other processes through interprocess commu-
nication. It cannot, however, compute the relative timing
of the actions performed by different processes. The visual-
ization system, being a part of the distributed asynchronous
system, is no exception. The goal of an algorithm anima-
tion system for distributed environments is thus to produce
a visualization which reflects as closely as possible the real
execution of the algorithm.

As a result, a basic problem in visualizing distributed
processes on a single display is that the display is con-
stantly in danger of showing a picture that is locally con-
sistent but globally inconsistent. The algorithm being vi-
sualized changes dynamically and the algorithm animation
system needs to receive updates of the state from different
sites. Since an immediate snapshot is impossible in an asyn-
chronous distributed system ([16]), a “possible” snapshot
should be constructed. This snapshot should be consistent
with the execution of the distributed algorithm. It should
present a possible state of the system consistent with the
state in which the snapshot started and with the algorithm
state in which the snapshot construction was completed.

There exist several algorithm visualization systems for
parallel algorithms. For instance, in PARADE [26] the
events of interest are ordered according to time-stamps. In
the Animation Choreographer component of the PARADE
system [14], it is also possible to manipulate the order of
the display events by choosing a suitable ordering scheme.
PAVANE [20] operates on the shared-memory tuple space
architectures. In VISTOP [2], the “happened before” rela-
tion is utilized through either global breakpoints or traces.
We propose to base the ordering of events upon the notion
of causality consistency.

‘We present in this paper our conceptual model for an algo-
rithm animation system for distributed algorithms. We also
present a system, VADE (Visualization of Algorithms in Dis-
tributed Environments), which realizes the model. VADE is
constructed so that the algorithm runs on the server’s ma-
chines while the visualization is executed on a web page on
the client’s machine. End-users can thus watch the algo-
rithm animation in a natural setting. The VADE archi-
tecture has several benefits. First, the algorithm code is
protected. Second, the communication is very low, since
only high-level operations are being sent over the network.

Third, the framework provides a large degree of accessibility.
The client need not have the resources needed for running
the distribute algorithm. Fourth, it allows overcoming Java
applets’ restrictions on communication capabilities, without
sacrificing security. Finally, this architecture supports the
enclosures of animations in online documents.

Programmers can write animations quickly and easily
with the assistant of the VADE’s libraries, without having to
be concerned either with the visual aspects of the animation
or with the consistency maintenance.

The rest of the paper is organized as follows. In section 2
we define the notion of algorithm visualization causality con-
sistency and present our model. In section 3 we discuss the
system’s architecture. In section 4 we describe VADE from
the end—user’s perspective. In section 5 we describe VADE
from the programmer’s perspective. We conclude in sec-
tion 6.

2 VISUALIZATION CONSISTENCY

A visualization system cannot be expected to represent the
run exactly. We require, however, that it will be consistent
with the run. In this section we define the formal notions
of algorithm visualization consistency. We assume that: (1)
The communication network is reliable. In other words, any
message sent will eventually reach its destination. (2) Mes-
sages sent by a single process arrive in the same order they
were sent. (3) The network is asynchronous. Every process
has its own clock, but there is no universal clock.

Our goal is to produce a visualization that reflects the
real execution as closely as possible. However, since the vi-
sualization process is just another process in the distributed
environment, it cannot know the relative order of the execu-
tion of every two actions performed by different processes.
A common way to work around this problem is to use the
definition of potential causality or happened before relation
[16]:

Definition 2.1 For two actions a and a we say that a

potentially causes a”, denoted as a ~» a”, if one of the
following holds:

r ” r
1. a and a are on the same process and a occurs before
"

a .

' ")

2. a and a are on two different processes connected by
. . . ! . .

a communication line, a is a send message action and

no, . .
a is the corresponding receive message for the same
message.

3. There exists an action b such that a ~ b and b~ a .

The disadvantage of potential causality is that it might be
the case that actions performed in a single process can be
done in a different order without changing the semantics of
the algorithm. In an algorithm animation setting, where the
semantics of the algorithm is to be extracted, rather than
the specific execution, it is useful to be able to present the
algorithm in a different order. For instance, it is not nec-
essary to postpone the animation of the actions performed
after a send action until the latter is animated. Thus, we
define below the causality relation.

Definition 2.2 For two actions a and a= we say that a
causes a , denoted as a — a , if one of the following holds:

1. a anda’ are on the same process, a occurs before a”,
and their order of execution cannot be changed without
altering the algorithm semantics.

! "

2. a and a are on two different processes connected by
!
a communication line, a 1is a send message action and

" . . .
a 15 the corresponding receive message for the same
message.

3. There ewists an action b such thata — b andb— a .

The difference between this relation and the potential
causality relation lies in the first condition. If a occurs
before a”, it does not necessarily mean that a causes a .
While potential causality can be identified automatically,
causality cannot. We thus need to assume that there exists
an external knowledge regarding causality. It is the respon-
sibility of the programmer to supply this information.

The process actions are modeled as events. The initial
local state of process p is denoted by s§. The local state sf
of process p at time ¢ is modeled by a sequence of events that
occur until time ¢. We will use a slightly different model than
the usual one by allowing actions that take more than one
time unit. This is more suitable for modeling animations,
since an animation might take more than one round. An
action a is modeled by two events: a. is the ezecution of the
action, while a. is its completion.

An execution of the algorithm by a process p is modeled by
a sequence SP of the process local states SP =< sh, s} ... >.
The modeling of the execution of the entire algorithm is
done by arranging the set of actions of all participants on a
global time scale, so that there is no contradiction with the
causality relation between the actions.

The events occurring in the algorithm processes are re-
ported to the algorithm animation system. The animation
system can store the event reports and build a “model of
the algorithm execution” E. This allows the system to build
an animation based not only on the last event reported, but
also on a set of previously received reports. The animation
system need not always build an animation segment as a
result of an event report. Sometimes the animation system
saves them and animates them later. Sometimes the report
serves as a tool for synchronizing the animation, and the
event itself is not animated. A number of frame elements,
triggered by different algorithm events can have the same
frame number, reflecting the simultaneous execution of the
algorithm by different processes.

Let S? be an execution of the algorithm by a process p.
We can build another possible execution of the algorithm
ST by rearranging the sequence of events such that it is con-
sistent with respect to the causality relation, i.e., in the
resulting sequence:

e for every action, its erecution event must precede its
completion event.

e for every two actions a and b such that a — b, a. must
precede be.

Note that this definition not only allows us to rearrange
the events, but also allows us to model simultaneous exe-
cution of events, when other events are allowed to appear
between the execution and completion events of an action.
‘We require that the animation represents a sub—sequence of
a member in the set of consistent runs of the algorithm.

Definition 2.3 Let r be a run representing the real execu-
tion of the algorithm. Let R(r) be the set of all consistent
runs. Let F =< Fo,F1,...,F; > be an animation of this
run. Let E =< Ey, E1,...,E; > be the sequence of models
used to build the animation frames F. The animation F is
said to be consistent with the algorithm run r if and only if
the sequence E is identical to a sub-sequence of global states

of a run r that is a member of the set of runs R(r) produces
by r.

It is left to show how to achieve visualization consistency.
Let @ and b be two interesting events of the algorithm. Let
An(a) and An(b) be the animation segments of the events
a and b, respectively. We say that an animation An(a) pre-
cedes an animation An(b), denoted as An(a) < An(b), if
An(a) completes before An(b) starts. We claim the follow-
ing:

Theorem 2.4 An animation is consistent with the erecu-
tion of the algorithm if and only if for any two algorithm
events a and b, such that a — b also An(a) < An(b).

Thus, to ensure the consistency of the visualization with
the algorithm execution, we have to ensure that for any two
algorithm events a and b, if a — b then An(a) < An(b). This
requirement is a special case of the requirement for casual
ordering of events [3]. The casual ordering is respected if the
following condition holds:

If send(mi,p1,ps3) — send(ma, p2,p3) then
recetve(mai, p3, p1) — receive(ma, ps, p2).

In the algorithm animation context, we can substitute the
display of An(a) from a report of an event a by the “receival”
of action a. The causality relation between two such receive
operations is equivalent to the precedes relation between the
animation segments. Moreover, we can regard the execution
of an event in the algorithm as a “send” of the event to
the visualization system. Thus, the visualization ordering
requirements is transformed into the causal event ordering
requirement.

2.1 Implementation of Casual Ordering

To implement the visualization ordering requirement, it
is enough to implement it for pairs related by immediate
causality. The transitivity guarantees that it will hold for the
general causality case. This claim is true if all the events are
reported to the visualization system. Note, however, that
not all the events need to be reported, but rather only those
that need to be animated and all the send and receive ac-
tions.

In VADE, when two events occur in the same process,
and the events are reported to the algorithm animation sys-
tem, the first event is animated before the second by default.
If one event is a send and the other is the corresponding
receive, we ensure the animation ordering requirement in
one of two ways: send synchronization and receive synchro-
nization. Unlike some other systems (e.g, [3] [19] [22]), we
need not add any additional information regarding the his-
tory. We elaborate below.

Send Synchronization: In this scheme, the report on the
send is sent to the visualization system before the actual ac-
tion takes place. Then the process waits for a confirmation
from the algorithm animation system. Only when the con-
firmation arrives, the actual send can be performed. The
report on the receive event is sent to the animation system
after the actual message is received, thus assuring that the

animation of the receive event is performed after the anima-
tion of the send event.

Lemma 2.5 In the Send Synchronization
An(send) < An(receive).

scheme,

The disadvantage of the method is that the actual execu-
tion of the algorithm is altered by the fact that it is being
visualized. This might be a problem when visualization is
used for monitoring and debugging. However, when the sys-
tem is used merely as an aid for explaining an algorithm,
send synchronization is a satisfying solution.

Receive Synchronization: In this scheme, the actual syn-
chronization of the animation with the algorithm events is
performed in the animation system. The reports of the send
and recetve events are sent to the animation system immedi-
ately after the actions take place and there is no delay in the
execution of the algorithm. However, the animation of the
recetve event is delayed in the animation system until the
corresponding send event has been animated. To support
this scheme, the animation system needs to provide tools
for suspending the execution of certain events until other
events occurred.

The scheme is implemented as follows. Two counters are
maintained for each communication channel — one for the
send actions, and the other for the receive actions. When a
send report arrives, it is animated immediately. When the
animation is completed, the counter of the send actions is
incremented. When a receive report arrives, the animation
system checks the counters of both the send actions and the
receive actions for a given channel. The animation starts
only if the number of send actions is larger than the number
of the receive actions. Otherwise, the animation is delayed.

Lemma 2.6 In the Receive Synchronization scheme,
An(send) < An(receive).

The major advantage of the recetve synchronization
scheme is that the execution of the algorithm is not being
changed. The disadvantage of the method is that it may
require queuing many reports.

3 SYSTEM ARCHITECTURE

There exist various models for sequential algorithm visual-
ization systems over the Internet [1]. The X model provides
the basic client—server mechanism. The visualization pro-
gram runs on the remote machine and interacts with the X
server on the local user’s machine. The Java model allows
the execution of the animation on the user’s machine after
the code has been transferred. The Mocha model [1] bridges
between the two models by exporting the interface code,
while executing the algorithm on a server. We follow the
latter approach, while extending it to support distributed
computing.

The architecture of VADE is illustrated in Figure 1. The
algorithm is executed on the provider’s (server’s) machines,
while the animation and the GUI are executed on the user’s
(client’s) machine. The client-side processes run at a WWW
browser. In Figure 1, the =’ relation indicates communica-
tion, and the '=’ relation indicated forking the processes as
threads.

The various processes are written in Java. The processes
on the server side are Java applications, while the processes

/ main client [<§————P»| main server

GUI

b\

animation process 1 4—>algorithm process 1

animation process 2 <—>algorithm process 2

animation process n T—ﬁlgorithm process n

Figure 1: The VADE architecture

on the client side are Java applets. Their code is down—
loaded by the WWW browser over the Internet, compiled
and run within the browser. This allows Internet users to
watch the animation in their browsers. The communication
between the server processes and the client processes are
performed with the TCP/IP protocol.

When the end—user opens a web page on the client side,
the main client process threads a GUI process, which is in
charge of animating the algorithm. The main client informs
the main server of the type of the algorithm to be animated.
Upon receiving a reply from the server, and according to the
data received, it threads the required number of animation
processes. This number matches the number of algorithm
processes. The GUI process, which is in charge of executing
the animation, gets requests from the animation processes to
animate the interesting events of the algorithm, and modifies
the screen accordingly.

All the animation processes run on the same host on the
client side, as concurrent threads. As a result, scheduling is
performed by the operation system, and no special handling
is needed by the visualization system in order to allow simul-
taneous display of different events. This is different from the
algorithm processes which run on different machines.

The main server is in charge of executing the algorithm.
Upon receiving a request from the client, which includes the
type of the algorithm to execute, the main server threads
the processes which are necessary for executing the algo-
rithm. In order to determine the nodes on which the algo-
rithm should run, the main server maintains a table of the
available hosts on the server side. It also maintains a dy-
namic table containing information regarding the processes
and their hosts. When an algorithm process terminates, it
informs the server, and the process table is being updated.
The server attempts to thread the processes, so that they
are distributed over the available hosts..

The task of the algorithm processes is to execute the al-
gorithm. Before an algorithm process starts running the
algorithm, it needs to establish a connection with the corre-
sponding animation process. During execution, upon reach-
ing an interesting event, it sends a message, containing the

relevant information regarding the event, to its related an-
imation process. Interesting events are either events of the
algorithm, or communication events (i.e., send and receive).
Both synchronous communication and asynchronous com-
munication are supported. Recall that if all the send and re-
cetve events are reported to the animation processes, the an-
imation consistency is automatically maintained by VADE.

The above architecture has a few benefits. First, the al-
gorithm code of the provider is protected. It is only the
animation code that is being down-loaded by the client.
Second, the communication is very low, since only high—
level operations are being sent over the network, rather than
the detailed frame description of the animation. Third, the
framework provides a large degree of accessibility. The client
need not have the resources needed for running the distribute
algorithm. Fourth, this scheme overcomes Java applets’ re-
strictions on communication capabilities. Java applets, for
security reasons, avoid the creation of new processes on other
machines, as well as the ability to update files. These, how-
ever, are necessities in distributed environments. Finally,
utilizing the web makes it possible to support enclosures of
animations in online documents — an invaluable tool for il-
lustrating the functioning of novel algorithms.

4 END-USER PERSPECTIVE

This section describes how VADE might be used. In order
to run an algorithm and watch its animation, the end-user
should open a web page and select a specific algorithm. Each
algorithm has its own dedicated page. An algorithm web
page displays a view, or multiple views, of the algorithm
animation, along with a couple of panels that support the
interaction with the animation, as illustrated in Figure 2.
(See also the color plate.)

A control panel enables the user to play the animation,
pause it at any point during its execution, and resume its
execution. The user can also choose a node which starts the
execution, by pressing the Starting node button.

A configuration panel makes it possible to build new con-

(a) Before the snapshot algorithm

Back Foriaci] Home| Edit| Relond] oo s Open| Prin.| Find..| - ta]

(c) During the snapshot algorithm (2) (d) The result of the snapshot algorithm

Figure 2: Snapshots from the visualization of the snapshot algorithm

figurations of the network by adding or removing nodes and
communication channels. With the Select configuration but-
ton the user can either select a default configuration, in which
case the system generates a configuration, or build configura-
tion, which allows the user to build a network configuration
using the Add node and Add edge buttons.

Figure 2 displays snapshots from an animation of the
snapshot algorithm [8]. This algorithm builds a snapshot
of the network. Since an immediate snapshot is impossible,
a “possible”, consistent, snapshot is constructed. In our ex-
ample, the nodes randomly exchange data. Any node can
start the snapshot algorithm either randomly or after re-
ceiving a marker from a neighbor. From this point on, the
node proceeds with its standard message exchanging algo-
rithm while saving the values of all messages arriving. The
messages on each communication channel are saved until a
marker is received on that channel. The node completes the
snapshot when markers are received on all the channels.

In our example, each animation web page consists of three
views. The first (i.e., upper) view displays the detailed exe-
cution of the algorithm. The nodes are displayed as squares
with their values in the center. The colors encode the state
of the node. A node is colored red if it does not participate
in the snapshot algorithm. Its color is changed to blue af-
ter it received the first marker (that is, participates in the
algorithm). Finally, the color of the node changes to green
after that node completed the snapshot. At the end of the
algorithm, all the snapshot nodes should be colored green.
The communication channels are displayed as lines connect-
ing the nodes. The messages are represented as circles, and
the markers as arrows. Both the messages and the markers
travel along the communication channels.

The second (i.e., middle) view displays the state of snap-
shot, built by the algorithm. Before any node started the
algorithm execution, this view is empty. When the node en-
ters the snapshot algorithm, its value is added to this view.
Similarly, when the node receives a message, the message is
added to the snapshot and to this view.

The third view shows the sum of the "money” in the snap-
shot. It consists of two squares. The first square displays
the total sum in the system before the algorithm started to
run. The second square displays the sum accumulated dur-
ing the snapshot. When the snapshot is completed, the two
numbers should be equal.

Figure 2(a) displays the state of the system (the nodes,
the communication channels, the messages and the markers)
before the snapshot algorithm has begun. Figures 2(b)—2(c)
demonstrate the state of the system during the algorithm.
Finally, Figure 2(d) illustrates the state of the system after
the snapshot algorithm terminated.

5 PROGRAMMER PERSPECTIVE

Following the event—driven approach [4], common in algo-
rithm animation systems, strategically important points of
the algorithm are augmented with interesting events. Ani-
mations for these events should be produced.

The task of animating a distributed algorithm is thus di-
vided into four steps. First, the interesting events should be
identified. Second, the algorithm should be implemented
and annotated with the interesting events. Third, the
code should be augmented with calls to the animation sys-
tem’s synchronization functions (i.e., send and receive events
should be reported). Finally, the animation needs to be im-
plemented.

In our framework, a large portion of the final step, that of
creating the animation, is left for the animation system. Our
system provides the GUI and a few libraries which facilitate
the creation of animations, as described below. In addition,
the programmer need not be concerned with maintaining the
consistency of the animation, which is automatically done
by the animation system. As long as the communication
events are reported, the system guarantees the visualization
causality consistency, as discussed in Section 2. In our web
setting, the programmer needs also create a web page that
contains the views of the animation. VADE provides the
basic web page which contains the control panel and the
configuration panel, as described in Section 4. The page can
be modified to accommodate any number of views, as well as
adding algorithm—specific options to the control panel and
to the configuration panel.

The animation of the events should be written in Java.
Figure 3 summarizes the VADE class tree. The classes con-
tained in the tree build up the animations, and their visu-
alization is supported by VADE. Derived classes are at the
right. They inherit the fields and the methods of the classes
they are derived from. We elaborate below.

The main class that describes the network is the Net-
Graph. 1t includes nodes (the NetNode class), communica-
tion channels (the NetLink class) and various types of to-
kens (the NetToken class) that can be exchanged by the
nodes on the communication channels. The NetToken class
includes messages (NetMessage), markers (NetMarker), or
other types of tokens (NetUserToken). To accommodate
other objects, relevant for the animation of the algorithm,
the user can use the class NetUserObject.

A major principle we follow is that what the animation
presents should be distinguished from how it does it. In
other words, there should be a clear distinction between the
contents of the animation and its visual appearance on the
screen (its style). For instance, suppose that the user wishes
to animate a “send” event. It can be visualized in various
ways — nodes can be displayed in various colors and shapes,
communication channels can be drawn in different line thick-
nesses, the messages can travel fast or slowly etc. While
NetNode, NetLink, and NetToken contain the information
about the contents of the animation (i.e., a message X trav-
els on a channel Y from a node A to a node B), the style of
the animation should contain the information about the ac-
tual visualization (shape, color, etc.). Default values for the
style parameters are set by the system. In order to visualize a
certain event, the programmer can quickly generate a proto-
type animation by specifying only the information regarding
the contents of the animation. At later stages, the program-
mer can experiment with various animations by modifying
the style classes, without altering the network classes. Note
the dashed lines in Figure 3 that mark the style information.

The style of the animation is stored in two classes: the
GlobalStyle class and the ObjectStyle class. While the Glob-
alStyle class defines the global visual appearance of the an-
imation, the ObjectStyle class defines the shape of a par-
ticular object. For instance, the GlobalStyle class specifies
the shape, the size, and the color of the objects of a spe-
cific class (e.g., all messages are red rectangles of a certain
size). The GlobalStyle class also specifies the global aspects
of the animation which are not related to the objects, such
as the background color and the number of frames used for
animating each of the interesting events of the algorithm.
The ObjectStyle class specifies the style of a specific object.
For example, in the ObjectStyle, it is possible to state that a
message M should be displayed as a red polygon (or a blue

— Rectangli
GUI NetGraph |_ITriangle
NetNode |_{Polygon
. |_JOval
NetLink
S UCsmssssn LR R R L ObjeCtStyle
. —]Arrow
. NetToken
|]
|]
:] Image
. lNetMessage
. |
. E |_JComplex
. |_]NetMarker o
: ¥
. [] R
: [] LJLocation
LI |

. |__]NetUserToken ok
: Paa
|] LI BN
. 11l Hsize
L NetUserObject P
' sang
. LI
. 111t Lcolor
. LB B
. LN)
"ummo LI B

GlobalStyle L9 %

Figure 3: The structure of the animation classes

circle, etc.). Each of the possible shapes has its own paint
method. Note that a node can be displayed, in addition to
the simple geometric shapes, as an image, or as a complex
shape which is built out of simpler shapes.

To better demonstrate the difference between ObjectStyle
and GlobalStyle, suppose that the nodes were defined in the
GlobalStyle as red rectangles. If the user changes the shape
and the color in the GlobalStyle to a green triangle, all the
nodes will be repainted as green triangles. However, if only
a specific ObjectStyle is to be changed to a green triangle,
that specific node will be repainted as a green triangle, while
the rest of the nodes will remain red rectangles.

To summarize, VADE facilitates the task of creating a vi-
sualization by providing classes (and their methods) preva-
lent in distributed applications. It also supplies support for
creating a web page for the animation. By distinguishing be-
tween the contents and the style of the animation, it becomes
easy to quickly generate a prototype animation, which is of-
ten sufficient (for instance, for debugging purposes). Should
a fancier animation be desired, it can be easily done by mod-
ifying the style classes, without altering the contents of the
animation. Finally, VADE frees the programmer from hav-
ing to be concerned with maintaining the consistency of the
visualization with the algorithm executed. It provides syn-
chronization methods that maintain consistency, based on
the causality relation.

6 CONCLUSION

Distributed algorithms can be very difficult to grasp, and
hard to implement and debug. Visualization can assist in
all these tasks. We presented in this paper a system, VADE,
and a conceptual model, for visualizing algorithms in a dis-
tributed environment.

With VADE, distributed algorithm animations can be
produced quickly and easily. The system provides libraries
that facilitate the generation of visualizations. There is a
clear distinction between the contents of the animation and
its visualization attributes. This allows the user to exper-
iment with various animations for the same running algo-
rithm. Moreover, VADE automatically maintains the consis-
tency of the picture presented with the algorithm executed.
To do it, we developed a model for algorithm visualization
consistency.

End-—users can view the animation in the current natural
environment — the web. A control panel enables the users
to control the execution of the animation, while a configu-
ration panel allows the users to interact with the system by
constructing various distributed configurations.

VADE is designed so that the algorithm is executed on
the server’s machines, while the animation and the GUI are
executed on the client’s machine, as Java applets. This archi-
tecture allows a large degree of accessibility, code protection,
and a low communication load.

References

(1]

[2]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J.E. Baker, I.F. Cruz and G. Liotta. Algorithm anima-
tion over the World-Wide Web. , 1996.

T. Bemmerl and P. Braun. Visualization of message
passing parallel programs with the TOPSYS parallel
programming environment. Journal of Parallel and Dis-
tributed Computing, 18:118-128, 1993.

K. Birman and T. Joseph. Reliable communication in
the presence of failures. ACM Transactions on Com-
puter Systems, 5(1):47-76, 1987.

M.H. Brown. Algorithm animation. MIT Press, 1988.

M.H. Brown. Zeus: a system for algorithm animation
and multi-view editing. Computer Graphics, 18(3):177-
186, May 1992.

M.H. Brown and M.A. Najork. Collaborative active
textbooks: a web-based algorithm animation system for
an electronic classroom. SRC Research Report 142, May
1996.

M.H. Brown and R. Sedgewick. Techniques for algo-
rithm animation. IEEE Software, 2(1):28-39, Jan 1985.

K.M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63-75, 1985.

M.T. Heath, A.D. Malony and D.R. Rover. The visual
display of parallel performance data. IEEE Computer,
28(11), 21-28, 1995.

M.T. Heath, A.D. Malony and D.R. Rover. Parallel per-
formance visualization: From practice to theory. IEEE
Parallel Distrib. Tech., 3(4), 44-60, 1995

H. Jakiela. Performance visualization of a distributed
system: A case study. IEEE Computer, 28(11), 30-36,
1995.

J. Joyce, G. Lomow, K. Slind and B. Unger. Monitoring
distributed systems. ACM Transactions on Computer
Systems, 5(2):121-150, 1987.

E. Kraemer and J.T. Stasko. The visualization of par-
allel systems: an overview. Journal of Parallel and Dis-
tributed Computing, 18:105-117, 1993.

E. Kraemer and J.T. Stasko. Toward flexible control of
the temporal mapping from concurrent program events

to animations Proceedings of the 8th International Par-
allel Processing Symposium, 902-908, 1994.

E. Kraemer and J.T. Stasko. Creating an accurate por-
trayal of concurrent executions. IEEE Concurrency,
6(1), 36-46, 1998.

L. Lamport. Time, clocks and the ordering of events
in a distributed system. Communication of the ACM,
21(7):558-565, 1978.

C.E. McDowell and D.P.Helmbold. Debugging concur-
rent programs. ACM Comput. Surv., 21(4):593-622,
1989.

(18]

[19]

20]

21]

(22]

23]

[24]

[25]

[26]

[27]

C.M. Pancake and S. Utter. Models for visualization in
parallel debuggers. Proceedings of Supercomputing 89,
627-636, 1989.

M. Raynal, A, Schiper and S. Toueg. The casual or-
dering abstraction and a simple way to implement it.
Information Processing Letters, 39(6):343-350, 1991.

G.-C. Roman, K.C. Cox, D. Wilcox and J.Y. Plun. Pa-
vane: a system for declarative visualization of concur-
rent computations. J. Visual Languages Comput., 3(2):
161-193, 1992.

S.R. Sarukkai. Performance visualization and predic-
tion of parallel supercomputer programs: An intern re-
port. Technical Report 318, Indiana University, Bloom-
inton, 1990.

A. Schiper, J. Eggli, and A. Sandoz. A new algorithm to
implement casual ordering. Third International Work-
shop on Distributed Algorithm, Lecture Notes in Com-
puter Science 8938, 219-232, 1989.

M. Shneerson and A. Tal. Visualization of geometric
algorithms in an electronic classroom. Visualization 97,
455-457,576, 1997.

D. Socha, M.L. Baily and D. Notkin Voyeur: Graphical
views of parallel programs. SIGPLAN Notices 24(10:
206-215, 1989

J. Stasko. Tango: a framework and system for algo-
rithm animation. IEEE Computer, September 1990.

J. Stasko and E. Kraemer A methodology for building
application-specific visualizations of parallel programs.
J. Parallel Distributed Comut. 18)(1):258-264, 1993.

A. Tal and D.P. Dobkin. Visualization of geometric
algorithms. IEEE Transactions on Visualization and
Computer Graphics, 1:194-204, 1995.

