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Abstract

We present in this paper a new model for an al-
gorithm visualization system. Our model views the
visualization system as an integral part of a broader
distance learning environment. As such, it supports
the heterogeneity of the Internet the visualization is
expected to run on and the diversity of the expected
users. It does so by defining a few manners for han-
dling multi-level visualizations. First, a visualization
can run in various abstraction levels of the algorithm,
depending on the familiarity of the students with the
studied materials. Second, a visualization can use var-
ious levels of graphics, depending on the capabilities
of the client machines. Third, the messages sent be-
tween the machines can be of various levels, depending
on the communication loads. Another important as-
pect of a distance learning environment, which is sup-
ported by our model, is to facilitate collaboration and
data sharing between the students and the instructor
and between the students themselves. This paper also
presents a system, MAVIS, that realizes the model,
and demonstrates its use on case studies.

Keywords: Algorithm visualization, algorithm ani-
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1 Introduction

Algorithm visualization refers to the use of graph-
ics and motion to explain algorithmic ideas and data
structures [3, 4, 5, 6, 7, 11, 15, 16]. It has a great
potential to assist in the design of algorithms, in the
debug process, and for teaching algorithms to students
and colleagues.

Distance learning refers to a learning process in
which the instructor resides in a different geographi-
cal location than the students, thus communication is
needed in order to convey the materials [1, 2, 10, 14].
The advent of the Internet along with the develop-
ment of multimedia, capabilities made the two a con-
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venient platform for developing comfortable and af-
fordable distance learning tools.

Within a distance learning environment, a virtual
lecture is performed once the user is surfing to a spe-
cific web site. Just like any real classroom, a virtual
classroom consists of an instructor and a group of stu-
dents. The users should be able to interact with each
other, collaborate and share information. The only
difference from a regular classroom is that each indi-
vidual can be at a different location when the class
takes place.

Most algorithm visualization systems are not de-
signed to be used within a general distance learning
environment. In this paper we present a novel concep-
tual model for algorithm visualization within a virtual
classroom framework. We also present our system,
MAVIS (Multi-level Algorithm VIsualization System),
that realizes this model.

Running a virtual lecture and a visualization over
the Internet means that no assumption can be made
regarding the processing capabilities of the clients. In
addition, communication loads might vary greatly on
various links. As a result, delays might be caused and
synchronization becomes a difficult task. Thus, a ma-
jor emphasis of our system is to support the expected
heterogeneity in a dynamic manner.

To do it, rather than accompanying an algorithm
with one specific visualization, our model supports
multi-level visualizations. That is to say, rather than
producing a single visualization for a given algorithmic
event, the visualization system should be capable of
producing a whole spectrum of visualizations. There
are three cases where this capability is desirable.

First, using different visualizations can be benefi-
cial for teaching purposes. The instructor (or even
the student) is interested in explaining the algorithm
in varying details depending on the familiarity with
this algorithm. For instance, upon the first encounter
with an algorithm, only the high-level events of the



algorithm are visualized, while once the student gets
more familiar with the algorithm, more detailed events
can be visualized.

Second, the diversity of the Internet means that
every machine has different capabilities for supporting
visualizations. Simplified visualizations are displayed
on low-end machines while elaborate visualizations are
displayed on high-end machines. Without this latter
capability, weaker machines could not participate in
a virtual classroom and keep synchronized with the
instructor.

Third, the communication loads on the various
links might vary greatly. A system should be able
to monitor the links and send data suitable for the
specific communication load. For instance, machines
having overloaded links can run sub-functions of the
algorithm locally and save on messages regarding al-
gorithmic events happening in these functions.

Another major concern in every distance learning
environment is how to facilitate collaboration between
the participants. A couple of tools that assist infor-
mation sharing are supported by our model. With a
guided Internet tour tool, the instructor can change
the course of the class by surfing to various web sites,
and make the students follow the surf. With a chat
mechanism the instructor and the students can ex-
change messages in real time.

We built a system, MAVIS, which realizes the
model. MAVIS is an object oriented system, imple-
mented in Java, and designed such that the algo-
rithms, its objects and its graphical support can be
easily extended by unexperienced users. MAVIS is
structured as an Internet client-server architecture.

The rest of the paper is organized as follows. In Sec-
tion 2 we present our conceptual model. In Section 3
we describe our system. In Section 4 we illustrate the
process of producing an algorithm visualization with
our system. We conclude in Section 5.

2 Conceptual Model

In this section we describe our conceptual model for
an algorithm visualization system within a general in-
teractive and collaborative distance learning environ-
ment. We consider three types of users: the instructor,
the students and groups of students.

After choosing an algorithm to teach, the instructor
can prepare various input examples in order to demon-
strate the actions of the algorithm. The instructor can
choose to display the algorithm in various levels of de-
tail, for instance, by teaching it top-down and visual-
ize each level when appropriate. As will be explained
later, this does not require more than one implemen-
tation of the algorithm and of the visualization.

It was shown in [18] that algorithm visualization
assists learning when the students have active tasks.
Moreover, a comprehensive understanding of the algo-
rithm is facilitated when the students themselves im-
plements the visualization [12, 13, 17]. Thus, a major
concern of our model is to let the students be active
(and thus the system — interactive).

The student can use the system in three manners.
First, the student can participate in an online virtual
classroom. In this case, the student remains active
by being able to ask the instructor questions and get
feedback, and by being able to collaborate with other
students in the virtual classroom. Second, the student
can run the visualization independently in a stand-
alone machine. This way, the student can explore the
algorithm by changing the inputs and checking how
the visualization of the algorithm changes accordingly.
Finally, through a special comfortable interface, the
student can implement an algorithm and create a vi-
sualization illustrating it.

In our model, students can form study groups
whose members can collaborate, share information,
and work together on their assignments. Student col-
laboration is important since it has a potential to ex-
pose the students to different ways of thinking, to mu-
tual assistance in solving problems, and to greater joy
in studying.

Our model enables the definition and management
of several virtual classrooms that run concurrently.
Managing the classrooms is done by forming data
channels, as illustrated in Figure 1. Data channels
for a specific classroom can handle various types of
messages. A student who registers to a specific class-
room, automatically gets all the information passing
in the relevant channels. Defining the broadcasting
mechanism in this manner has the benefit of flexibil-
ity. New types of messages can be easily added. More-
over, external systems can be connected by defining
special channels for them, while the system automat-
ically handles the messages.

Our algorithm visualization model is based on the
classical model of interesting events [3], indicating al-
gorithm events that are of interest when the program
runs. An interesting event can be either simple or
compound. A simple event represents a change made
to a single object. A compound event is composed
of several simple events, which are animated concur-
rently.

The main deviation of our model from previous
models is that we aim at supporting the diversity of
students and the heterogeneity of the Internet, by pro-
viding multi-level visualizations. That is to say, an
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Figure 1: Data channel manager

algorithm can be accompanied by a visualization se-
lected from a set of possible visualizations. Less de-
tailed visualizations present only the higher level log-
ical operations of the algorithm, while more elaborate
visualizations present additional interesting events,
and each such event is visualized in more detail. An-
other aspect of diversity in the types of visualizations
that a system can generate relates to the computer
graphics being used. A visualization of a specific in-
teresting event can represent each algorithmic object
by various types of graphical objects (e.g., a circle, a
square or a sphere), can use various motions, and can
vary the number of frames utilized. There are three
factors that influence the choice of a specific visualiza-
tion over all other possible visualizations.

First, as every algorithm can be described in several
levels, it can also be visualized according to these lev-
els. The instructor can dynamically choose the most
suitable level for the classroom at a certain time. For
instance, the explanation starts with a high level de-
scription of the algorithm, and then discusses each
step in more detail. Moreover, every student can also
pick the level of visualization that fits his understand-
ing. Upon the first encounter with an algorithm, the
student can choose to visualize only the major events
of the algorithm, while once the student gets more
familiar with the algorithm, more details are sought,
and thus additional interesting events are displayed.

For instance, given a scene consisting of points and
edges, the visibility graph consists of line segments be-
tween points which can see each other (i.e., do not
intersect any edge). The most naive algorithm for con-
structing a visibility graph checks for every pair of ver-
tices whether the segment connecting them intersects
any given edge of the scene. Thus, in the detailed level
visualization, each such intersection test is visualized
(i.e., visualizing O(n®) tests). A less detailed visual-

ization consists of displaying every candidate segment
in turn (i.e., visualizing O(n?) events), without show-
ing the intersection tests. An even less detailed visual-
ization consists of displaying all the visibility segments
emanating from a given vertex (i.e., O(n) events). Fi-
nally, in the least detailed visualization only the re-
sulting visibility graph is displayed (i.e., O(1) events).
Second, in a diverse environment as the Internet,
every end-point machine has different capabilities in
general and different graphical capabilities in particu-
lar. Each user can set the quality of the graphical dis-
play according to the capabilities of the machine. Low
end-machines receive messages which include only ba-
sic changes to the display objects. High-end machines
receive messages containing more elaborate changes.

Third, a common problem in a heterogeneous envi-
ronment that characterizes distance learning is that of
communication loads. Consider an end-point machine
which does not receive its messages in time due to
communication overloads, and thus makes it impossi-
ble for the student to synchronize with the classroom.
This problem can be dealt with in two ways. The
first solution is not to send a detailed visualization as
described above. This solution is not satisfactory be-
cause it can reduce the understanding of the student.
A better solution is to send the end-point machine
portions of the code of the algorithm to be run locally
on that machine and generate the visualization us-
ing the machines’ hardware and software capabilities.
Our system supports this capability at every nesting
level of the code. That is, when a certain function of
the algorithm is called, either its code is sent to the
end-point machine and the visual events are displayed
locally, or the same code is executed on the instruc-
tor’s machine and only the interesting events are sent
to the client one by one. Note that the algorithm im-
plementor need not do anything for this option be take
place. The code needs to be implemented only once.

A major aspect of a system that handles communi-
cation overloads is its ability to automatically detect
this situation. Our system monitors the various links
and the message queues on these links. If an end-point
computer is found to be incapable of synchronizing
with the classroom due to long queues, the system
changes the type of messages sent to this machine.

Another important aspect of our model is the sup-
port for collaboration between the instructor and the
students and among the students themselves. This is
done by integrating a couple of tools: a guided surf-
ing tool and a chat tool. The guided surfing tool en-
ables a guided tour of the Internet. When the instruc-
tor changes the Internet address the instructor is cur-



rently in, the whole classroom automatically follows.
This capability allows the instructor to use external
information during class and during algorithm visual-
ization. The chat tool lets the users exchange textual
data with each other. This is important both for ask-
ing questions and answering them, and for using tex-
tual information within the visualization, explaining
the algorithm and presenting the code.

3 The System

MAVIS, our system, was implemented in Java.
This programming language was chosen for the follow-
ing reasons. First, Java supports multiple platforms,
and thus the code can run on many kinds of end-
point machines. Second, Java applets allow a simple
deployment, access and execution through standard
browsers. Third, the RMI (Remote Method Invoca-
tion) mechanism of Java lets the code call and execute
functions which reside in remote objects. Fourth, the
language supports code migration to other machines
and its execution on the target machine. Fifth, Java
supports computer graphics capabilities essential for
visualization. Sixth, the object oriented nature of Java
facilitates the extension of the model via inheritance,
and thus facilitates the creation of new visualizations
by instructors and students alike. Seventh, a secu-
rity mechanism, the sandbox, protects the user from
destructive operations.

MAVIS is structured as a client-server architecture.
Figure 2 illustrates the logical data flow in the system.
The server is in charge of running the channel man-
ager, which creates new virtual classrooms and opens
a data channel for each classroom. The server is also in
charge of monitoring the message queues at the clients.
Once the instructor initiates the creation of a virtual
classroom, the algorithm code is loaded by the Algo-
rithm executer. During the run, and upon reaching
interesting events, messages are broadcasted via a rel-
evant data channel to all the users who have registered
to that channel (illustrated by dotted lines). Some-
times, clients will run functions of the algorithms. In
this case, the code is uploaded from the server (illus-
trated by double lines).

Figures 3-4 illustrate the configurations of the
server and of the client, respectively. The system is
configured in layers, which are described below.

e The communication layer is in charge of sending
messages in the IP level, using the RMI mecha-
nism of Java.

e The routing layer is in charge of routing the mes-
sages and the events between the server and the
clients. This layer is also in charge of filtering the
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Figure 2: Data flow in MAVIS

messages based on criteria defined for each client
(influenced by the capabilities and the commu-
nication loads of the client, as described in Sec-
tion 2).

o The dissemination & object layer defines a unified
format for all the objects transferred between the
server and the clients. When an algorithmic ob-
ject is to be transferred, it is encapsulated in an
appropriate message object which contains data
about the sender, the receiver and any other nec-
essary data. This infrastructure can be easily ex-
tended to transfer new object types.

e The event manager lets the applications define
the events happening in the applications. Us-
ing this mechanism, it is possible to create events
happening in the server or in the clients and han-
dle them in other clients.

e The application layer contains the applications
implemented or used in the system such as the
collaboration tools. This layer can be extended
to contain other applications.

e The algorithm infrastructure layer is the basic



layer for implementing algorithms and their vi-
sualizations with MAVIS. It contains two types
of objects: algorithm objects and visualization
objects. These objects are modified by the al-
gorithm during its execution. Obviously, these
objects can be extended in order to create differ-
ent visualizations and implement new algorithms.

e The algorithm layer contains the objects that im-
plement the algorithm. This layer uses the ob-
jects of the algorithm infrastructure layer.

e The display layer is in charge of displaying the
visualization. This is the layer that supports the
multi-level presentation of the visual events. Sep-
arating this layer from the other layers is essential
since it lets the user change and extend the forms
of display, without modifying lower layers, and in
particular without modifying the algorithm.

e The control and monitor manager monitors the
message queues, changes the parameters accord-
ingly and informs the routing layer.

e The channel manager is in charge of adding and
deleting data channels and registering users to the
various channels.
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Figure 3: Server configuration

Adding new algorithms and new display mecha-
nisms for specialized graphic hardware is very easy
with MAVIS. This is due to the class inheritance fea-
ture of Java and due to the layered architecture of
MAVIS. When a new object class is added to the
system, it should inherit from the appropriate base
class. Then all the layers which deal with objects of
that type can manipulate the new class automatically.
Easiness of use has been demonstrated when unexpe-
rienced users were able to quickly add new algorithms
to the system as will be discussed in the next section.

4 Case Study

To check the utility of the model, we asked two
teams of undergraduate students to implement a few
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Figure 4: Client configuration

algorithms with MAVIS and create their visualiza-
tions. The algorithms were chosen so as to repre-
sent different families of algorithms. In particular,
one team implemented merge-sort and Dijkstra’s al-
gorithm for finding the single source shortest paths
in a weighted directed graph [8]. The second team
implemented an algorithm for constructing a visibil-
ity graph and a quad-tree based algorithm for path
planning, both used in robotics [9].

Generally, the development of a new visualization
is done in three steps. First, the algorithmic objects
are identified and the algorithm implemented in Java.
Second, the visualization objects are identified and im-
plemented. These are the graphical display objects.
Third, the interesting events of the algorithms are
identified and implemented and each event is assigned
a priority level.

In our tests, each algorithm was executed and ex-
amined in the following configurations: on a stand-
alone machine, on a client-server configuration over
the Internet, and over the Internet using various load
parameters.

For lack of space we will concentrate hereafter on
a single algorithm, Dijkstra’s algorithm [8]. Given a
weighted directed graph G(V, E) where all the weights
are non-negative and a source node s € V, the algo-
rithm maintains a set S of vertices whose final shortest
paths from s have already been determined, and re-
peatedly selects a vertex u € V' — S with the minimum
shortest path estimate. The vertex u is inserted into
S and all the arcs leaving u are relaxed. The vertices
contained in V — S are maintained in a priority queue.

The algorithmic objects are the graph, consisting
of nodes and arcs, and the priority queue consisting
of queue elements. In the visualization, the nodes are
presented as spheres, the arcs as straight lines, and



the queue elements as spheres as well.

The visualization consists of the following interest-
ing events. The first interesting event, initialization,
consists of the display of the original graph and the
formation of the priority queue. In the next interest-
ing event, tree growing, the first node in the priority
queue is chosen and inserted into S. This event is
animated by removing the node from the queue and
moving a brush on the arc which connects it to the
tree, painting it in red. In the next interesting event,
cost update, all the outgoing arcs of this new node are
examined, and costs are updated if necessary. This
event is animated by moving a brush on each exam-
ined arc in turn, painting it in cyan. The next event,
queue update, updates the queue according to the new
costs. In the visualization, when the position of a
node in the priority queue is changed, it is shown by
an arrow pointing from the node’s current location to
its new location, followed by the move. The final in-
teresting event, results, displays the resulting shortest
paths tree in red.

Recall that each event can get a different priority
level. In our visualization, the highest priority (always
presented) is assigned to the initialization interesting
event and to the results event. In other words, if a
client wishes to see only the highest level of abstrac-
tion, this client will visualize the given graph and then
the shortest path tree painted in red on the graph. A
medium priority is assigned to the tree growing event
that displays the next selected node that joins the con-
structed tree and to the queue update event which up-
dates the priority queue. Clients having this level will
therefore view initialization, the additions of nodes
and red arcs to the shortest path tree, each such addi-
tion is followed by queue updates, and the display of
the final tree. A low level visualization also displays
the cost update event where every possible arc is ex-
amined and painted in cyan. Only clients having this
level will view the full algorithm visualization.

Some snapshots from the visualization are given in
Figures 5-7. The pseudo code of the algorithm is
shown alongside the visualization, where the current
line is emphasized. Figure 5 shows the graph and the
priority queue after initialization. This snapshot is vi-
sualized by all the clients. Figure 6 shows the graph
after the first node was extracted from the queue, and
its out-going arcs are examined (in cyan). This snap-
shot is visualized only by clients where the lowest level
of abstraction is assigned. It also shows the updates to
the queue (by the arrow). Figure 7 displays shortest
paths tree in red.

5 Conclusions

We have presented in this paper a conceptual
model for an algorithm visualization system embed-
ded within a general distance learning framework. The
main feature of this model is the support for multi-
level visualizations necessary for addressing the het-
erogeneity of the Internet, the diversity of the stu-
dents, and the iterative nature of the learning pro-
cess. Another important feature of the system is the
support for collaboration and information sharing em-
bedded in the model.

We have also presented a system, MAVIS, that re-
alizes the model. MAVIS has a client-server architec-
ture and supports clients running various operating
systems. It monitors the loads of the network and
adjusts the visualization parameters at each client ac-
cording to the loads and to the capabilities of each
machine. Implementing new algorithms and new al-
gorithm visualizations with MAVIS is easy since its
object oriented nature results with a flexible system
that can be easily extended by students.

There are a few directions for future research. First,
we would like to embed a more advanced statistical
monitoring algorithm for handling overloads. Second,
we intend to add a recording mechanism that will let
users record classes and re-visualize them at the stu-
dents’ convenience. Third, we would like to add video
and voice capabilities. Finally, with the advent of
portable devices, we would like to extend MAVIS to
handle these architectures.
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