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Abstract

Polyhedron realization is the transformation of a polyhedron into a convex polyhedron with an isomorphic
vertex neighborhood graph. We present in this paper a novel algorithm for polyhedron realization, which is
general, practical, efficient, and works for any zero—genus polyhedron. We show how the algorithm can be
used for finding a correspondence for shape transformation. After the two given polyhedra are being realized,
it is easy to merge their vertex—neighborhood graphs into a common graph. This graph is then induced
back onto the original polyhedra. The common vertex—neighborhood graph allows the interpolation of the
corresponding vertices.
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1 Introduction

Metamorphosis is the gradual evolution of a source object, through intermediate objects, into a target object. It
has numerous applications, including scientific visualization and animation sequences in the film and advertising
industries. Much of the work done in the area focused on two—dimensional metamorphosis (e.g., [2], [4], [6],
[10], [12], [24], [25], [28]). Three—dimensional morphing sequences are harder to compute, compared to their
two—dimensional counterparts. They have, however, many advantages over the two—dimensional sequences. For
instance, changes in the viewing position do not require a repeated computation of the entire sequence.

Several approaches to three—dimensional metamorphosis have been explored. Hong et al. [14] base their
method on matching the faces whose centroids are closest. Bethel and Uselton [3] add degenerate vertices and
faces until a common vertex—neighborhood graph is achieved. Chen and Parent [5] extend a transformation for
piecewise linear two—dimensional contours to three dimensions. In their method, morphing is done between
polyhedra which are represented by sets of three—dimensional planar contours. Kaul and Rossignac [17] use the
Minkowski sum of the models to obtain a smooth transition. Parent [21] establishes correspondence by recur-
sively subdividing the surfaces until an identical topology is achieved. Kent et al. [18] [19] create a correspon-
dence between zero—genus polyhedra, by mapping them onto a sphere and merging their vertex—neighborhood
graphs. Kanai et al. [16] utilize a similar algorithm by using the harmonic maps of the polyhedra. Several
voxel-based methods were also explored ([7], [13], [15], [20], [23]).

Morphing a three—dimensional polyhedron into another is usually done in two steps: finding a correspondence
between the polyhedra and interpolating the corresponding vertices. In this paper we focus on the problem of
finding a correspondence. We follow the approach introduced in [19], where two zero—genus polyhedra are first
“inflated” like balloons until they become spherical. The one-to-one correspondence is then found between points
on the surfaces of the two spheres and induced back onto the original polyhedra. The algorithm in [19] works
very well for several classes of polyhedra. It remained open in that paper whether there exists an algorithm that
is applicable to any zero—genus polyhedra, or even to wider classes of polyhedra. The major contribution of the
current paper is devising a novel polyhedron realization algorithm that works for any zero—genus polyhedron.



“Inflating” a polyhedron into a convex polyhedron rather than into a surface of a sphere has a few advantages.
First, it is general and works for any zero—genus polyhedron rather than for specific classes. Second, “inflating” a
polyhedron into a sphere might result with a non-convex polyhedron. Convexity, however, is a desired property.
Third, since spherical arcs need not be intersected, integer arithmetic can be used, and the algorithm can become
become more robust. Finally, if a sphere is required, it can be easily obtained from a convex polyhedra.

We say that a three—dimensional polyhedron, P, is realized by another three—dimensional polyhedron, P’, if
P’ is convex, and the two polyhedra have isomorphic vertex—neighborhood graphs. In other words, there exists a
one-to-one correspondence between the vertex sets and the edge sets of the two polyhedra.

Steinitz [11] proved that a graph is realizable if and only if it is planar and three-connected. In other words,
our algorithm can be considered as a different proof of Steinitz’s theorem for the special case where the faces are
triangular. This is the most common case for real data. Our proof is constructive, and gives rise to an algorithm
which is efficient, avoids circular arcs, and is easy to implement. We implemented the algorithm and achieved
very good results.

The realization algorithm we propose consists of two phases: simplification and re-attachment. During
the simplification phase, vertices are detached from the vertex—neighborhood graph of the polyhedron one by
one, and the graph is re-triangulated. This step is repeated until a 4-clique results. The second phase starts
by creating a tetrahedron, the convex polyhedron which realizes a 4-clique. The vertices are re-attached to the
polyhedron, in the reverse order to their detachment, while maintaining the polyhedron’s convexity. The vertex—
neighborhood graph of each convex polyhedron, created in the process, is isomorphic to a graph encountered
during the simplification stage. Thus, the last polyhedron’s vertex—neighborhood graph is isomorphic to the
input vertex—neighborhood graph.

In three—dimensional metamorphosis, after the input polyhedra are being realized, the resulting convex poly-
hedra are merged on the boundary of one of them. The merged edge set is later used for refining the original
polyhedra. The result of the mutual refinement is the desired correspondence, which is utilized during the inter-
polation phase of the shape transformation process.

The remainder of the paper is organized as follows. The next section presents a high—level description of the
shape transformation algorithm that uses polyhedron realization. Section 3 describes the realization algorithm,
and proves its correctness. Section 4 describes how the two realized polyhedra can be merged into one structure.
Section 5 demonstrates our results. We conclude in section 6.

2 The Shape Transformation Algorithm

In this section we describe the general scheme of using a realization algorithm for establishing a correspondence
between the vertices of two given polyhedra. Our scheme follows the scheme described in [19]. However, while
in [19] the polyhedra are “inflated” into spheres, we realize them into convex polyhedra. We begin with a few
definitions.

Definition 2.1 Polyhedron vertex—neighborhood graph, or the 1-skeleton of the polyhedron is a graph G =
(V, E) where V' is the set of vertices of the polyhedron, and there exists an edge e € E that connects two vertices
v; and v; € V iff there exists an edge between the two vertices in the polyhedron.

Definition 2.2 Graph refinement: G = (V, E) is a refinement of the graph G = (V, E) if V C V and an edge
(vi,vj) € E is replaced by a path (v;, u1), (v1,u2),..., (up—1,v;) in E such that Vu,;,u; € V —V, and the
vertex paths replacing the edges are mutually disjoint.

Definition 2.3 Polyhedron refinement: A polyhedron P is a refinement of a polyhedron P, if P and P are
congruent, and the vertex—neighborhood graph of P is a graph refinement of the vertex—neighborhood graph of
P.



Definition 2.4 Polyhedron realization: A polyhedron P, p is said to realize a polyhedron P, if Pp| is convex
and the vertex-neighborhood graphs of || and P are isomorphic.

We are given a pair of zero—genus polyhedra, P and (). The algorithm for finding a correspondence between
P and @ consists of five phases, and proceeds as follows.

1. Create a convex polyhedron, P p|, whose vertex—neighborhood graph is isomorphic to P’s, using the real-
ization algorithm described in the next section.

2. Create a convex polyhedron, Q|q, which realizes (), in a similar way.

3. Refine the vertex-neighborhood graphs of P p| and )¢ in order to produce a joint vertex—neighborhood
graph. A few merge algorithms were proposed in the past. In [1], two triangulations of corresponding
planar polygons are merged. This is also done in [16] when two harmonic maps are being merged. In [19],
the faces of polyhedra whose vertices reside on the sphere are merged. Our algorithm, which is described
in Section 4, merges the boundaries of convex polyhedra.

The main idea of the algorithm in to project the vertices and the edges of )|g| onto the boundary of Pp|.
The projected edges of Q|| are then intersected with the edges of P p|. These are the edges of the refined
polyhedron of P p|. After the faces of the refined polyhedron are found, its vertices, edges, and faces are
projected onto Q|q|, to form its refined polyhedron.

4. Induce the merged vertex—neighborhood graph found in (3) onto P, to form a polyhedron, P. The poly-
hedron P is a refinement of P, since its vertex—neighborhood graph is isomorphic to the merged one, and
thus a refinement of P’s vertex—neighborhood graph, and it is congruent to P.

5. Repeat the previous phase for (), creating a new polyhedron, Q, which is a refinement of ().

At the end of this process P and Q are refinements of P and Q respectively. Moreover, their vertex—
neighborhood graphs are isomorphic. Therefore, P and Q can be used for establishing a correspondence between
P and Q.

The next sections elaborate on each of the above phases of the algorithm. Section 3 focuses on the realization
algorithm (steps (1)—(2)). Section 4 describes the merging process of two given vertex—neighborhood graphs, and
explains how the merged graph can be induced back onto the original polyhedra, to produce their refinements

(steps (3)(5)).

3 ThePolyhedron Realization Algorithm

Given a zero—genus polyhedron, P, we present an algorithm for constructing a zero—genus convex polyhedron,
P p), that realizes P. We assume that the input polyhedron has triangular faces. If not, we triangulate the faces
in linear time. The algorithm consists of two phases: simplification and re-attachment.

1. Simplification — Simplify the vertex—neighborhood graph by removing a low—degree vertex from it and
re-triangulating the resulting graph. This operation is repeated until a 4—clique graph, representing a tetra-
hedron, results. During this phase, a hierarchy of planar graphs, G|p) = G(P),G|p_1),---, G4 = Ky, is
constructed, such that G; has 4 vertices for4 < i < |P|.

2. Re-attachment — Given the above graph hierarchy, proceed bottom up, and construct a convex polyhedron,
P;, for each graph G}, so that G(P;) and G; are isomorphic, for 4 < i < |P|. This procedure first constructs
a tetrahedron, Py, so that G(P;) = G4 = Ky. Suppose that a convex polyhedron, P;, is constructed, such
that G(P;) & G;. P; is then used, jointly with G4, to construct a convex polyhedron, P;j;1, such that
G(Pi—l—l) = Gi+1, 41<3< |P|



Once the convex polyhedron P p is constructed, our goal is achieved: G (P p|) = G|p| = G(P).

Note that the simplification phase somewhat resembles the way the Dobkin—kirkpatrick hierarchy [8] [9] is
constructed. However, while in our algorithm a single vertex is removed at each step, in the Dobkin—kirkpatrick
hierarchy an independent set of vertices is removed. A major difference between the algorithms is in the re-
attachment phase. In the Dobkin—kirkpatrick hierarchy the polyhedron is known to be convex, and thus the
vertices need not be re-positioned. In our case, re-positioning is a major consideration. We elaborate on each of
the two phases below.

3.1 Phasel: Simplifi cation

Given a triangular graph, G;, representing a polyhedron, we describe in this section an algorithm for constructing
a triangular graph, G;_1, with one vertex less. To do it, we repeat the following two steps.

1. Find a vertex, v, of degree 3, 4, or 5, and remove it from the graph.

2. Re-triangulate the resulting face.

This procedure is graphically described in Figure 1. It is repeated until a 4—clique results. The proof of correctness
of the simplification phase distinguishes between three cases according to the degree of the vertex removed. If a
vertex of degree three is removed, it is sufficient to “close” the hole created with a face. Since the graph contains
at lest four vertices, it cannot have multiple edges. In case the vertex is of degree four we show in Lemma 3.2
that one of the two diagonals of the hole created can be added. Finally, in case the vertex is of degree five we
show in Lemma 3.3 that the 5—gon hole created can be triangulated by adding two diagonals emanating from
one vertex. We summarize in Theorem 3.4.

Degree 3 4 5

Original
graph

Re-triangulated
graph

Figure 1: Simplification

Lemma 3.1 A planar triangular graph must contain at least one vertex of degree smaller than six.

Lemma 3.2 If a vertex v, of degree four, is removed from a planar triangular graph, G;, then (1) The neighbors
of v in G; cannot be all inter-connected (in the new graph), and (2) A diagonal can be added, between two of v’s
neighbors, so that the graph remains planar.

Proof: Suppose, on the contrapositive, that the four vertices form a clique, contradicting (1). Together with v,
the five vertices used to form a clique before the removal of v. Since a five—vertex clique cannot be planar, it
contradicts our assumption that we started from a planar graph.

Let us denote the four neighbors of v as vy, v2, v3, and vy, so that v, and v, 4 1)meqs are neighbors. Since we
started from a triangulated graph, and v was connected to all four vertices, the edges v1-va, v2-v3, V3-V4, V4-V1
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exist. Since they are not all connected to each other, one diagonal in the quadrilateral does not exist in the graph.
It is obvious that the missing diagonal can be added so that planarity is not violated. O

Lemma 3.3 If a vertex v, of degree five, is removed from a planar triangular graph, G;, then (1) There exist at
most three diagonals between the neighbors of » in G; and (2) Two diagonals, which share a common vertex, can
be added between v’s neighbors so that the graph remains planar.

Proof: We show first that there can exist at most three diagonals connecting the five vertices after we remove
the vertex v. Suppose on the contrapositive that there are at least four diagonals. In this case, at most one pair
of vertices, vy and v;, are not connected by a diagonal in the resulting pentagon. Consider four vertices, among
which only one is vy or v;. They are all inter—connected by diagonals in the resulting pentagon. In the original
graph, these four vertices, together with v, formed a 5—clique. This contradicts planarity.

Having eliminated the possibility of four or five diagonals, we assume that there are three diagonals, and
show that there exists a vertex through which none of the diagonals pass. Suppose on the contrapositive that the
diagonals cover all the vertices. There must exist a vertex through which two diagonals pass, otherwise three
diagonals would cover six vertices. Without loss of generality, assume it is vs, and its diagonal-neighbors are vg
and vs3. See Figure 2. By our assumption, the third diagonal must connect the remaining two vertices v; and v4.

Figure 2: A pentagonal face with three diagonals covering all the vertices.

We now consider the original graph, before the detachment. We partition the vertices into two groups, 4 =
{v1,v3,v5} and B = {v,va,v4}. Each member of A is connected to each member of B, and each member of B
is connected to each member of A. Thus, the original graph contains a fully-connected bipartite graph known as
K3 3, and therefore planarity is contradicted.

If there exist only one or two diagonals, they cannot cover all five vertices, and a vertex through which two
new diagonals can pass, exists. It is not hard to show that the two missing diagonals can be added in a planar
fashion. O

Theorem 3.4 Given atriangular planar graph G;, whose number of vertices is at least four, a vertex v of degree
three, four, or five can be found and removed, and the resulting graph can be re-triangulated so that the graph
remains planar.

Proof: By Lemma 3.1, there exists at least one vertex of degree smaller than six. Since the graph is triangular,
the degree cannot be two. Thus, there exists at least one vertex of degree three, four, or five, which can be
detached. If the detached vertex is of degree three, the hole left is a triangle, so that it is sufficient to close it with
a face. Obviously, the graph is still planar. Since there are at least four vertices, the face intersects other triangles
along an edge, a vertex or an empty set. Otherwise (the vertex is of degree four or five), by Lemmas 3.2 and 3.3,
diagonals can be added so that the graph remains planar. The resulting graph is also triangular. To see this, we
distinguish between the different cases. If a vertex of degree three is detached, the former neighbors of v form



a triangle. If a vertex of degree four is detached, a quadrilateral is formed, and by Lemma 3.2 a diagonal can be
added to form two triangles. Finally, if a vertex of degree five is detached, a pentagon is formed, and by Lemma
3.3 two adjacent diagonals can be added to form three triangles. O

Lemma 3.5 The simplification procedure can be repeated until there are four vertices left. In this case the graph
is necessarily the 1—skeleton of a tetrahedron.

Figures 3 — 4 illustrate the simplification phase by providing a few snapshots of an epcot being simplified,
starting from a 50-vertex epcot (to the left) and ending with a tetrahedron (to the right). Note that even though the
algorithm works on planar graphs, and not on the three—dimensional structures, for clarity, the snapshots shown
below illustrate the three—dimensional structures of the intermediate objects.

Figure 3: Epcot simplification — wire-frame

Figure 4: Epcot simplification - faceted shading

3.2 Phase2: Re-Attachment

We are given a hierarchy of vertex-neighborhood graphs, G|p| = G(P), G|p|—1, ..., G4, Which is the output of
the simplification phase. The goal is to construct a sequence of convex polyhedra, P p|, P p|_1, .., P4, such that
G(F;) is isomorphic to G;, 4 < i < |P].

The re-attachment phase proceeds bottom up. A convex polyhedron, Py, for Gy, is first constructed. Since
G, is a 4-clique, it can be realized by a tetrahedron. Suppose that a convex polyhedron, P;, has been already
constructed for the vertex—neighborhood graph G;. We show next how P; can be used, along with G;41, to
construct a convex polyhedron P, 1, whose vertex—neighborhood graph is isomorphic to G;11,4 < i < |P|. At
the end of this process, P p is the realized P.

The major consideration is how to add the vertex v, which was detached during the simplification phase, to
F;, in order to form P;; 1. We distinguish between three cases according to the degree of v.

In case v is of degree three, during the simplification process its cone of faces was replaced by a triangular
face, Fy(;). Thus Fy(;) in P; needs to be replaced by a cone of three faces in P; 1, as shown in Figure 5. Denote
the three neighboring faces of Fy(;) in P, Fy, F3 and F3.

In case v is of degree four, By Lemma 3.2, G; was created by removing v from the graph G; 1 and adding a
diagonal, thus forming two new faces Fy(;y and Fy(;y, as illustrated in Figure 6. Therefore, F(;) and Fy(;) need
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() P

Figure 5: Attachment of v of degree three to F;

to be replaced by the cone of four faces. Denote the four neighboring faces of Fy(;) and Fy;) in G, F1, Fy, F3,

and Fy.
H —

(a) (b) Pit1

Figure 6: Attachment of v of degree four to P;

In case v is of degree five, By Lemma 3.3, GG; was created by removing v from the graph G;41 and adding
two adjacent diagonals, thus forming three new faces Fy(;), Fy(;) and Fy;y, as illustrated in Figure 7. Therefore,
Fi(;), Fy(i) and F3(;) need to be replaced by the cone of five faces. Denote the five neighboring faces of the new
faces in G;, F1, Fy, F3, Fy and F.

(a) P; (®) Pit1

Figure 7: Attachment of v of degree five to F;

By the induction hypothesis, a convex polyhedron P; whose vertex—neighborhood graph is G; has been
created. We need to show how to add v to P; in order to form P;1. Let V; be the set of vertices of P; and let
Fibe {Fj;|1 < j < d— 2}, where d is the degree of the removed vertex (i.e., the faces created during the
simplification stage). We need to add a point v such that the convex hull of V; | J v contains all the faces of P; not
in F and all the faces formed by v and the edges of the boundary of F (i.e., a cone with apex v).

We say that a point v is above (resp. below) a face F' if that point is in the half-space of the supporting



plane of F' that does not (resp. does) contain the polyhedron. In order to find a point v that satisfies the above
requirements, v needs to be above all the faces in F and below all the faces adjacent to F. In this case, by to
beneath—beyond convex hull algorithm algorithm [22], v should be added to the convex hull, and the triangulation
faces should be detached and replaced by the new faces.

It remains to find such a v. We first describe the algorithm for positioning v, and next prove with a series of
lemmas the correctness of the positioning algorithm. The cases of v of degrees three or four are relatively easy,
and are proved in Lemmas 3.6-3.7. The case where v is of degree five is more involved and is proved in Lemmas
3.8-3.9.

To find v, we first define a ray r along which v is located, as described below. The ray r is defined by its base
B, and its direction N. To find B and r, we follow the procedure below.

1. Determine B and N
There are three possible cases:

(a) if v is of degree three, as in Figure 5, then
B = the center of mass of the face F ;.
N = the normal of F;.

(b) if v is of degree four, as in Figure 6, then
B = the midpoint of the edge shared by Fy(;) and Fy;).
N = the average of F(;)’s normal and F5(;)’s normal.

(c) if v is of degree five, as in Figure 7, then
v1 = the vertex through which the two triangulation edges pass.
I, = the intersection point of the planes on which Fi;y, F» and F3;) reside.
B = the midpoint of the segment v1 — I,.
N = the average of the normals of F(;) and F3(;).

2. Determine r:
Let r be a ray whose base is B and whose direction is V.

3. Transform the polyhedron if needed:
If v is of degree five and B is below F(i) then
Apply the appropriate projective transformation as described below.
Recalculate r as described above.

So far we described the creation of 7. We now explain how v is located along . Consider the neighboring
faces of v’s cone of faces, {F; | 1 < j < d}, where d is the degree of v. Consider also the planes on
which these faces reside. Calculate the intersection points between these planes and the line that r defines
{I; = Plane(F;) N Line(r) | 1 <j <d}. Find the d factors {t; | I; = B+t;N, 1<j <d}. Let
t:{1 ifVj,t; < 0ort; = oo )
0.5 * min{t; | ¢; >0} otherwise

Position v at B + tN. Remove the faces {Fj;|1 < j < d — 2}, and construct d new faces between v and
its neighbors, as illustrated in Figures 5-7. This completes the construction of P; ;.

Lemma 3.6 In case v is of degree three, it is positioned correctly. That is, v is above F(;y and below F}, for
(i1 <j <3}



Proof: Since ¢ is positive, v is above F';). Itis left to show that v is below the neighbors of Fy(;). We distinguish
between the faces according to the sign of ¢;. If ¢; is positive, v is above Fj if and only if ¢ > ¢;(> 0). If ¢;
is negative, v is above F} if and only if ¢ < ¢;(< 0). Our choice of ¢ prevents v from being above F};. In the
first case this is because ¢ < t;, and in the second case this is because ¢ and ¢; do not have the same sign. If Z; is
oo, all the points on the ray r are on the same side of F;. Since r intersects the polyhedron, the points of it are
obviously below F);. Therefore the only face above which v is Fy;). Since by our construction it is removed, the
resulting P41 is convex. O

Lemma 3.7 In case v is of degree four, it is positioned correctly.

Proof: We need to show that v is above Fl(i) and FQ(i), and that it is below F}, F5, F3 and Fj4. Since N is the
sum of the two normals of Fy(;) and Fy(;), it is clearly in acute angles to both. For this reason, any point on r is
above both faces, and thus for these faces every choice of a positive ¢ is acceptable. Moreover, since ¢ does not
have both the same sign as ¢; and a larger absolute value, then similarly to the case of degree three, v is below
{F1,F5, F3F,}. The case of t; = oo is also similar. O

In case v is of degree five, there are two possibilities. If we are lucky, B is above Fy(;). In this case, B can be
used to construct P 1, as was done in the case of degree four. Otherwise, we need to transform the polyhedron
P; prior to the positioning of B. We discuss the required projective transformation below.

Lemma 3.8 In case v is of degree five and B is above Fy(,,), v is positioned correctly.

Proof: The proof is similar to the previous case. Along with the assumption that B is above Fy,), we get the
required result. O

The projective transformation: There are two possible configurations, as shown in Figure 8. Figure 8(a)
illustrates an “open” configuration in which the sum of dihedral angles between F(;), Foy and Fogy, F3(;) is
larger than 180°. In Figure 8(b), illustrating a “closed” configuration, this sum is less than 180°.

(a) open (b) closed

Figure 8: Possible configurations

Recall that we assume that B is below Fy(;y. We describe below the transformation for the case where the
configuration is “closed”. The case of an “open” configuration is similar.

To define the transformation, we find a plane, W (the grey plane in Figure 8), which intersects P; only in
the faces adjacent to v;. Such a plane can be easily found. The intersections of the plane with faces of the
polyhedron are segments on W, denoted as S1, S2, S3 (corresponding to Fy(;y, Fo(;), F3(;) respectively). We first
define a planar transformation on this plane, and then extend the required transformation to three dimensions.



After finding W, we apply an affine transformation Af f such that: (1) Aff transforms W to the plane
Z = 0. (2) Aff transforms S; to the Y axis, to part of the segment ((0,0,0),(0,1,0)). (3) Aff transforms
S3 to the X axis, to part of the segment ((0,0,0), (1,0,0)). (4) Af f transforms the intersection of the lines on
which Si, S3 reside (denoted as I, ss), to the origin. The situation on Af f (W) (i.e., on Z = 0) is illustrated in
Figure 9(a).

proj ective
transformation

ATT(S3)

(a)

Figure 9: The projective transformation

To complete the definition of the affine transformation, it is left to specify the reciprocal image of the Z axis.
To do it, we define a new plane, a separating plane, that (1) separates Ig, s, the intersection of the lines on
which S and S5 reside, from the polyhedron and (2) is parallel to Se. Such a plane can be easily found. Once
it is found, we can define the reciprocal image of the Z-axis to be a line on the separating plane which is not on
W. From now on, we assume that the affine transformation has already been applied.

Figure 9(c) illustrates the intuition behind the projective transformation we are seeking. It should “open” the
faces F' ;) and F3(;). And in two dimensions (on Z = 0), it should “open” the segments Af f(S1) and Af f(S3).
In other words, the purpose of the projective transformation is to transform Af f(S1) and Af f(S3) such that the
point of intersection of their lines is transformed to the other side of Af f(S2) (and in three dimensions, to the
other side of Fy(;)). Our intention is to ‘open” the configuration and to transform B to reside above Fo(;).

In two dimensions, two planar transformations are defined as illustrated in Figure 9. The first is a planar pro-
jective transformation (Figure 9(b)), and the second is a planar reflection around the line z + y = 1 (Figure 9(c)).
The planar projective transformation is defined by T'(V) = VZSVE, ‘? 5 Where V' is a two—dimensional vector, and
d is small enough to separate the origin from P; N W. To illustrate that this transformation performs the required
opening, note that: (1) The line z + y = 1 is unchanged by the transformation. (2) The segment ((0, 6), (0, 1))
is transformed to ((0, 00), (0,1)). (3) The open segment ((4,0), (1,0)) is transformed to ((o0,0),(1,0)). The
extension to three dimensions is obtained by 7'(V) = 1/1/4(-171/;(25 where the equation z + y = ¢ represents the
separating plane.

Lemma 3.9 The above projective transformation, 7', transforms I,, the point of intersection of the three planes
on which the faces F';), Fa, F3(;) reside, and thus B, from one side of the plane of F;) to the other side.

Proof: It can be easily shown that when T is applied to the convex polyhedron P;, a convex polyhedron
results, if the polyhedron resides on one side of the plane defined by the denominator of the projective transfor-
mation. This requirement is satisfied by our choice of the separating plane. The resulting polyhedron also has
an isomorphic vertex graph, because the vertices of the transformed convex hull are images of the vertices of
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the original convex hull. Moreover, the transformation 7" preserves both the boundary of P; (which is is trans-
formed to the boundary of T'(F;)), and the intersection points between planes. It remains to be shown that this
intersection, T'(I,), resides above T'(Fy;)).

Let L g be the line of intersection of the two faces Fl(i) and F3(i). The three points v1, I, s,, and I}, reside on
this same line, L. Now we examine 7'(L ) more closely. T is continuous on L, except for the intersection of
L with the separating plane. This intersection is a single point, since the points on L were established to be on
both sides of the separating plane — v, on the same side as the polyhedron, Is, s, on the other side. Moreover,
Is, s, and I, reside on the same side of the separating plane (since we could choose W so that I, is farther away
from Ig, g, on Lp).

T is continuous on the whole side of the separating plane which contains I, s, and I,. We conclude that
T'(v1) cannot be between T'(Ig, s,) and T'(I,), since the segment between I, g, and I, is transformed continu-
ously. Thus T'(Ig,,s,) and T'(I,) are on the same side of T'(L ) relative to T'(v1).

Is, s, is transformed by T from one side to the other side of T'(S2), and thus of T'(Fy,)), because the
intersection of S; and S3 before the projective transformation is at the origin, and after applying 7" at (1, 1,0).
Since I, and Ig, s, were transformed to the same side of T'(L ) relative to T'(v1 ), they were also transformed to
the same side of T'(Fy(y,) ), thus correcting the position of I,. O

Theorem 3.10 Given a convex polyhedron F;, after re-attaching v as described above, the resulting polyhedron
P; 1 is convex.

Proof: By our construction, there are three possible cases: v of degree three, four, or five. If v is of degree three,
by Lemma 3.6, the resulting polyhedron is convex. If v is of degree four, by Lemma 3.7, the resulting polyhedron
is convex. If v is of degree five, there are two cases. If B is above Fy(;,), by Lemma 3.3, the resulting polyhedron
is convex. Otherwise, we apply the projective transformation as defined above. By Lemma 3.9, after applying
this transformation, the case is reduced to the previous case, and thus a convex polyhedron can be constructed.
a

Theorem 3.11 The realization algorithm described above runs in O(N?2) time, where N is the number of vertices
in the polyhedron.

4 Merging Vertex Neighborhood Graphs

Given two convex polyhedra P p| and Q|Q|, our goal is to construct two convex polyhedra P and Q such that:
(1) The vertex—neighborhood graphs of P and Q are isomorphic to each other. (2) P is a refinement of P| P|- 3)
Q is a refinement of Q)|q|- The algorithm works as follows.

1. Initialize P and Q:
o Let P+ P‘p| and Q — Q‘Q|.
e Move the centers of mass of P and Q into the origin.

2. Update the vertex set of P:
For each vertex v of )

e Shoot a ray from the origin through v.

o If the ray does not intersect Pina vertex, add the intersection to the vertex set of P.

3. Create the edge set of P and update its vertex set:
For each edge e of
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e Create the plane Pl that passes through e and through the origin O.

e The intersection of Pl and P is a two—dimensional convex polygon. Sort the vertices according to
their order in the polygon.

e The polygon consists of two polygonal arcs between the vertices that correspond to the endpoints of
e. Represent the edge e in P by the shorter arc.

e Traverse the polygonal arc, adding its vertices and its edges to the sets of vertices and edges of P
respectively.

e Replace every edge of P which is split this way by its parts.
4. Create the face set of P (given the vertices and the edges found above).

5. Update the vertex set of Q:
For each vertex w of P:

e Shoot a ray from the origin through w.

e If the ray does not intersect Q in a vertex, add the intersection to the vertex set of Q.

6. Create the edge set of Q:
For each edge e of P

o Create an edge between the two vertices in Q, which correspond to the vertices of e.
7. Create the face set of Q.

8. Determine the location of the vertices of one polyhedron on the surface of the other:
This mapping is done using barycentric coordinates.

5 Implementation and Results

The algorithm is implemented in C and runs on SGI workstations. Though the complexity of the realization
process is O(NN?), without the projective transformation, the complexity is O(V). The projective transformation
is seldom necessary. As a result, the algorithm is very efficient and it runs very fast.

Figures 10 — 11 show a couple of results of the realization algorithm. In Figure 10 an epcot and its realized
epcot are being presented. In Figure 11 a deformed cube and its realized polyhedron is shown. The cube was
created by “pushing” one face inside, so that it is e-away from its opposite face. This face cannot remain planar, so
we allow it to “bend”, and we re-triangulate the resulting polyhedron. The deformed-cube example, though small
in size, illustrates our realization algorithm very well. The cube does not belong to any of the classes supported
by previous algorithms. It is non-convex, not star-shaped, not an object of revolution, and not an extruded object.

Figure 12 illustrates the results of the merge algorithm. In Figure 12(a) the vertex—neighborhood graphs of a
house and an icosahedron are merged on the surface of the icosahedron. In Figure 12(b) two deformed cubes are
merged on the surface of one of them. The pair of cubes have opposite faces pushed in.

Figures 13—17 present a few of morph sequences created by utilizing the realization algorithm. Figures 13-14
show the transformation between a pair of deformed cubes with opposite faces pushed in. During interpolation,
the deformed face is pushed out, while the opposite one is pushed in. We use both wire—frame and faceted shading
in order to illustrate the above process. Figures 15 — 16 transform a house into an icosahedron. While Figure
15 displays a few snapshots from the morph sequence in a smooth shading, Figure 16 shows some snapshots in
a faceted shading. Note how the stairs and the roof disappear in the icosahedron’s surface. Finally, Figure 17
transforms the house into a bottle. None of the objects is star-shaped.
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(a) An epcot (b) A realized epcot

Figure 10: Realization of an epcot

(a) A deformed cube (b) A realized deformed cube

Figure 11: Realization of a deformed cube

6 Conclusion

This paper presents a new algorithm for realizing a three-dimensional zero—genus polyhedron. Our algorithm
is general, efficient, and easy to implement. We demonstrated how the algorithm can be used for finding a
correspondence between two three—dimensional polyhedra for metamorphosis.

There are a few directions for future research. One interesting direction engages human intervention. The
current algorithm involves almost no user control. While an automatic technique is desirable in many appli-
cations, at certain times, it is beneficial to provide finer controls. Second, an intriguing problem is to find an
algorithm for’inflating” non zero—genus polyhedra. Finally, a challenging problem is to find a morph algorithm
between polyhedra that can guarantee that self—intersection does not occur during interpolation.
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Figure 14: Shape transformation between the deformed cubes — faceted shading
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Figure 15: Shape transformation between a house and an icosahedron - smooth shading

16



Figure 16: Shape transformation between a house and an icosahedron — faceted shading
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Figure 17: Shape transformation between a house and a bottle
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