Blending Polygonal Shapes with Different
Topologies !

Tatiana Surazhsky

Department of Applied Mathematics, The Technion—IIT, Haifa 32000, Israel.

Vitaly Surazhsky Gill Barequet

Department of Computer Science, The Technion—IIT, Haifa 32000, Israel.

Ayellet Tal

Department of Electrical Engineering, The Technion—IIT, Haifa 32000, Israel.

Abstract

In this paper we propose a new method for morphing between two polygonal, pos-
sibly non-simply-connected, shapes in the plane. The method is based on recon-
structing an zy-monotone surface whose extreme cross-sections coincide with the
given shapes. The surface generated by our algorithm does not contain any self-
intersections, does not change the topologies of the input slices, does not contain
any horizontal triangles, and guarantees that all the topology changes occur at a
mid-height which is a degenerate form of both input topologies. All these properties
are highly desirable for blending shapes of different topologies.

Key words: Metamorphosis, morphing, interpolation, blending, reconstruction.

Email addresses: tess@cs.technion.ac.il (Tatiana Surazhsky), vitus@cs.technion.ac.il (Vi-
taly Surazhsky), barequet@cs.technion.ac.il (Gill Barequet), ayellet@ee.technion.ac.il (Ayel-

let Tal).

URLs: http://www.math.technion.ac.il/ ™ tess (Tatiana Surazh-
sky), http://www.cs.technion.ac.il/”~ vitus (Vitaly Surazh-
sky), http://www.cs.technion.ac.il/~ barequet (Gill Barequet),

http://www.ee.technion.ac.il/ ~ayellet (Ayellet Tal).
1 This research was supported by the fund for the promotion of research at the Technion.

Preprint submitted to Elsevier Preprint

1 Introduction

Metamorphosis is the gradual transformation of one shape into another. It has nu-
merous practical applications in various areas, such as computer animation, scientific
visualization, and solid modeling. Usually, the morphing process requires manual as-
sistance in order to achieve intuitive and accurate results. A major research challenge
is thus to develop techniques that minimize the user assistance when it is not neces-
sary. Morphing has been investigated for various shapes in two dimensions, including
polygons, polylines [5,7,10-13], and freeform curves [9]. It has also been investigated
for images (see [14] for a survey) and in three dimensions (see [8] for a survey).

Morphing requires the solutions to two subproblems. The first problem is to find a
correspondence (matching) between features of the two shapes. The second problem
is to find trajectories that the corresponding features traverse during the morphing
process. These trajectories transform the initial shape into the final shape. Most of the
research done for solving the morphing-related trajectory problem has focused on the
elimination of self-intersections and on the preservation of the geometrical properties
of the intermediate shapes. We are not aware of any currently-available method that
guarantees that the morph is self-intersection free when the given polygons have genus
greater that zero. In this paper we present such an algorithm.

A related intriguing problem that has been studied in the literature is the recon-
struction of a solid object from a series of parallel planar cross-sections [1-4,6]. It
has important applications in medical imaging, topography and solid modeling. A
common approach for solving this problem is to subdivide it into subproblems of sur-
face reconstruction between pairs of successive slices. The latter problem is defined
as follows:

Given a pair of parallel planar slices, each consisting of a set of mutually nonin-
tersecting, but possibly nested, simple polygons, find the boundary of a polyhedral
solid object, whose cross-sections coincide with the input slices.

Clearly, the problem has no unique solution. One of the common requirements is that
the output surface does not have self-intersections, as expected from real-life objects.

A reconstructed surface can be viewed as a morphing sequence between two slices
(by varying the height continuously). When viewed this way, the reconstructed sur-
face can be used as the path of interpolation between the polygons in the two slices.
Reconstructed surfaces can be guaranteed not to intersect themselves, and thus the
corresponding morph is also free of self-intersections. Some surface-reconstruction
algorithms (e.g., these of [1,3]) handle nonzero-genus slices with different topologies.
These are invaluable properties for morphing. One could thus assume that reconstruc-
tion algorithms can be used for solving the metamorphosis problem. In this paper we
show the problems that arise when using a reconstruction algorithm for morphing in
a straightforward manner. We present a novel algorithm which overcomes the short-

comes by improving a reconstruction algorithm.

Our algorithm has several desirable properties. First, the topologies of the input slices
are not altered. Second, the surface we build is xy— monotone. Third, the surface, and
thus the morphing sequence, is free of self-intersections for any topology and genus
of the input slices. Fourth, the reconstructed surface does not contain any horizontal
triangles. Finally, all the topology changes occur at the mid-height between the two
slices and the latter slice has a degenerate form of both input topologies.

The rest of the paper is organized as follows. In Section 2 we discuss the background
for this work. In Section 3 we define the problem discussed in this paper. In Section 4
we present our algorithm. In Section 5 we prove some properties of our algorithm and
of the surface it generates. In Section 6 we provide results of our experimentation
with the algorithm. We conclude in Section 7.

2 Background

In this section we review the reconstruction problem and the algorithm upon which
we base our solution.

2.1 The reconstruction problem

The input to the reconstruction problem consists of two “slices,” where each slice
is a planar shape composed of several nonintersecting, but possibly nested, simple
polygons. The two slices are assumed to lie within parallel planes in a 3-dimensional
space. The goal is to find the boundary of a polyhedral solid object, whose cross-
sections coincide with the input slices.

The input to the morphing problem is identical, with the minor difference that the
two polygonal shapes are assumed to be contained in the same plane. A straightfor-
ward solution to the morphing problem by reconstruction can be done by positioning
the two shapes in separate planes, solving the reconstruction problem, obtaining the
solution to the morphing problem by “slicing” the reconstructed surface (that is, by
intersecting it with xy-parallel planes), and projecting the slices onto the zy-plane.

Definition 1 zy-monotonicity: A surface is xy-monotone if no vertical line inter-
sects it in more than one point.

We consider a solution to the reconstruction problem which generates an zy-monotone
piecewise-linear surface consisting of triangles only. The two horizontal cross-sections
of the surface at the heights of the input slices coincide with the two slices.

Definition 2 Bridging edge: An edge of the interpolated surface is bridging if it
lies within an input slice plane but it does not belong to any of the input polygons of

the slice.

Definition 3 Bridging triangle: A triangle of the interpolated surface is bridging
iof at least one of its edges is bridging.

2.2 A Brief Overview of the Reconstruction Algorithm

Our algorithm is based on the reconstruction algorithm of Barequet and Sharir [3].
This algorithm handles slices with multiple nested polygons and does not rely on
any resemblance between the input slices. In addition, it does not introduce any
intermediate slices or artificial bridges that may conflict with the geometry of the
adjacent slices. Moreover, the generated surface reveals the underlying topological
structure of the solid object whose boundary is reconstructed.

The algorithm first matches similar portions of polygons of the two slices. Then it
tiles each pair of matched portions by a sequence of adjacent triangles. The remaining
(unmatched) portions of slice polygons form a collection of closed spatial polygons
(holes), each of which may be composed of pieces of polygons of both slices and
of some edges of the connecting triangles. The matching procedure guarantees that
the xy-projections of these holes are pairwise disjoint, although they may be nested
within each other. If no nesting occurs, the algorithm simply triangulates each of these
spatial polygons, using a dynamic-programming procedure which minimizes the total
area of the triangulation. If nesting occurs, the algorithm takes one polygon P with
all polygons Py, ... , P, whose zy-projections are directly nested within that of P, and
applies a minimum spanning-tree procedure that introduces k£ edges connecting these
polygons and yielding an zy-projection which is simply connected. The algorithm
then triangulates the simplified polygon as above.

The result is a three-dimensional xy-monotone triangulated surface whose vertices
are those of the input slice contours. This surface blends slices with possibly different
topologies. Some of the triangles comprising the surface may be zy-parallel (lying
within a plane that contains one of the input slices). Some triangulation edges which
do not belong to the input contours may also be contained in one of the input planes.

The latter edges, although seem to be the correct choice for the reconstruction, cause
abrupt changes in the topology when the surface is used for morphing. This is so
because these edges imply that the topology changes at the beginning or at the end
of the morph sequence, rather than evolving gradually. This sudden change is very
visible and disturbing. In this paper we propose a solution for this problem.

.O oo gD OO

P . O
000 QQDQO O

(a) Input (b) In 2 contours (c) In 1 contour (d) Intermediate

Fig. 1. Degeneracies in blending slices with different topologies

3 Statement of the Problem

Consider the interpolation between two slices with different topologies. Since a topol-
ogy is a “discrete” notion and cannot change gradually and continuously, there is
always at least one intermediate level where the topology changes abruptly. The
primary problem in constructing a blending sequence between slices with different
topologies is to choose the intermediate location where this happens. Consider, for
example, the example shown in Figure 1(a), in which the upper slice contains two
contours (shown in green), whereas the lower slice contains one contour (shown in
yellow). The change of topology can occur at the level of the upper slice Figure 1(b)),
the lower slice Figure 1(c)), or in between (Figure 1(d)).

The interpolation algorithm of [3] has the property that it does not add vertices
in intermediate heights. Therefore changes of topology in the reconstructed surface
occur only at the levels of the input slices. As a result, this algorithm (or any other
algorithm with this property) always produces bridging triangles in the interpolation
between two slices with different topologies. The drawback of a surface reconstructed
with bridging triangles is that the topology of its xy cross-section at the height of a
slice is different from that of the original slice. Thus, an abrupt change of topology
occurs at the very beginning or at the very end of the morphing sequence.

The goal of this work is to achieve a smooth transformation between the topolo-
gies of the slices without changing the topologies of the input slices. The topology
should change in the midst of the intermediate (interpolated) sequence of slices. Con-
sequently, the resulting morph sequence will appear much smoother. Obviously, if the
topology changes in intermediate levels, additional vertices must be introduced at
these levels.

4 The Algorithm

Given two polygonal slices, we first run the reconstruction algorithm described above.
(Or, for this purpose, any interpolation algorithm whose outcome is an zy-monotone

surface.) The input to our algorithm consists then of the two original slices and of the
reconstructed surface that interpolates between them. We would like to emphasize
that zy-monotonicity is a property of the reconstruction algorithm we use and not of
the input slices whose zy-projections are general and can intersect. The only vertices
of this surface are the original vertices of the input slices. As mentioned above, when
the topologies of the two slices are different, the surface contains bridging triangles.
Our algorithm modifies the surface so as to eliminate all the bridging triangles, thus
achieving a smooth morph between the input slices.

We describe our algorithm by illustrating its behavior on the example shown in Fig-
ures 2-4. The first (upper) slice contains three polygons; see Figure 2(a). The second
(lower) slice contains one polygon with a long “tail”; see Figure 2(e). Figure 3(a)
shows an zy-projection of the triangles of the reconstructed surface. Some of them
are bridging. Our algorithm proceeds in four steps:

(1) Find the connected regions of the given triangulated surface graph G, consisting
solely of bridging triangles.

(2) Compute the dual graph G* of the union of the above regions (Figure 3(b)).

(3) For each region, subdivide the triangles so as to eliminate the bridging edges
(Figure 3(c)). This is done by adding new vertices, with the aid of the dual
graphs, as explained below.

(4) Assign new z coordinates to the newly-added vertices, as described below.

Steps 1 and 2 are straightforward and are performed using well-known techniques.
We now elaborate on Steps 3 and 4.

4.1 Triangle Subdivision

In Step 3 we subdivide the bridging triangles. First, the bridging triangles are classified
according to the number of their bridging edges. Since every bridging edge (in the
reconstructed surface) corresponds to an edge in G*, this number is actually the
number of neighboring triangles in the connected regions.

e One bridging edge: A bridging triangle that contains one bridging edge corre-
sponds to a leaf vertex in G*. The vertex opposite to the respective bridging edge
in GG is called a leaf verter of the triangulation. The triangle is subdivided into two
triangles by splitting its bridging edge and by connecting the newly-added vertex
to the leaf vertex. See Figure 5(a).

e Two bridging edges: A bridging triangle with two bridging edges is subdivided
into four triangles by splitting its three edges. This step adds three vertices and
three edges. See Figure 5(b).

e Three bridging edges: A bridging triangle with three bridging edges is subdivided
by adding four new vertices. Three of the new vertices are located on the triangle
edges, and the additional vertex (called a junction vertex) is located inside the

triangle. The latter vertex is connected with new edges to the six vertices that lie
on the original triangle. See Figure 5(c). The x and y coordinates of the junction
vertex are set to the barycentre of the zy-projection of the triangle.

4.2 Assigning z-coordinates

Finally, in Step 4, we assign heights (z coordinates) to the new vertices created in
Step 3. We do that by analyzing the graph G*, as described below. This step allows
us to accomplish smoothness and global consistency.

The graph G* contains vertices whose maximum degree is three. Consider first the
degree-3 vertices: the junction vertices. A vertex of this type corresponds to a triangle
in G with three bridging edges. Such triangles realize the “pants effect,” where differ-
ent contours of one slice are merged into a single contour in the other slice, thereby
causing a change of topology. The location of this change controls the behavior of the
entire interpolation. Since the exact height of this effect is unknown, we assume that
it occurs at the midway (height-wise) between the two slices. The algorithm allows
the user to set other heights for junction vertices, possibly according to the local
neighborhood. For example, the larger a bridging triangle with three bridging edges
is, the further (z-wise) from it the corresponding junction vertex should be located.

By removing the junction vertices from G*, the graph is split into path subgraphs
with only degree-2 and degree-1 vertices. These vertices correspond to bridging edges
in (. The endpoints of the path subgraphs are either junction vertices or leaf vertices.
The heights of the junction vertices have already been set as was explained above. The
height of each leaf vertex is set to the height of the slice that contains the respective
bridging edge.

It remains to compute the heights of the internal (degree-2) vertices of each path
by interpolating the heights of the path endpoints. We experimented with B-spline
and Bezier interpolation functions, but found that linear interpolation is satisfactory.
(Again, the choice of the interpolation function is left to the user or the application.)
We observed, however, one case that needed a special treatment, namely, when the
heights of the two endpoint vertices of a path were set to the same slice height (that
is, they were leaf vertices at the same slice). Setting the height of the entire path
to the height of the slice does not produce a plausible result since, again, it yields a
topology change at that level. Instead, we split such a path into two subpaths, set the
height of the splitting vertex to the average height of the two slices, and interpolate
the heights of the internal vertices of the sub-paths separately.

The example shown in Figure 3 contains four paths. One path forms the tail-shaped
part, gradually blending the end of the tail (in the lower slice) with the three contours
(in the upper slice). Three paths emanate from a junction vertex in the graph, found
among the three contours of the upper slice, and terminate at the periphery of the

graph (see Figure 3(b)).

Figure 4 illustrates the goodness of our algorithm on the example of Figure 3. Fig-
ures 4(a—b) show the surface constructed by the algorithm of [3]. Figures 4(c—d) show
the improved surface generated by our algorithm. Note that there is no resemblance
between the tail part of the second slice to any portion of the contours of the first
slice. Thus, in [3] the tail was triangulated mostly with bridging triangles. The same
holds for the area between the three contours of the first slice.

4.8 Complezity Analysis

We analyze the complexity of the algorithm as a function of n, where n is the number
of triangles in GG, the surface generated by the preprocessing reconstruction algorithm.
Obviously, since G is planar and by Euler’s formula, the number of vertices and edges
in G are O(n). Step 1 of the algorithm can be carried out by a simple DFS search
in O(n) time. Step 2 also requires only O(n) time. Each of the triangle subdivision
cases involves constant work, for a total of O(n) time required for the entire step. By
the end of this step the complexity of G is still O(n). Therefore Step 4 also requires
O(n) time for interpolating the final heights of the new vertices.

5 DProperties of the Algorithm

In this section we show several properties of our algorithm.

(1) The algorithm does not leave any bridging triangles in the reconstructed surface,
therefore, the topologies of the input slices are not altered. This property is
obvious from the definition of the algorithm.

(2) The algorithm preserves the zy-monotonicity of the surface. Thus, the new sur-
face created by our algorithm is self-intersection free. This is so since the al-
gorithm changes only the z coordinates of selected points on the surface and
interpolates between them linearly (using a triangular mesh).

(3) The algorithm eliminates all horizontal triangles in the surface. We will prove
this property in Theorem 2 below.

(4) The algorithm ensures that all topology changes (of horizontal cross-sections of
the surface) occur only at the mid-height between the two interpolated slices.
Moreover, this intermediate slice either has the same topology of the two slices,
or has a degenerate form of one or both of them. We will prove this property in
Theorem 1 and Corollary 3 below.

For simplicity of exposition we refer to the lower and upper slices as if their vertical
heights are 0 and 1, respectively. We denote by A(-) the height of a geometric entity.

Theorem 1 FEvery cross-section of the reconstructed surface at 0 < h < % (resp.,
% < h < 1) has the same topology as the lower (resp., upper) slice.

Proof: Since the reconstructed surface (together with the bounding slices) is a
2-manifold without self-intersections, the topology of its horizontal cross-sections
changes only in local (vertical) extrema of the surface. Due to the definition of the
algorithm, such extrema may occur only in new vertices added by the algorithm. Such
a vertex either lies on a bridging edge that belongs to two adjacent bridging triangles,
or it is the junction vertex of a triangle with three bridging edges. In the latter case,
the vertex is at height of 1/2 by the definition of the algorithm.

Let us then consider the different cases of two adjacent bridging triangles denoted
as i — j (for 1 < 4,57 < 3), where i and j are the numbers of bridging edges in the
triangles. Assume without loss of generality that the bridging edge shared by the
two bridging triangles and containing the newly-added vertex v is at height A = 0
(that is, in the lower slice). Note that horizontal cross-sections of the surface include
collections of closed contours. The topology can change only in cross-sections where
contours touch, or where a contour shrinks into a point or into a polygonal chain
(possibly one line segment). Our goal is to prove that this happens only at height
h =1/2. We restrict our attention to cross-sections that pass through vertices added
by our algorithm, since a change of topology cannot happen in other cross-sections
because the original surface is a 2-manifold.

e 1-1 (two leaf triangles): The algorithm always locates this vertex at height 1/2.

e 1-2: Refer to Figure 6. Here the two bridging triangles are Ay (with the bridging
edge bc) and Ay, (with the bridging edges ¢g and cb). In order to show that the
cross-section does not contain a degenerate topology, we need to show that the
horizontal plane P that passes through the vertex v intersects portions of only one
of the original bridging triangles (the result of subdividing the triangles). By our
assumption h(cb) = 0. The second bridging edge ¢g is at the same height, since all
the bridging edges are parallel to the planes of the slices, and the edges cb and ¢g
have in common the vertex c¢. Thus, h(b) = h(g) = 0, and the non-bridging edge
bg is a contour edge. Therefore h(f) = 0 as well, since this vertex lies on a slice
contour.

The vertex a can be either of height 0 or of height 1:
(1) If hA(a) = 0, then 0 < h(v) < h(e) by the definition of the algorithm; see Sec-
tion 4.2.

Consider the horizontal plane P that passes through the vertex v at h(v). The
interiors of all the triangles obtained by subdividing the bridging triangle A .
are below P: 0 = h(a) < h(v), 0 = h(b) < h(v), and 0 = h(c) < h(v). Therefore
PN{Awew U} = v, where we use the fact that a function defined on a triangle
is linear and hence monotone in any direction. A similar reasoning shows that

PﬂAbfv = .

The only triangles intersected by P are Acey, Aefy, and Agr. We are not
interested in Ay since it is not adjacent to v. For the other triangles we have

0=h(c) < h(v) < h(e) = PNInt(Ace) # 0
0=~h(f) < h(v) <hle) = PNInt(Aep) # 0,

o

where Int(A) denotes the interior of the triangle A. The triangles A, and Ay,
were obtained by subdividing the bridging triangle Ay.,. Thus P intersects the
two triangles; therefore none of degenerate situations occurs in this case.

(2) If h(a) = 1 then 1 > h(v) > h(e). By the same method as above we argue that
P N Int(Agw) # 0 and P N Int(Agey) # 0. These two triangles were obtained by
subdividing the bridging triangle A ..

e 2-2 2-3, and 1-3: These cases are treated similarly to the case 1-2.

1

e 3-3: By construction (see Section 4.2) h(v) = 3.

O

Theorem 2 The reconstructed surface does not contain any horizontal triangle.

Proof: For any height other than 1/2 the claim follows from the definition of the
algorithm. We will show the property for A = 1/2 by showing that there is no triangle
in the reconstructed surface with all three vertices at this height. There are two types
of triangles in the reconstructed surface: either original triangles of the input surface,
or triangles created by our algorithm in the subdivision process. Triangles of the first
type obviously never lie in the plane z = % Let us then assume that the triangle is
of the second type. Consider the three cases show in Figure 5:

e A triangle with a single bridging edge (Figure 5(a)): There is at least one vertex v
lying on the original contour, thus h(v) # 1.

e A triangle with two bridging edges (Figure 5(b)): In such a triangle both bridging
edges lie at the same height, since all such edges are parallel to the planes of the
slices, and the two bridging edges have a common vertex. Thus, the third non-
bridging edge is a contour edge and the height of all the vertices of the triangle is
either 0 or 1. The newly-added vertex v on the contour edge naturally lies at the
same height. Therefore, every triangle created in the subdivision process in this
case has at least one vertex that does not lie at height h = 1/2.

e A triangle with three bridging edges (Figure 5(c)): In this case all the vertices lie
on one of the slices, i.e., at height A = 0 or h = 1. Therefore every triangle (after
the subdivision step) has at least one vertex which is an original vertex of the input
surface and hence does not lie at height h = 1/2.

O

Corollary 3 The topology of the cross-section of the reconstructed surface at height
h = 1/2 is a degenerate case of the topologies of both slices at heights h = 0 and
h=1.

10

Proof: This claim is a result of Theorems 1 and 2, and the fact that the reconstructed
surface is C°-continuous. O

6 Experimental Results

In this section we show a few examples that illustrate the behavior of our algorithm
on typical topologies.

Figure 7(a) shows a morphing example with a “pants” effect, where two separate
contours become connected at their top. The intermediate slices demonstrate how
smooth the morphing between the two shapes is. The course of the algorithm in this
example is shown in Figures 7(b,c,d).

Figure 8 shows a one-to-many (contours) morphing example. In this example the
multiplicity of the contours (and the gaps between them) induces the multiplicity of
paths handled by our algorithm.

Figure 9 shows a morphing example between two brain slices (soft tissue). In this
example one of the shapes contains a hole contour nested within another contour,
whereas the other shape does not contain a matching hole. The morphing sequence
shows how the hole appears “out of the blue” in an intermediate level and develops
smoothly. Figure 10 shows a three-dimensional visualization of the reconstructed brain
layer between the two slices.

Figure 11 shows a morphing between a ‘b d’ shape and an ‘H’ shape. This figure
demonstrates the difficulty of morphing between two synthetic shapes: we expect the
intermediate frames to consist of “smooth” contours, although the morphing sequence
that optimizes some measure (in this case, minimizing the area of the reconstructed
surface) may yield unsatisfactory slices.

7 Conclusion

In this paper we have described an algorithm for morphing between two-dimensional
polygonal shapes. Our algorithm is based on a reconstruction algorithm; it modi-
fies the reconstructed surface in order to create a morph sequence that changes the
topology in a pleasing and smooth manner.

Our algorithm can be applied to any reconstruction algorithm that maintains zy-
monotonicity, and guarantees that the reconstructed surface is free of self-intersections.
Given any such surface, our algorithm maintains the property of avoiding self-intersec-
tion. Moreover, the topologies of the input slices are not altered, horizontal triangles
are prohibited, and all the topology changes occur at a mid-height which is a degener-
ate form of both input topologies. Finally, the running time of our algorithm is linear

11

in the complexity of the surface.

A couple of extensions of the algorithm are possible. First, features of the input
contours can be matched either manually or automatically in various ways. In the
software which we implemented, the matching is done by the reconstruction algo-
rithm based upon zy-proximity. Second, one can use curve-smoothing algorithms for
avoiding non-smooth features in the intermediate frames of the morphing.

References

[1] C. Bajaj, E. CoYvLE, AND K. LIN, Arbitrary topology shape reconstruction from planar
cross sections, Graphical Models and Image Processing, 58 (1996), pp. 524-543.

[2] G. BAREQUET, D. SHAPIRO, AND A. TAL, Multi-level sensitive reconstruction of
polyhedral surfaces from parallel slices, The Visual Computer, 16 (2000), pp. 116-133.

[3] G. BAREQUET AND M. SHARIR, Piecewise-linear interpolation between polygonal slices,
Computer Vision and Image Understanding, 63 (1996), pp. 251-272.

[4] J. BOISSONNAT, Shape reconstruction from planar cross sections, Computer Vision,
Graphics and Image Processing, 44 (1988), pp. 1-29.

[5] E. CARMEL AND D. COHEN-OR, Warp-guided object-space morphing, The Visual
Computer, 13 (1997), pp. 465-478.

[6] H. FucHus, Z. KEDEM, AND S. USELTON, Optimal surface reconstruction from planar
contours, Comm. of the ACM, 20 (1977), pp. 693-702.

[7] E. GOLDSTEIN AND C. GOTSMAN, Polygon morphing using a multiresolution
representation, Proceeding of Graphics Interface, (1995).

[8] F. LAzARUS AND A. VERROUST, Three-dimensional metamorphosis: a survey, The
Visual Computer, 14 (1998), pp. 373-389.

[9] T. SAmoILOV AND G. ELBER, Self-intersection elimination in metamorphosis of two-
dimensional curves, The Visual Computer, 14 (1998), pp. 415-428.

[10] T. W. SEDERBERG, P. GAO, G. WANG, AND H. MU, 2D shape blending: an intrinsic
solution to the vertex path problem, Computer Graphics (SIGGRAPH ’93), 27 (1993),
pp- 15-18.

[11] T. W. SEDERBERG AND E. GREENWOOD, A physically based approach to 2D shape
blending, Computer Graphics (SIGGRAPH ’92), 26 (1992), pp. 25-34.

[12] M. SHAPIRA AND A. RAPPOPORT, Shape blending wusing the star-skeleton
representation, IEEE Trans. on Computer Graphics and Application, 15 (1995), pp. 44—
51.

12

[13] A. TAL AND G. ELBER, Image morphing with feature preserving texture, Graphics
Forum, 18 (1999).

[14] G. WOLBERG, Image morphing: a survey, The Visual Computer, 14 (1998), pp. 360-
372.

13

(e) Lower

(a) Upper

<P

.

DAV VA4
A

oS

Fig. 2. The morphing sequence: The input slices ((a) and (e)) and the intermediate slices

(b-d)

N/

AVAA

=\

(c) Refined triangulation

(b) Dual graph

(a) Original [3]

Fig. 3. The zy-projections of the reconstructed surface

14

two bridging
‘5--~““““‘\\\ edges
the leaf
vertex
S one bridging :
edge O
(a) One bridging edge (b) Two bridging edges

three bridging
edges

the junction
edge

(c) Three bridging edges

Fig. 5. Subdividing bridging triangles

Fig. 6. Adjacent bridging triangles

16

0000

(a) Morphing sequence

(d) Refined triangulation

Dual graph

)

(c

Fig. 7. A “pants” effect

Original surface

(b)

17

Morphing sequence

(a)

(d) Refined triangulation

(c) Dual graph

(b) Original surface

Fig. 8. Morphing between one to many contours

18

(a) Morphing sequence

N
N
A‘QE‘

S
SIS
A,
A
N
Y

(b) Original surface (c) Dual graph (d) Refined triangulation

Fig. 9. Morphing between two brain slices

19

(a) Wireframe (b) Solid

A top view

(c) Wireframe (d) Solid

A bottom view

Fig. 10. A 3-dimensional view of the reconstructed brain tissue

20

Fig. 11. Morphing between the letters ‘b d’ and the letter ‘H’

21

