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Semantic-Oriented 3D Shape Retrieval using Relevance Feedback

Abstract Shape-based retrieval of 3D models has become
an important challenge in computer graphics. Object similar-
ity, however, is a subjective matter, dependent on the human
viewer, since objects have semantics and are not mere geo-
metric entities. Relevance feedback aims at addressing the
subjectivity of similarity. This paper presents a novel rele-
vance feedback algorithm that is based on supervised as well
as unsupervised feature extraction techniques. It also pro-
poses a novel signature for 3D models, the sphere projection.
A Web search engine that realizes the signature and the rel-
evance feedback algorithm, is presented. We show that the
proposed approach produces good results and outperforms
previous techniques.

Keywords 3D retrieval · search engine · relevance feedback

1 Introduction

Given a database of 3D models and a query model, the ob-
jective of 3D retrieval is to obtain the most similar objects
from the database. Usually, the problem is divided into two
sub-problems. First, each model should be compactly repre-
sented by a signature. Second, a distance measure on these
signatures should be defined.

Static signatures and distances are often not sufficient.
After all, similarity is a subjective issue, dependent on the
human viewer. Different users might have conflicting inter-
pretations regarding the similarity of models. For instance,
what is more similar to a centaur – a man or a horse?

Relevance feedback (RF) lets the user incorporate his or
her perceptual feedback in the search, by iterating the fol-
lowing three stages. First, the system retrieves similar mod-
els and presents them to the user in descending order of sim-

This work was partially supported by European FP6 NoE grant 506766
(AIM@SHAPE), by the Israeli Ministry of Science, grant 01-01-01509
and by the Ollendorff foundation.

Department of Electrical Engineering
Technion – Israel Institute of Technology
E-mail: {gleifman@techunix,rmeir@ee,ayellet@ee}.technion.ac.il

(1) Initial search

(2) After a relevance feedback iteration

Fig. 1 Filtering out geometrically similar, but semantically dissimilar,
models (query model at the top-left)

ilarity. Next, the user provides feedback regarding the rel-
evance of some of the current retrieval results. Finally, the
system uses these examples to learn and improve the perfor-
mance in the next iteration, as demonstrated in Figure 1.

While relevance feedback has been used in the retrieval
of text and images [12,25,23,26,30], it is a relatively new
area of research for 3D shapes. A learning technique based
on Support Vector Machine (SVM) is studied in [8]. A fea-
ture space warping approach is presented in [3]. A method
that ranks relevant (irrelevant) objects on top (bottom) is pre-
sented in [1]. This paper proposes a new approach that is
based both on supervised and unsupervised feature extrac-
tion [23,26]. We show that our technique outperforms pre-
vious schemes.

This paper also proposes a novel signature, the sphere
projection, which attempts to capture the global character-
istics of a 3D model by computing the amount of “energy”
required to deform it into a sphere. This signature is enriched
by topological properties.
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Various signatures for 3D shapes have been proposed [31,
10,29]. They include Reeb graphs and other graph repre-
sentations [11,4,35], shape distributions [21], moments [8],
cords, moments and wavelets [22], reflective symmetry [16],
Fourier coefficients for spherical harmonics [33,32,17], light-
field descriptors [5], multi-scale hierarchical representations [13]
and more. The signature proposed in this paper captures the
global geometry and topology of the objects. It tolerates de-
generated meshes and disconnected components.

The paper makes the following contributions:
1. A Web search engine for 3D models was built. The sys-

tem lets the user provide perceptual feedback and up-
dates the search using a relevance feedback algorithm.

2. A new algorithm for relevance feedback is proposed. This
algorithm is general and can be applied to any signature
represented as a vector. It combines several known tech-
niques from information retrieval in a new way.

3. A novel signature that takes into account both geometric
and topological properties of models, is presented.

4. Criteria for measuring the quality of signatures and rele-
vance feedback algorithms are discussed.
This paper is organized as follows. Section 2 introduces

the signature. Section 3 presents the relevance feedback al-
gorithm. Section 4 describes the experiments performed and
presents some results. Section 5 concludes this paper.

2 Signature

This section describes a new signature for representing 3D
models. It consists of a geometric signature, the sphere pro-
jection, as well as a topological signature.

Geometric signature: The sphere projection signature at-
tempts to capture the global characteristics of the model by
computing the amount of “energy” required to deform it into
a predefined three-dimensional shape, in our case a sphere.

Let F be the applied force and dist be the distance be-
tween the enclosing sphere and the model surface. The en-
ergy required to deform a model into a sphere is given by
E =

∫

dist
F·dr. We assume that the force is constant along

this distance and is also constant for all the points on the
model’s surface. Therefore, the energy is proportional to the
average distance between the sphere and the model.

To implement it, the sphere projection signature is de-
fined as a concatenation of three sub-signatures: the dis-
tance from the sphere to the model D1, the distance from
the model to the sphere D2 and the variance of radii D3.
While D1 and D2 describe global properties of the model,
D3 captures the local geometric structure.

D1 is a bi-variate function which represents the minimal
distance from a point on the enclosing sphere to the model’s
surface. Let R be the radius of the enclosing sphere, P(θ,φ,R)

be a point on the enclosing sphere, where (θ, φ) are spher-
ical coordinates, and O be the set of points on the model’s
surface. Then:
D1(θ, φ) = min

o∈O
(||P(θ,φ,R) − o||). (1)

D1 is not sufficient for describing non star-shaped mod-
els. For instance, D1 for a sphere with a cylindrical hole
from one pole to another is equal to D1 for a sphere with
dents on the poles.

To solve this problem, D2, a bi-variate function which
represents the distance to a sphere, is considered. We denote
the set of model points having the same spherical coordi-
nates (θ, φ) by G(θ, φ) and the size of G(θ, φ) by |G(θ, φ)|.

D2(θ, φ) =

∑

(θ,φ,r)∈G(θ,φ)(R − r)

|G(θ, φ)|
, (2)

where r is the radius of a point in G(θ, φ). If the size of
G(θ, φ) is infinite, the sum is replaced by an integral.

In the implementation, in order to calculate the distances,
the sphere’s surface is first sampled, producing a 2D mesh,
M, of m × n points. The ijth sample point, 1 ≤ i ≤ m,
1 ≤ j ≤ n, is defined as:

Mij =

(

2π(i − 0.5)

m
,−0.5π +

π(j − 0.5)

n
,R

)

. (3)

Next, a set of points, O, distributed uniformly over the
model’s surface, is drawn. The entries of the distance matrix
D1 are defined by:
Dij

1 = min
o∈O

(||Mij − o||). (4)

Similarly, for each sampled point o = (θ, φ, r) ∈ O, a
sample point on the sphere having the most similar angles θ
and φ is found. Thus, for each sphere sample point, a corre-
sponding set of model points, Gij , is produced. The entries
of the distance matrix D2 are defined by:

Dij
2 =

∑

(θ,φ,r)∈Gij
(R − r)

| Gij |
. (5)

Finally, D3, the variance of the radii, is calculated. It rep-
resents the deviation from the sphere within a specific angle.
Let mij be the mean of the radii r of the points in the set
Gij . The entries of the matrix D3 are defined by:

Dij
3 =

∑

(θ,φ,r)∈Gij
(r − mij)

2

|Gij |
. (6)

Each entry Dij in the signature matrix D is a concatena-
tion of Dij

1 , Dij
2 and Dij

3 into a vector. Signatures are com-
pared using the L2 metric.

Topological signature: The geometric signature is enriched
with topological properties – the model’s Betti numbers [6,
18]. Betti zero, β0, is the number of connected components;
Betti one, β1, is the number of independent tunnels; Betti
two, β2, is the number of closed regions in space.

Comparing Betti numbers using the L1 or L2 metric,
does not yield the desirable results. This is due to the sub-
stantial difference between the comparison of small and large
Betti numbers. For instance, the difference between 2 and 3
connected components is more significant than the differ-
ence between 3298 and 3299 components. Therefore, a log-
arithmic function is applied to the Betti numbers prior to
signature comparison.
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(a) Calf query – geometry (b) Tree query – geometry

(c) Calf query – topology (d) Tree query – topology

(e) Calf query – geometry + topology (f) Tree query – geometry + topology

Fig. 2 Queries using geometric signatures, topological signatures and combinations

Combining geometry and topology: The topological sig-
nature is concatenated to the geometrical signature, to form
the combined signature. The relative weights of the signa-
tures are adjusted automatically, using relevance feedback,
described in the next section.

Figure 2 compares the results of two queries, using only
geometric signatures, only topological signatures, and com-
binations of the two. For a calf, the geometric signature achie-
ves good results, but the topological signature does not. This
is because all 4-legged animals are similar geometrically, but
many other models resemble the calf topologically. Trees,
however, are not necessarily similar geometrically. Yet, they
are usually modeled similarly by designing one element (e.g.,
a leaf, a branch) and copying it multiple times. As a result,
all the trees have many components. Therefore, in this case,
the topological signature achieves good results. In both ex-
amples, the best results are achieved when the combined sig-
natures are used.

Often, Betti numbers also help in retrieving models in
different poses, such as people in different motions. This is
so because the same prototype is used to model the objects,
which therefore have the same topology.

3 Relevance feedback algorithm

Though relevance feedback has been a lively topic of re-
search in text retrieval and in image retrieval, it was hardly
explored in 3D shape retrieval. We are aware of only a few
algorithms that specifically target 3D models [8,3,1].

In this section we describe our algorithm for 3D rele-
vance feedback. It builds upon state-of-the-art algorithms in
information retrieval and puts them together in a new way.

The algorithm consists of a pre-processing off-line stage
and an online computation. In pre-processing, which is ap-
plied to the whole database, relevance information is not
used. Reversely, relevance information is used in each on-
line step, to improve the retrieval results.

Pre-processing: During pre-processing, unsupervised fea-
ture extraction is applied. Given N observations on d vari-
ables, feature extraction refers to the reduction of the dimen-
sionality of the data by finding r new variables, r ≤ d, and
projecting the data [9]. This projection obtains an efficient
combination of the features in the sense of estimation vari-
ance.

The most widespread linear mapping is the Principal
Component Analysis (PCA) [15]. PCA finds a projection ma-
trix W : y = W>x, where y ∈ Rr is a transformed data
point, W is a d × r transformation matrix and x ∈ Rd is an
original data point.

Since standard PCA cannot capture nonlinear structures
of the input data, we use a more advanced technique, the
Kernel Principal Component Analysis (KPCA) [28]. KPCA
is based on the computation of the standard linear PCA in a
new feature space, into which the input data is mapped using
a nonlinear transformation.

To avoid computationally expensive calculations of high-
dimensional dot products, kernels are used [27]. A kernel
is a function K, such that for all x,y ∈ X , K(x,y) =
〈Φ(x), Φ(y)〉, where Φ is a mapping from X to a high-dimens-
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ional feature space. In our system, good results are obtained
using the Gaussian kernel with σ = 1:
K(x,y) = e−|x−y|2/2σ2

.
Experimentally, decreasing the dimensionality of the sig-

nature from 219 to 100, not only decreases the running time,
but also improves the retrieval results by 5%, both in the
initial search and in the following relevance feedback iter-
ations. This improvement stems from the fact that KPCA
finds correlations between the original features and increases
the weight of the more important features.

Relevance feedback step: The aim is to separate between
the relevant and the irrelevant results. Thus, the algorithm
should search for the best transformation that preserves class
separability in a low dimension. This can be done using su-
pervised feature extraction. We show that no single method
is fully appropriate and offer a combination that outperforms
the known methods.

Given N observations on d variables, divided into two
subsets D and D with N1 and N2 samples in each subset,
respectively. We aim at finding a projection onto some r-
dimensional subspace, r ≤ d, by y = W>x, where {yi}

N
i=1

are divided into the subsets Y and Y, so as to achieve the
maximal separation between Y and Y. y ∈ Rr is a trans-
formed data point and W is a d × r transformation matrix.

There are various ways to address this problem. A com-
mon solution is Linear Discriminant Analysis (LDA) [9,7],
which is formulated as an optimization problem. Let m be
the mean vector of all observations and mi, i = 1, 2, be
the sample means (relevant and irrelevant). Define two scat-
ter matrices: the between-class scatter matrix SB and the
within-class scatter matrix SW :

SB =

2
∑

i=1

Ni(mi − m)(mi − m)>, (7)

SW =

2
∑

i=1

∑

x∈Di

(x − mi)(x − mi)
>, (8)

The optimal transformation matrix W is defined as

Wopt = argmax
W

{

W>SBW

W>SW W

}

. (9)

LDA finds an optimal linear transformation that re-weights
the signature entries so that the maximal separation between
the relevant and the irrelevant results, is achieved. However,
LDA also aims at clustering the relevant examples and the ir-
relevant examples in the discriminating subspace. The set of
relevant examples is likely to represent the true distribution,
since the class of interest has a compact support. However,
the irrelevant examples are often too sparse to represent their
true distribution. Moreover, they can be heterogeneous and
reside far from each other in feature space. Thus, any attempt
to cluster them is not only unnecessary, but also potentially
damaging.

It is thus preferred to treat the relevant and the irrelevant
examples differently. Biased Discriminant Analysis (BDA)

addresses this asymmetry [34]. In BDA, the scatter matrices
SB and SW , are replaced by Sz and Sx:

Sz =

Nz
∑

i=1

(zi − mx)(zi − mx)>, (10)

Sx =

Nx
∑

i=1

(xi − mx)(xi − mx)>, (11)

where {xi}
Nx

i=1 are the relevant examples, {zi}
Nz

i=1 are the ir-
relevant examples and mx is the mean vector of the relevant
examples. The mean vector mx is subtracted from the ob-
servations, in order to cluster the relevant examples together,
while keeping them away from the irrelevant examples.

Our experiments show that BDA fails for a small number
of training examples. Fortunately, in this case, LDA achieves
good results. On the other hand, LDA fails for a large num-
ber of training examples, since in this case it is difficult to
cluster the irrelevant example.

In relevance feedback retrieval systems, the number of
training examples provided by the user, cannot be controlled.
The system should yield the best performance for any sam-
ple size. A valid solution is to use LDA for a small set of
training examples and BDA otherwise. But how should the
system automatically determine which is the case?

In our algorithm, Fisher’s Linear Discriminant (FLD)
criterion [7], a 1-dimensional LDA, is used to determine
which method to utilize. The higher its value, the more likely
it is that LDA successfully discriminates between the rele-
vant and the irrelevant classes. Given a query, the FLD is first
calculated. According to its value, it is determined when to
switch from LDA to BDA. Figure 3 shows the average per-
formance of LDA, BDA and our algorithm, evaluated using
Discounted Cumulated Gain (DCG), described in Section 4.

Fig. 3 Using FLD to switch between LDA and BDA

4 System and experiments

We have developed a 3D Web search engine, Georgle, that
lets the user provide relevance feedback, in order to refine
the search results [20]. The input is a 3D model, which can
be supplied by the user or be found in the database using a
text search. Refining the search results is done by marking
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some of the results as relevant or irrelevant. Then, the algo-
rithm described in Section 3 is applied and the new results
are displayed to the user. The process can be iterated until
the system retrieves the models the user “has in mind”.

Section 4.1 describes the database organization. Section
4.2 describes several methods for evaluating the quality of
retrieval results. In Section 4.3, the quality of the signature
is evaluated using these measures. Section 4.4 estimates the
performance of the relevance feedback algorithm.

4.1 Database overview

Our experiments were performed on a database containing
1850 3D models, which were collected from the Internet. In
order to evaluate the methods described in this paper, out
of these models, 725 were semantically classified into 25
classes and 1125 were free models (Table 1). Obviously, the
models need not be classified in order for the database to be
used. Classification is performed solely to enable the evalu-
ation described hereafter.

Table 1 Database organization

Class Size Class Size
4-legged animals 32 Airplanes 95
Bottles 15 Cars 57
Chairs 50 Chess 12
Couches 18 Doors 11
Faces 6 Glasses 5
Guitars (violins) 17 Helicopters 12
Knifes (swords) 38 Missiles 24
People 78 Plants 47
Race cars 20 Rifles 28
Space Ships 55 Submarines 10
Tanks 12 Teapots 11
Trees 53 Vases 9
Zeppelins 10

Non-Classified 1125
TOTAL 1850

In a pre-processing step, all the models in the database
were normalized to achieve invariance to translation, scale
and rotation [8]. Then, a signature was generated for every
model and stored in the database, as described in Section 2.
Each signature has 219 entries, choosing m = 12, n = 6
(Equation 3) and three Betti numbers.

4.2 Evaluation methods

Various evaluation methods have been proposed in informa-
tion retrieval. In this section we discuss several methods that
are used in the evaluation of our proposed signature.
1. Nearest neighbor [11,21]: Check whether the most sim-
ilar retrieved model belongs to the same class as the query
model.
2. Precision/recall measurements [2,19]: Let C be the set
of models that belong to the same class as the query, S be

the set of all retrieved models and I = C ∩ S. Recall and
Precision are defined as R = |I|

|C| and P = |I|
|S| , respectively.

A common measure that addresses the difficulty in eval-
uating the effectiveness by a pair of numbers that may co-
vary in a loosely specified way is the F-Measure [24]. This
measure is high if both recall and precision are high:

F =
2PR

P + R
=

2

1/P + 1/R
. (12)

3. First/second tier [11,34]: The first/second tier measure
the success percentage among the first k retrieved models.
In the first tier, k =(size of the model’s class), while in the
second tier k = 2×(size of the model’s class).
4. Cumulated gain based measurements [14]: Let G be the
gain vector, whose ith entry Gi is 1 if the ith retrieved model
is in the same class as the query and 0 otherwise. The cumu-
lated gain vector CG is defined recursively by:

CGi =

{

G1 i = 1
CGi−1 + Gi otherwise.

(13)

The cumulated gain vector with a discount factor, DCG,
is defined recursively by:

DCGi =

{

G1 i = 1
DCGi−1 + Gi/ log2 i otherwise.

(14)

Here, less similar models are considered less relevant, to ac-
commodate for users who might be less likely to examine
results down the list.

Measuring the algorithm’s performance with a single value,
is done by normalizing by the best possible result:

DCG =
DCGk

1 +
∑|C|

j=2
1

log
2
(j)

, (15)

where k is the number of retrieved models and | C | is the
size of the class the query belongs to.

4.3 Signature results

To evaluate our signature, it is compared to: (1) shape mo-
ments [8], (2) shape distribution [21] and (3) lightfield de-
scriptors [5]. Figure 4 presents some examples and demon-
strates the differences between the results. For instance, ten
4-legged animals were retrieved among the top ten using the
sphere projection signature, while six, four and eight were
retrieved using shape distributions, moments and lightfields,
respectively.

To thoroughly evaluate the performance, each classified
model in the database is used as a query model and the re-
sults are averaged over all the queries. A retrieved model
is considered relevant if it belongs to the same class of the
query model.

Figure 5 displays the results according to the measures
described in Section 4.2, averaged over all queries. In Fig-
ure 5(a)-(d), the first 9 × 4 bars show the average perfor-
mance for 9 representative large classes and the last 4 bars
show the total average over all 25 classes.
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(a) sphere projection (b) shape distribution

(c) moments (d) lightfield
Query model – Cow

(a) sphere projection (b) shape distribution

(c) moments (d) lightfield
Query model – Chess piece

(a) sphere projection (b) shape distribution

(c) moments (d) lightfield
Query model – Figure

Fig. 4 Retrieval results – the query model is at the left upper corner
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(a) DCG Measure (b) F-Measure

(c) Nearest Neighbor (d) 2
nd Tier

Fig. 5 Average performance using various evaluation criteria: The different colors indicate four different signatures: blue - sphere, red - distri-
butions, yellow - moments; cyan - lightfield

These results indicate that the sphere projection signa-
ture performs better than shape distributions and moments
and compares well with lightfields, which is considered a
very good signature [29].

An interesting observation is that the lightfield descrip-
tor performs slightly better than the sphere projection for the
k-nearest neighbors-related measures (i.e., nearest neighbor
and second tier) while the sphere projection signature per-
forms slightly better than the lightfield descriptor for the pre-
cision/recall measure (F-measure) and the cumulated gain
measure. The latter two measures (precision/recall and DGC)
are often considered more indicative measures.

Though similar in quality, the sphere projection has sev-
eral benefits over the lightfield descriptor in terms of storage
and computational costs. Table 2 summarizes our findings
for the average signature size, signature generation time and
query time, when executed on a Pentium 4 1.6GHz, 256MB
RAM machine. The query time we achieved for the light-
fields is taken from the original paper, since our results were
higher. A model in the database has 13, 000 faces on average.

Figure 6 illustrates the average performance of the topo-
logical, the geometric and the combined signatures accord-
ing to the DCG measurement. Seven classes are presented,
where the first five have a similar geometric structure and the
last two (plants and trees) do not. Using a combined signa-
ture achieves a high performance for all the classes. Averag-

Table 2 Time and space complexity

Signature Size Generation Time Query Time
(Kb) (sec) (sec)

Spheres 2.3 2.1 0.1
Lightfields 4.7 6.1 0.4
Distributions 2.0 1.9 0.1
Moments 0.4 0.9 0.04

ing over all the queries (right column) shows that the com-
bined signature is more effective for a wide range of queries.

4.4 Relevance feedback results

Figures 1, 7–8 demonstrate different uses of relevance feed-
back (RF). Figure 1 shows how it is used to filter out geome-
trically-similar, but semantically-dissimilar, models, i.e., only
missiles are retrieved in the nine top-ranked results. Figure
7 is an example of using RF to narrow down the retrieval re-
sults. Using an open-roof car as a query model, both regular
and race cars are retrieved. By marking the race cars as ir-
relevant and some regular cars as relevant, the next iteration
retrieves only regular cars. Figure 8 is an example of using
RF when the query model has only a remote similarity to the
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Fig. 6 Average performance using topological, geometric and com-
bined signatures

models searched for. Using a helicopter as a query, airplanes
are retrieved after a single RF iteration.

(a) Initial search

(b) One RF iteration

Fig. 7 Retrieving cars – narrowing down the results

To comprehensively evaluate the average performance
of our relevance feedback algorithm, the experiments were
performed as follows. Each classified model was used as a
query. For each query, after the initial search, the top results
that belong to the query’s class were automatically marked
as relevant and the rest were marked as irrelevant. The per-
formance of a query was evaluated using DCG. DCG was
chosen as a measure, not only because it takes into account
the position of the relevant results, but also because it has
the lowest standard deviation among all the standard mea-
sures, making it the most stable measure. The performance
was averaged over all the classified models.

Figure 9 shows the average performance as a function of
the number of training examples. The most drastic improve-
ment is achieved after the first and the second RF iterations,
while the third and the fourth iterations improve the results
only slightly. This is an important point because users are
unlikely to perform many iterations. Moreover, increasing

(a) Initial search

(b) One RF iteration

Fig. 8 Retrieving airplanes using a helicopter as a query – the query
has a remote similarity to the desired models

the number of training examples improves the performance,
as expected. Finally, relative to the initial search, the overall
performance is almost doubled.

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Training Examples

Pe
rfo

rm
an

ce

1st iteration
2nd iteration
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Fig. 9 Performance (DCG) vs. # of training examples

Figure 10 compares the performance of our relevance
feedback algorithm to the SVM-based approach [8] and to
the feature space warping approach [3]. It can be seen that
our algorithm outperforms both algorithms.

5 Conclusions

Signatures for 3D models have improved in the last several
years and will undoubtedly keep improving. This, however,
will not suffice to retrieve from a database what the user “has
in mind”. Using the same query model, different users are
likely to expect different retrieval results. Relevance feed-
back provides the user with the added ability of influencing
the search as it is being conducted. In particular, relevance
feedback provides a convenient interactive way to retrieve
semantically-similar objects.
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Fig. 10 The performance of our algorithm, [ETA01] and [BC02]

This paper has proposed a novel relevance feedback sche-
me. The algorithm builds upon some of the best known tech-
niques in information retrieval and combines them in a new,
completely automatic, manner, so as to outperform the ex-
isting techniques. Most of the improvement is gained in the
first couple of iterations, which is an important aspect in in-
teractive techniques.

The paper has also proposed a novel signature for 3D
models that attempts to capture the global characteristics of
the geometry and the topology of the model. It has been
shown that this combination provides a good signature us-
ing various criteria prevalent in information retrieval.

Several aspects of this study can be extended. First, ad-
ditional features, such as colors and textures, can be consid-
ered. The relevance feedback scheme provides a convenient
way to weigh the various features automatically. Second, the
proposed relevance feedback algorithm can be extended, to
allow the user to provide the degree of relevance, instead of
just marking the result as relevant or not. Finally, an intrigu-
ing future direction is partial matching.
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