Visualization of Geometric Algorithms
Ayellet Tal, David Dobkin

Abstract— This paper investigates the visualiza-
tion of geometric algorithms. We discuss how lim-
iting the domain makes it possible to create a sys-
tem that enables others to use it easily. Knowledge
about the domain can be very helpful in build-
ing a system which automates large parts of the
user’s task. A system can be designed to isolate
the user from any concern about how graphics is
done. The application need only specify “what”
happens and need not be concerned with “how” to
make it happen on the screen. We develop a con-
ceptual model and a framework for experimenting
with it. We also present a system, GASP, which
implements this model. GASP allows quick gen-
eration of three-dimensional geometric algorithm
visualizations, even for highly complex algorithms.
It also provides a visual debugging facility for ge-
ometric computing. We show the utility of GASP
by presenting a variety of examples.

I. INTRODUCTION

The visualization of mathematical concepts goes
back to the early days of graphics hardware [21],
[2], and continues to the present [18], [16], [15],
[19]. These videos use graphics and motion to
explain geometric ideas in three dimensions and
higher. They have been widely accepted as the
necessary companions to the traditional medium
of journal publication [32], [33]. Similar gains in
exposition are found in the algorithm animation
work that has become popular in recent years [1],
[8], [5], [6], [27], [7], [24], [23], [22]. The limit-
ing force has been the difficulty of generating the
graphics for such animations.

The main principle guiding our work is that
algorithm designers want to visualize their algo-
rithms but are limited by current tools. In partic-
ular, visualizations would be less rare if the effort
to create them was little. In the past, visualiza-
tions have been produced by developing sophisti-
cated software for a particular situation but there

Ayellet Tal is with the Department of Applied Mathematics
and Computer Science at the Weizmann Institute of Science,
Rehovot, Israel. E-mail: ayellet@wisdom.weizmann.ac.il. This
work was done at Princeton University.

David Dobkin is with the Department of Computer Science
at Princeton University. E-mail: dpd@cs.princeton.edu.

has been little movement towards more widely us-
able systems.

By limiting our domain we are able to create
such a system that enables others to use it easily.
We have chosen the domain of computational ge-
ometry to build a system that greatly facilitates
the visualization of algorithms regardless of their
complexity. The visual nature of geometry makes
it one of the areas of computer science that can
benefit greatly from visualization. Even the simple
task of imagining in the mind a three-dimensional
geometric construction can be hard. In many cases
the dynamics of the algorithm must be understood
to grasp the algorithm, and even a simple anima-
tion can assist the geometer.

We describe in this paper our system, GASP
(Geometric Animation System, Princeton). We
present the conceptual model that underlies the
development and implementation of our system,
and we demonstrate its utility in a series of snap-
shots taken from a videotape [30].

Three major objectives set GASP apart from
other animation systems (e.g., Balsa [8], Balsa-II
[5], [6], Tango [27], and Zeus [7]).

o GASP allows the very quick creation of three
dimensional algorithm visualizations. A typ-
ical animation can be produced in a matter
of days or even hours. In particular, GASP
allows the fast prototyping of algorithm ani-
mations.

o Even highly complex geometric algorithms can
be animated with ease. This is an important
point, because it is our view that complicated
algorithms are those that gain the most from
visualization. To create an animation, it is
sufficient to write a few dozen lines of code.

o Providing a visual debugging facility for geo-
metric computing is one of the major goals of
the GASP project. Geometric algorithms can
be very complex and hard to implement. Typ-
ical geometric code is often heavily pointer-
based and thus standard debuggers are noto-
riously inadequate for it. In addition, running
geometric code is plagued by problems of ro-

bustness and degeneracies.

There are many ways in which the system can be
used. First, it can be used simply as an illustration
tool for geometric constructions. Second, stand-
alone videotapes to accompany talks and classes
can be created by GASP. Third, GASP can ease
the task of debugging. Fourth, GASP can signifi-
cantly enhance the study of algorithms by allow-
ing students to interact and experiment with the
animations. Fifth, GASP enables users to create
animations to attach to their documents.

Computational geometers describe configura-
tions of geometric objects either through ASCII
text as generated by symbolic computing tools
(e.g., Mathematica [34]) or through hand drawn
figures created with a graphics editor. Our system
offers an alternative to this by allowing the geome-
ter to feed ASCII data into a simple program and
get a three-dimensional dynamic (as well as static)
visualization of objects.

Often, the dynamics of the algorithm must be
understood. Animations can assist the geometer
and be a powerful adjunct to a technical paper.
With GASP, generating an animation requires no
knowledge of computer graphics. The interaction
with the system is tuned to the user’s area of ex-
pertise, i.e., geometry.

Until recently, most researchers have been reluc-
tant to implement, let alone visualize, their algo-
rithms. In large part, this has been due to the
difficulty in using graphics systems added to the
difficulty of implementing geometric algorithms.
This combination made it a major effort to ani-
mate even the simplest geometric algorithm. Our
system can ease some of the unique hardships of
coding and debugging geometric algorithms. The
inherent difficulty in checking a geometric object
(e.g., listing vertices, edges, and faces of a poly-
hedron) in a debugger can be eliminated once it
becomes possible to view the object. In practice,
a simple feature such as being able to visualize
a geometric object right before a bug causes the
program to crash is an invaluable debugging tool.

Visualization can have a great impact in educa-
tion. Watching and interacting with an algorithm
can enhance the understanding, give insight into
geometry, and explain the intuition behind the al-
gorithm. The environment in which the animation
runs is designed to be simple and effective. The

viewer is able to observe, interact, and experiment
with the animation.

An important consideration in the design of
GASP is the support of enclosures of animations
in online documents. GASP movies can be con-
verted into MPEG movies which can be included
in Mosaic documents. The reader of such a docu-
ment can click on the icon and see the animation.
For the viewer it takes no more work to view an
animation and the effect is better.

In the next section we describe the conceptual
model upon which GASP was built. In Sections
[T and IV we present the specification of the sys-
tem. We focus on the ways the system meets the
needs of both the geometer and the viewer. In Sec-
tion V we describe, through examples, how our
system has been used in various scenarios. Sec-
tion VI discusses some implementation issues. We
summarize and mention open problems in Section
VII. This paper is an enhanced version of [31].

II. CONCEPTUAL MODEL

Previous algorithm animation systems (e.g., [5],
[6], [7], [27]) have dealt with the general case and
thus have attempted to solve many problems at
once. They have not made any assumptions about
the type of objects and the kind of operations that
make up the building blocks of the animations.
As a result, no knowledge could be used in the
creation of the animation. For example, suppose
a user wants to animate a sorting algorithm. First,
the user needs to decide how the elements should
look - rectangles, cubes or maybe cylinders, and
generate them. Then, the user has to design and
implement the animation of the operations that
make up the algorithm, in this case, the compare
and swap operations. There are many possible
ways to do it.

An animation system for a restricted domain
can be vastly superior to a general-case system.
Knowledge about the entities and the operations
in this domain can be very helpful in building an
animation system which produces animations sig-
nificantly more easily. Appropriate ways to visu-
alize the entities and to animate the operations
can be embedded in the system. Thus, large parts
of the user’s task can be automated. In this case,
a system can be designed to isolate the user from
any concern about how graphics is done.

One of the major departures of our work from
previous work is the elimination of the animator.
We define a conceptual model which allows us to
do this. The main principle behind our model
is that programmers should be freed from hav-
ing to design and implement the visual aspects
of the animation, and can concentrate solely on
the contents of the animation. This is important
not only because the job of implementing an ani-
mation is time-consuming, but also because it in-
volves graphics design, an area the user is not usu-
ally familiar with.

The ability to automate the process of gener-
ating animations is very useful for most users.
However, some might find it too restrictive and
would like to be able to change it. We there-
fore define a hierarchy of users. While previous
systems identified two types of clients, end-users
and client-programmers, we identify three distinct
user types for any such system, end-users, naive-
programmers, and advanced-programmers.

1. As before, end-users want to experiment with
an algorithm to understand its functioning.
End-users should be able to run the applica-
tion (i.e., see the animation) as an interactive
experience. That is, it should be possible to
play the animation at slow or fast speed, to
run it backwards, to pause and alter the ob-
jects being considered, and to run the anima-
tion on an input of the user’s choosing among
other things.

2. Naive application programmers want a sys-
tem which makes generic animation of al-
gorithms as easy as possible. The naive-
programmer is not concerned with the pre-
sentation aspects of the animation and can
choose to be isolated from any decisions of
a graphical nature. Typically, the naive pro-
grammer needs the animation for one of three
purposes. The animation aids in the debug-
ging process, it helps for exploring research
ideas, or it serves as a prototype animation
and will be refined later on.

3. Advanced programmers want, in addition, to
be able to easily modify and extend various vi-
sualization aspects of the animation. A major
concern when generating animations automat-
ically is that the outcome might be different
from what is most useful to the user and might

not fit the programmer’s taste. It is therefore
necessary to provide a way to modify the ani-
mation. The advanced programmer should be
able to change the style of the animation with-
out having to implement additional code.

To understand these levels, one can draw an
analogy with document processing systems. The
end-user need not know how the animation was
produced. By analogy, the reader of a document
does not care about how it was created. The sec-
ond user is the application writer. The applica-
tion writer is analogous to the text preparer who
typically uses the default style settings of a sys-
tem. The creator of the document is concerned
more with the text the paper includes and less
with the visual aspects such as the selection of
margins, spacings, and fonts. Similarly, the ap-
plication writer is concerned with the contents of
the animation rather than with its visual aspects.
Finally, there are times when the creator of the an-
imation does want to change the viewing aspects
(e.g., colors) of the animation. By analogy, there
are times when the writer of a document would
like to change fonts and margins. Systems such as
IATEX [17] provide this flexibility. The user can
change many defaults by creating personal style
files of IATRX . To do it, the user needs additional
knowledge. This is the third type of user, the ad-
vanced programmer.

We define a similar interface for animating algo-
rithms. The interface we propose in response to
these needs consists of library calls for the naive-
programmer and external ASCII style files for the
advanced programmer. The idea of using style files
in not new in computer graphics (e.g., see [3]). Its
use in animation systems, however, is novel. The
naive-programmer writes short snippets of C code
to define the structure of the animation. The an-
imation system knows how to generate an appro-
priate animation from this C code. The advanced
programmer can edit an ASCII style file to control
the visual aspects of the animation. The anima-
tion is still generated automatically by the anima-
tion system. But, a different animation will be
created, if the style file is modified. Editing the
style file allows experimentation with various ani-
mations for a given algorithm.

Thus, any animation has four components:

o The algorithm animation system.

o The algorithm implementation.

o Hooks to the animation system within the al-

gorithm implementation.

o Style files.

The programmer need never be concerned with
the algorithm animation system. The algorithm
implementation is something that would have to
be done anyways. Creating the hooks is the main
task of the animator. The use of style files is op-
tional.

We believe that the model we suggest is general
enough and can be applied to other constrained
domains. Only the types of objects and supported
operations should be replaced. The structure of
the system and the user interfaces should not be
changed.

III. GASP’s LANGUAGE

GASP is an algorithm animation system for the
domain of computational geometry, which imple-
ments the conceptual model presented in the pre-
vious section.

Recall that there are two types of programmers:
naive-programmers and advanced-programmers.
Naive-programmer are concerned only with the
contents of the animation, whereas advanced-
programmers care also about the visual aspects of
the animation. Naive-programmers need to write
brief snippets of C code to define the structure of
the animation. The code includes only manipula-
tions of objects and modifications of data struc-
tures. This code contains calls to GASP’s library.
Style files are used by advanced-programmers to
change from default aspects of the animation to
other options. In this section we introduce the
programmer interface that GASP provides.

A. Naive-Programmer Interface

GASP’s library is a set of building blocks that
enable us to write animations with minimal ef-
fort. All we need to do is write short snippets of C
code, and GASP makes sure that they are power-
ful enough to generate an animation. To do this,
we follow two principles: First, the programmer
does not need to have any knowledge of computer
graphics. Second, we distinguish between what is
being animated and how it is animated. The ap-
plication specifies what happens (The What) and
need not be concerned with how to make it hap-

pen on the screen (The How). For example, the
creation of a polyhedron is different from the way
it is made to appear through the animation. It
can be created by fading into the scene, by travel-
ing into its location, etc. The code includes only
the what, but not any of the visualization issues,
such as the way each operation animates, the look
of the objects, or the colors.

The scenes of interest to us are built out of ge-
ometric objects and displays of data structures.
Typical geometric objects are lines, points, poly-
gons, spheres, cylinders and polyhedra. Typical
data structures include lists and trees of various
forms. The operations applied to these objects
depend upon their types. A standard animation
in the domain of computational geometry is built
out of these building blocks.

The parameter data required by GASP is part
of the algorithm being animated. To make its use
easy, GASP requires only very simple data types:
integers, floats, chars, arrays of integers or floats,
and strings. We avoid using more complex data
structures (e.g., a more complex data structure
which represents a polyhedron) in order to keep
the start-up time minimal.

GASP’s library contains four classes of opera-
tions - operations on objects, atomic units, mo-
tion, and undo.

A.1 Operations on Objects

GASP’s objects include three-dimensional geo-
metric objects, two dimensional geometric objects,
combinatorial objects, views, text, and titles. Ob-
jects can be created, removed, and modified. They
can also be copied, grouped, and ungrouped.

We use the Create XXX function to create an
object of the type XXX. Each Create function has
different parameters, which are suitable to the ob-
ject being created. For example, to create a line
GASP expects the two end-points of the line as
parameters whereas to create a polyhedron GASP
needs the number of vertices of the polyhedron,
the number of faces, the specification of the ver-
tices, and that of the faces. Each Create function
has its own default way to animate. A polyhedron
fades into the scene, a point blinks in order to at-
tract attention, and a tree is created level after
level starting from the root.

We use Remove_object to remove an object from

An object is removed in the reverse
fashion to the way it is being created. For ex-
ample, a polyhedron fades out from the scene, a
point blinks, and a tree is removed level after level,
starting from the leaves and working its way to the
root.

the scene.

Each object is related to one or more modifica-
tion functions which are appropriate for this ob-
ject. For example, we can add faces to a polyhe-
dron, but naturally there is no equivalent opera-
tion for atomic objects such as spheres.

Copy_object creates an exact copy of the object.
This function is very useful when displaying an al-
gorithm in multiple views. We can create multiple
copies of the objects, and manipulate them in dis-
tinct ways in the various views.

The Group function creates an object which con-
tains an ordered list of child objects. Grouping al-
lows us to isolate effects (e.g., motion) to a specific
set of objects. The reverse function, Ungroup, is
also available.

Three-dimensional geometric objects: Typical
objects embedded in three-space include spheres,
cylinders, cubes, cones, planes, lines, points,
line-sets, point-set, sweep-lines, polyhedra, and
meshes. A mesh represents a three-dimensional
shape formed by constructing faces from given ver-
tices.

Meshes and polyhedra are unique objects, being
non-atomic. Six special functions on meshes are
supported by GASP: Split mesh removes vertices
from a mesh, together with their related cones of
faces. This operation is animated by first creat-
ing new meshes - a cone for every removed vertex.
The new cones travel away from the initial mesh,
creating black holes in it. Each cone travels in the
direction of the vector which is the difference be-
tween the vertex (which created the cone) and the
center of the split mesh. Attach mesh_to_mesh at-
taches a few meshes to each other. This operation
is visualized in the reversed way to the split oper-
ation. The meshes travel towards a chosen mesh,
until they meet. Bind mesh_to_mesh is similar to
the attach operation, with one difference. At the
end of the binding process, we get a single object.
Add faces adds new faces to a mesh and is dis-
played, by default, by fading in. Remove faces is
the opposite operation. Add_vertices adds new

vertices to a given mesh.

Two-dimensional geometric objects: Typical ob-
jects embedded in two-dimensions include cir-
cles, rectangles, elliptic arcs, lines, points, line-
sets, point-set, sweep-lines, polygons, and splined-
polygons.

Here again, GASP supports a few types of dis-
plays for each object, one of them is the default.
For example, a polygon can be filled or not, two-
dimensional objects can be highlighted by using
related three-dimensional objects (e.g., cylinders
can highlight edges and spheres can highlight ver-
tices), etc.

Combinatorial objects: Combinatorial objects
include lists and trees of various types (binary or
not, red-black trees etc.).

Unlike geometric objects, combinatorial objects
do not have an evident visual representation. A
tree can either be presented in two dimensions or
in three. GASP can layout a tree in both ways,
but will usually prefer the novel three-dimensional
style in which the nodes which belong to the same
level of the tree reside on a single cycle; the ra-
dius of the cycles increase as the level of the tree
increases. The creation of a tree is visualized, by
default, by fading in the nodes, level after level,
starting at the root. Similarly, lists can be dis-
played in two dimensions (e.g., using rectangles)
or in three dimensions (e.g., using cubes).

In addition to the creation and deletion of trees
and lists, GASP supports the addition of nodes,
and the removal of nodes and subtrees.

Views: A view is more than a window used for
rendering. Built on top of Inventor’s Examiner-
viewer [28], a view contains a camera and a light
model. It also contains buttons and thumbwheels
that allows use of the mouse to modify the camera
placement in the scene.

Text and titles: Text objects and title objects
define text strings to be rendered to the screen.
We can annotate our graphics with text. Titles
ease the creation of videotapes.

By default, we use two-dimensional text and
titles, though three-dimensional is supported as
well. Text appears on the screen as one unit, while

titles show up line by line. The default fonts and
font sizes vary.

A.2 Atomic Units

Every logical phase of an algorithm can involve
several operations, which should be animated con-
currently. We can isolate phases of the algo-
rithm by grouping primitives into logical phases,
called atomic units. We use the Begin_atomic
- End_atomic phrase to enclose the operations
which belong to the same logical phase, and GASP
executes their animation as a single unit.

For example, if adding a new face to a polyhe-
dron, creating a new plane, and rotating a third
object constitute one logical unit, these operations
are animated as one unit. GASP would concur-
rently fade in the new faces of the polyhedron,
fade in the plane, and rotate the cylinder. The
code that generates this animation is:

Begin_atomic("Example");
Add_faces("Poly", face_no, faces);
Create_plane("Plane", pointl, point2,

point3, point4);
Rotate_object ("Third0bj");
End_atomic();

Some properties of atomic units: Like any other
object in the system, atomic units are named. Us-
ing names (rather than IDs) not only makes the
interaction between the programmer and the sys-
tem more natural, but also allows the end-user to
follow the unfolding of the algorithm by listing the
names of algorithm’s atomic units (assuming that
appropriate names have been used). Atomic units
can be nested. To nest atomic units within each
other, we use the Start_late or the Finish early
functions. Start_late declares when, within the
nesting atomic unit, GASP should start animat-
ing the current unit. Finish early declares when,
within the nesting unit, GASP should terminate
the animation of the current atomic unit. Finally,
each atomic unit can be accompanied with text
and voice which elucidate the events happening
during this unit. Since an atomic unit represents
a logical phase of the algorithm, this is the appro-
priate unit to attach explanations to.

A.3 Motion

Smooth motion is a major component of any an-
imation. Motion can be applied to either a single
object (or a set of objects, after grouping them),
or to the camera. When the camera moves, the
whole scene changes.

GASP supports five types of motion. We use
the Rotate obj or the Rotate world primitives
in order to rotate an object or the camera re-
spectively in terms of an axis and an angle. We
use Scale world or Scale obj to scale an ob-
ject in z,y,z factors. We use Translate world
or Translate obj to move an object in z,y, 2.
We use LinearPath world or LinearPath obj
to float an object on a linear path. We use
Path world or Path obj to float an object on a
Bézier curve. For the last two operations, we need
only specity the positions through which the ob-
ject moves and GASP calculates the exact path
through which an object floats.

All the motion primitives
smoothly. For example, a rotation is done gradu-
ally, until the desired angle is achieved.

are visualized

A.4 Undo

We use the undo operation to play the anima-
tion backwards. The undo operation takes as a
parameter the number of atomic units to be re-
versed. GASP knows how to reverse visually each
primitive within an atomic unit.

B. Advanced-Programmer Interface

Each operation supported by GASP generates
a piece of animation which demonstrates the spe-
cific operation in a suitable way. If a programmer
wants freedom to accommodate personal taste, the
parameters of the animation can be modified by
editing a “Style File”. The animation is still gen-
erated automatically by the system but a different
animation will be generated if the style file is mod-
ified. The style file affects the animation, not the
implementation.

Large number of parameters can be changed in
the style file. Those parameters can be set ei-
ther globally, for the whole animation, or for each
atomic unit separately. We describe some of these
parameters here.

B.1 Visualizing Primitives

Each primitive supported by GASP can be ani-
mated in several ways, one of which is the default
that GASP chooses. However, a parameter can
be set in the style file to change from a default
visualization to an optional one.

For instance, objects can be created in various
ways: by fading in, by scaling up to their full size,
by traveling into the scene, by blinking, by grow-
ing - adding one feature after the other (e.g., a tree
grows level after level, a mesh grows by adding the
faces one at a time), or by appearing at once at
the scene. A reasonable subset of the above visu-
alizations is allowed for each of the objects. We
can choose our favorite option by editing one line
in the style file.

B.2 Visualizing Objects

Objects can be rendered in various fashions. For
example, numerous ways exist to present meshes.
A mesh can be flat, smooth, or wire-framed. The
edges of a mesh can be displayed or not. The same
is true for its vertices. A mesh can be opaque or
transparent to some degree. Different normals de-
fined for the faces of the mesh influence the colors
of the faces. We can modify all those parameters.

Special attention is given to the issue of col-
ors. “Color is the most sophisticated and complex
of the visible language components” [20]. GASP
chooses colors for the objects and for the fea-
tures it creates. GASP maintains palettes of pre-
selected colors, and picks colors which are appro-
priate for the device they are presented on (i.e.,
screen or video). This is especially important for
inexperienced users.

Colors are assigned to objects (or other features
such as faces of a polyhedron) on the basis of
their creation time. That is, every logical phase of
the algorithm is associated with an unused color,
and the objects created during that phase get this
color. This scheme allows us to group related ele-
ments and to make it clear to the observer how the
algorithm progresses from phase to phase. Those
colors can be changed in the style file.

B.3 Visualizing Motion

The parameters for the motion operations can
be also altered in the style file. We can change the
axis of the rotation and its angle, the amount of

translation or scale, the number of key-frames of
a path, etc.

B.4 Miscellaneous

There are many other important parameters for
any animation. For instance, we are able to specify
in the style file whether the animation is running
on the screen or on the video. This is so, because
colors look very different on both devices. If we
want colors that look good on a video, we must
use less saturated colors. GASP knows how to
generate appropriate set of colors.

As another example, we can add one line to the
style file which tells GASP to stop after every
frame and execute a given script file. We found
this option to be very useful. We could record a
movie frame by frame by writing a suitable script
file. We could generate MPEG movies from GASP
movies, by providing yet another script file that
converted each frame.

B.5 Style File Example

The following is part of the style file for an ani-
mation which will be discussed in a later section.
The style file determines the following aspects of
the animation. The background color is light gray.
The colors to be chosen by GASP are colors which
fit the creation of a video (rather than the screen).
Each atomic unit spans 30 frames, that is, the op-
erations within an atomic unit are divided into 30
increments of change. If the scene needs to be
scaled, the objects will become 0.82 of their origi-
nal size. Rotation of the world is done 20 degrees
around the Y axis. The atomic unit pluck is ex-
ecuted over 100 frames, instead of over 30. The
colors of the faces to be added in the atomic unit
add_faces are green.

begin_global_style
background = light_gray;
color = VIDEO;

frames = 30;

scale_world = 0.82 0.82 0.82;

rotation_world = Y 20.0;
end_global_style
begin_unit_style pluck

frames = 100;
end_unit_style
begin_unit_style

color = green;

add_faces

end_unit_style

Note that the syntax of the style file is eminently
simple.

IV. GASP’s ENVIRONMENT

The interactive environment is a primary part of
the GASP system. It allows researchers, program-
mers, and students to explore the behavior of their
geometric algorithms. It is designed to be simple
and effective, and to allow the viewer to observe,
interact, and experiment with the animation.

The GASP environment, illustrated in Fig. 1,
consists of a Control Panel through which the stu-
dent controls the execution of the animation, sev-
eral windows where the algorithm runs, called the
Algorithm Windows, along with a Text Window
which explains the algorithm.

et |] =] =]] =] 2] 4]
o

Fig. 1. GASP’s Environment

A. The Control Panel

The control panel, at the upper left of Fig. 1,
lets us explore the animation at our own pace. It
uses the VCR metaphor, to make the interaction
intuitive, familiar, and easy.

We might want to stop the animation at vari-
ous points of its execution. Sometimes we would
like to fast-forward through the easy parts and
single-step through the hard ones to facilitate our
understanding. We may want to “rewind” the al-
gorithm in order to observe the confusing parts
of the algorithm multiple times. We may need to
PAUSE at any time to suspend the execution of

the algorithm or to EJECT the movie. GASP’s

environment allows us to do all these.

B. The Algorithm Window

We observe the algorithm in the algorithm win-
dows (at the bottom of Fig. 1). Algorithm
windows use Inventor’s Fzaminer- Viewer [28] and
thus are decorated with thumbwheels and push
buttons.

Thumbwheels let us rotate and scale the scene.
We use the left thumbwheel for a screen X rota-
tion. We use the bottom thumbwheel for a screen
Y rotation. We use the right thumbwheel for dolly
(in and out of screen). We use the zoom slider on
the bottom to change the camera height (ortho-
graphics) or the height-angle (perspective).

The push buttons at the right-hand side of the
algorithm window do the following operations. We
click the help button to display a help card for the
We push the home button to reset the
camera to a "home” position. We push the set
home button to set a new home position. We click
the view all button to reposition the camera so that
all objects become visible. The seek button makes
the camera animate to the center of the selected
object.

viewer.

The left-hand side push buttons give us informa-
tion about the algorithm and the animation. The
[s button lists the objects currently appearing on
the screen. The o0bj button prints a description of
a chosen object. For example, when a polyhedron
is picked, its vertices and faces are printed out.
The {u button lists the atomic units. The zf but-
ton prints the current transformation of either a
selected object or the global transformation. The
[pr button creates a snapshot file of the screen.
Using the Ipr option, we can create pictures to an-
notate our papers.

C. The Text Window

We can read about the algorithm and the anima-
tion in the text window (at the upper right of Fig.
1). The text window lets the client-programmer
accompany the animation running on the screen
with verbal explanations. Text can elucidate the
events and direct the viewer’s attention to spe-
cific details. Every atomic unit is associated with
a piece of text which explains the events occur-
ring during this unit. When the current atomic

unit changes, the text in the window changes ac-
cordingly. Voice is also supported by GASP. The
viewer can listen to the explanations that appear
in the text window.

V. GASP IN ACTION

In this section we describe different scenarios for
which we produced animations to accompany ge-
ometric papers. Excerpts from the animations are
given in a videotape [30]. For each case we present
the problem of study, the goal in creating the an-
imation and the animation itself.

A. Building and Using Polyhedral Hierarchies
This algorithm, which is based on [11], [12],

builds an advanced data structure for a polyhe-
dron and uses it for intersecting a polyhedron and
a plane. The main component of the algorithm is
a preprocessing method for convex polyhedra in
3D which creates a linear-size data structure for
the polyhedron called its Hierarchical Representa-
tion. Using hierarchical representations, polyhe-
dra can be searched (i.e., tested for intersection
with planes) and merged (i.e., tested for pairwise
intersection) in logarithmic time. The basic geo-
metric primitive used in constructing the hierar-
chical representation is called the Pluck: Given a
polyhedron, Py, we build a polyhedron, P, by re-
moving vertices in V(Fy) — V(P;). The cones of
faces attached to the vertices are also removed.
This leaves holes in the polyhedron F,;. These
holes are retriangulated in a convex fashion. Rep-
etition of plucking on the polyhedron P; creates a
new polyhedron, P,. The sequence Py P, P, ... P,
forms the hierarchical representation.

There were two goals for creating the anima-
tion ([13]). First, we wanted to create a video
that explains the data structure and the algorithm
for educational reasons. Second, since the algo-
rithm for detecting plane-polyhedral intersection
had not been implemented before, we wanted the
animation as an aid in debugging the implemen-
tation.

The animation explains how the hierarchy is
constructed and then how it is used. For the first
of these we explain a single pluck and then show
how the hierarchy progresses from level to level.

First, we show a single pluck. The animation
begins by rotating the polyhedron to identity it to

the user (Fig. 2). Next we highlight a vertex and
lift its cone of faces by moving them away from
the polyhedron (Fig. 3). Then, we add the new
triangulation to the hole created (Fig. 4). Finally,
we remove the triangulation and reattach the cone,
to explain that plucking is reversible.

This is done in our system by the following piece
of C code, which is up to the creator of the ani-
mation to write.

explain_pluck(int poly_vert_no,
float (*poly_vertices)[3],
int poly_face_no,
long *poly_faces,
char *poly_names[],
int vert_mno, int *vertices,
int face_no, long *faces)

/* create and rotate the polyhedron */
Begin_atomic("poly");
Create_polyhedron("PO",
poly_vert_no, poly_face_no,
poly_vertices, poly_faces);
Rotate_world();
End_atomic();

/* remove vertices and cones */
Begin_atomic("pluck");
Split_polyhedron(poly_names, "PO",

vert_no, vertices);
End_atomic();

/* add new faces */

Begin_atomic("add_faces");
Add_faces(poly_names[0], face_no, faces);
End_atomic();

/* undo plucking */
Undo(2);

Each of the operations described above is a sin-
gle GASP primitive. Create_polyhedron fades in
the given polyhedron. Rotate world makes the
scene spin. Split_polyhedron highlights the ver-
tex and splits the polyhedron as described above.
Add faces fades in the new faces. Undo removes
the triangulation and brings the cone back to the
polyhedron.

Notice that the code does not include the graph-

10

Fig. 2. The Polyhedron

Fig. 3. Removing the Cone of Faces

Fig. 4. Retriangulating the Polyhedron

ics. Coloring, fading, traveling, speed, etc. are
not mentioned in the code. In the related style
file these operations are controlled. This allows
the user to experiment with the animation with-
out modifying and recompiling the code.

After explaining a single pluck, the next step is
to show the pluck of an independent set of vertices.
This is no more difficult than a single pluck and is
achieved by the following code.

animate_one_level_hierarchy(
char *atomicl_name,
char *atomic2_name,
char *atomic3_name,
char *poly_name,
int vert_no, int *vertices,
int face_no, long *faces,
char *new_polys_names[])

Begin_atomic(atomicl_name) ;
Split_polyhedron(new_polys_names,

poly_name, vert_no, vertices);
End_atomic();

Begin_atomic(atomic2_name) ;

Add_faces(new_polys_names[0],
face_no, faces);

Finish_early(0.5);

for (1 = 1; 1 <= vert_no; i++){
Remove_object (new_polys_names[i]);

t

End_atomic();

Begin_atomic(atomic3_name) ;
Rotate_world();
End_atomic();

}

Here again we use the style file to choose speeds
at which cones move out, faces fade in, the scene
spins, etc. We also use the style file to choose a
next color that contrasts the new faces with those
that are preserved.

We found GASP to be very helpful in im-
plementing the algorithm for detecting plane-
polyhedron intersections. Bugs we were not aware
of showed up in the animation (e.g., we got non-
convex polyhedra as part of the hierarchical rep-
resentation). We also found GASP’s environment
to be very useful. When debugging the algorithm,

it is necessary to watch earlier stages of the ani-
mation (the construction process) which set state
variables that are needed by later stages. The con-
trol panel of GASP allows us to fast-forward over
these initial fragments to get to the section of in-
terest. Single-stepping through the section under
consideration and rewinding are also highly valu-
able tools.

B. Objects that Cannot be Taken Apart with Two
Hands

This animation is based on [26]. This paper
shows a configuration of six tetrahedra that cannot
be taken apart by translation with two hands (Fig.
5). Then, it presents a configuration of thirty
objects that cannot be taken apart by applying
an isometry to any proper subset (Fig. 6). The
ASCII data of the configurations was produced by
using Mathematica.

The purpose of the animation is to illustrate the
use of GASP as an illustration tool for geomet-
ric configurations. It took us far less than a day
to generate that animation. The increased under-
standing from a moving animation is significant.

The animation has two parts. Each one of them
shows one of the configurations described above
Each part begins by fading each object which be-
long to the configuration, in turn, into the scene.
The colors of the objects vary. After all the ob-
jects appear in the scene, the scene rotates so that
the configuration as a whole can be examined.

The animation is produced by the following
brief C function. In the code below, except
for get_polyhedron, the other functions belong
to GASP. The function get_polyhedron reads
the ASCII data for each object from a file.
Create_polyhedron is responsible for fading in a
single object. Rotate world causes the scene to
spin.

hands(int object_no)
{
float (*points)[3];
long *indices;
int nmax, fmax, 1i;
char *atomic_name, *object_name;

for (i = 0; i < object_no; i++){
/* object i */
get_polyhedron(&points, &indices,

11

&nmax, &fmax, &atomic_name,
&object_name) ;

Begin_atomic(atomic_name) ;
Create_polyhedron(object_name, nmax,
fmax, points, indices);
End_atomic() ;
t

Begin_atomic("Rotate");
Rotate_world();
End_atomic();

}

Fig. 5. Objects that Cannot be Taken Apart with Two
Hands Using Translation

Fig. 6. Objects that Cannot be Taken Apart with Two

Hands Using Isometries

12

C. Line Segment Intersections

This example, which is based on [9], is a short
clip from an animation ([29]) which shows a line
segment intersection algorithm in action and il-
lustrates its most important features. The goal
is to use the animation as an aid in explaining a
highly complex algorithm. The viewer of the an-
imation can not only control the execution of the
animation but can also choose the input by editing
an ASCII file containing the initial line segments.
This example also illustrates the use of GASP in
creating two-dimensional animations. In a matter
of days we generated the animation.

The animation runs in three phases. The first
phase presents the initial line segments and the
visibility map that needs to be built (Fig. 7). The
second phase demonstrates that the visibility map
is being constructed by operating in a sweepline
fashion, scanning the segments from left to right,
and maintaining the visibility map of the region
swept along the way (Fig. 8). Finally, a third
pass through the algorithm is made, demonstrat-
ing that the cross section along the sweepline is
maintained in a lazy fashion, meaning that the
nodes of the tree representing the cross section
might correspond to segments stranded past the
sweepline (Fig. 9).

In the first pass of the animation, red line seg-
ments fade into the scene. While they fade out,
a green visibility map fades in on top of them,
to illustrate the correlation between the segments
and the map. Yellow points, representing the “in-
teresting” events of the algorithm, then blink. At
that point, the scene is cleared and the second pass
through the algorithm begins.

During the second pass the viewer can watch as
the sweep-line advances by rolling to its new posi-
tion (the gray line in Fig. 8). The animation also
demonstrates how the map is built - new subseg-
ments fade in in blue, and then change their color
to green to become a part of the already-built vis-
ibility map.

The third pass adds more information about the
process of constructing the map by showing how
the the red-black tree which is maintained by the
algorithm changes. The animation also presents
the “walks” on the map (marked in yellow in Fig.
9).

There are only eleven GASP’s calls necessary for

B —

Fig. 7. The Visibility Map

Fig. 8. Building the Visibility Map

Fig. 9. Maintaining the Cross Section

the creation of this animation and they are:
Begin_atomic, End_atomic, Rotateworld,
Scaleworld, Create point, Create_line,
Create Sweepline, Modify Sweepline,
Create_tree, Add_node_to_tree,
Remove_object.

D. Heapsort

Though GASP was originally meant to facili-
tate animations that involve three-dimensional ge-
ometric computation, we found that the interface
we provide actually facilitates the animation of
any algorithm that involves the display of three
dimensional geometry, among them many of the
algorithms in [25]. To show the added power of
the system, we chose to animate heapsort.

Heapsort is an efficient sorting algorithm that is
defined from the basic operations on heaps. The
idea is to build a heap containing the elements to
be sorted and then remove them all in order.

In the animation, each element is represented
as a cylinder whose height is proportional to its
key value. The elements first appear in an array
and then it is demonstrated how the array can be
looked upon as a tree. From this point, the anima-
tion shows two views of the heap - one as an array
and the other as a tree displayed in three dimen-
sions (Fig. 10). The next step of the animation
is to build a heap out of the tree in a bottom up
fashion (Fig. 11). Whenever two elements switch
positions, they switch in both views. After the
heap is built, the first and the last element switch
and the heap is rearranged. At the end, when
the array is sorted, the colors of the elements are
“sorted” as well (Fig. 12).

VI. IMPLEMENTATION
GASP is written in C and runs under UNIX on a

Silicon Graphics Iris. It is built on top of Inventor
[28] and Motif/Xt [14].

GASP consists of two processes which communi-
cate with each other through messages, as shown
in Fig. 13. Process 1 includes the collection of
procedures which make up the programmer inter-
face. Process 2 is responsible for executing the
animation and handling the viewer’s input.

The application’s code initiates calls to proce-
dures which belong to Process 1. Process 1 pre-
pares one or more messages containing the type

13

Fig. 10. Two Views of the Array

T

Fig. 11. Building the Heap

Fig. 12. The Sorted Array

14

message

<] process process [<]

I

I

user’s |
2 [nventoq
I

I

I

code | 1

Fig. 13. GASP’s Architecture

of the operation required and the relevant infor-
mation for that operation and sends it to Process
2. Upon receiving the message, Process 2 updates
its internal data structure or executes the anima-
tion, and sends an acknowledgement to Process 1.
The acknowledgement includes internal IDs of the
objects (if necessary). Process 1, which is waiting
for that message, updates the hash table of objects
and returns to the application’s code.

This hand-shaking approach has a few advan-
tages. First, it enables the user to visualize the
scene at the time when the calls to the system’s
functions occur and thus facilitates debugging.
Since rendering is done within an event mainloop,
it is otherwise difficult to return to the application
after each call. Second, compilation becomes very
quick since the "heavy’ code is in the process the
application does not link to. Finally, the user’s
code cannot corrupt GASP’s code and vice versa.
This is an important point, because one of the ma-
jor goals of GASP is to ease debugging. During
debugging, it is always a problem to figure out
whose bug is it - the application’s or the system’s.

Process 2, which is responsible for the graphics,
works in an event mainloop. We use Inventor’s
Timer-Sensor to update the graphics. This sensor
goes off at regular intervals. Every time it goes
off, Process 2 checks which direction the anima-
tion is running. If it is running forwards, it checks
whether there is still work to do updating the ani-
mation (if yes, it does it) or it is at the point when
further instructions from Process 1 are needed. In
the latter case, it checks to see whether there is
a message sent by Process 1. It keeps accept-

ing messages, updating its internal data structure,
and confirming the acceptance of messages until
it gets an END_ATOMIC message. At that point,
Process 2 starts executing all the commands spec-
ified for the atomic unit. It informs the first pro-
cess upon termination. If the animation is running
backwards, it updates the animation according to
the phase it is in.

VII. CONCLUSIONS

GASP has been built as an animation system for
computational geometry. Geometric algorithms
can be highly complex, hard to implement and
debug, and difficult to grasp. The visual nature
of geometry makes animations extremely helpful.
Researchers can use the system as an aid in ex-
ploring new ideas; programmers can use it as a
debugging tool; students can enhance their under-
standing of the studied algorithm and get some
intuition into the way it operates.

GASP is a demonstration of a concept. Pick-
ing a small domain makes it possible to create
an animation system that enables others to use
it easily. In a well-defined domain, we can use
knowledge about the kinds of objects and oper-
ations that need to be visualized. In this case,
it becomes practical to hide the graphics system
from the user and to automate the creation of the
animation. All the user needs to specify is the log-
ical operations that need to be visualized (i.e., the
what), but not how to do it (i.e., the how).

We also recognize that any algorithm animation
system has various types of users with differing
needs. The naive programmer would like to pro-
duce a “quick-and-dirty” animation to check out
ideas or for debugging purposes. The naive pro-
grammer need not have any knowledge of com-
puter graphics. The code includes only manipula-
tions of objects and modifications of data struc-
tures. The algorithm animation system makes
heuristic guesses for the way the animation should
appear. The advanced programmer would like to
have a say in the way the animation looks. The
advanced programmer experiments with the ani-
mation by editing an ASCII style file, without ever
modifying or compiling the code. The end-user
would like to experiment with a finished anima-
tion. An algorithm animation system should serve
these varying levels of user-types by providing dis-

tinct interfaces. GASP supports these levels.

Limiting the domain and providing multiple
suitable interfaces make it possible to create an
algorithm animation system that allows users to
quickly create animations. With GASP, a typical
animation can be generated in a very short time.
This is true even for highly complex geometric al-
gorithms. This is important because complex al-
gorithms are those that benefit the most from be-
ing visualized.

We have shown several animations of geometric
algorithms. The system is now at the stage where
other people are starting to use it. In fact, three
[4], [10], [30] out of the eight segments of anima-
tions which appeared in the Third Annual Video
Review of Computational Geometry were created
by GASP. Two of them were created by the ge-
ometers who made movies describing their newly
discovered algorithms. They took less than a week
to produce. We consider it to be a very short time
for a first use of a system. The system is now
available for ftp.

In the future, GASP can be expanded to support
four-dimensional space. This can be an invalu-
able tool for research and education. We would
like to experiment with GASP in an actual class-
room. We believe that animations can be used
as a central part of teaching computational geom-
etry, both for demonstrating algorithms, and for
accompanying programming assignments. Finally,
many intriguing possibilities exist in making an
electronic book out of GASP. A user will then be
able to sit on the network, capture an animation,
and experiment with the algorithm.

We believe that reducing the effort involved in
creating animations will increase their prolifera-
tion. We hope that GASP is a first step in the
creation of animation systems for constrained do-
mains. Visualization can apply to many focused
enough domains such as topology, databases, and
networks.

Acknowledgements

We would like to thank Bernard Chazelle for nu-
merous discussions and great advice.

This work was supported in part by the Na-
tional Science Foundation under Grant Number
CCR93-01254, by The Geometry Center, Univer-
sity of Minnesota, an STC funded by NSF, DOE,

15

and Minnesota Technology, Inc., and by DIMACS,
an STC funded by NSF.

REFERENCES

[1] R.M. Baecker. Sorting out sorting (video). In SIGGRAPH
Video Review 7, 1981.

[2] T. Banchoff and C. Strauss. Complex Function Graphs,
Dupin Cylinders, Gauss Map, and Veronese Surface. Com-
puter Geometry Films. Brown University, 1977.

[3] R. Beach and M. Stone. Graphical style: Towards high
quality illustration. In Computer Graphics (Proc. SIG-
GRAPH ’83), pages 127-135, July 1983.

[4] H. Bronnimann. Almost optimal polyhedral separators
(video). In Third Annual Video Review of Computational
Geometry, June 1994.

[5] M.H. Brown. Algorithm Animation. MIT Press, 1988.

[6] M.H. Brown. Exploring algorithms using Balsa-I1I. Com-
puter, 21(5):14-36, May 1988.

[7] M.H. Brown. Zeus: A system for algorithm animation and
multi-view editing. In 1991 IFEFE Workshop on Visual Lan-
guages, pages 10-17, October 1991.

[8] M.H. Brown and R. Sedgewick. Techniques for algorithm
animation. IEEE Software, 2(1):28-39, January 1985.

[9] B. Chazelle and H. Edelsbrunner. An optimal algorithm

for intersecting line segments in the plane. Journal of the

ACM, 39(1):1-54, 1992.

D. Dobkin and D. Gunopulos. Computing the rectangle

discrepancy (video). In Third Annual Video Review of

Computational Geometry, June 1994.

D. Dobkin and D. Kirkpatrick. Fast detection of polyhedral

intersections. Journal of Algorithms, 6:381-392, 1985.

D. Dobkin and D. Kirkpatrick. Determining the separation

of preprocessed polyhedra — a unified approach. ICALP,

LNCS 443, pages 400-413, 1990.

D. Dobkin and A. Tal. Building and using polyhedral hi-

erarchies (video). In The Ninth Annual ACM Symposium

on Computational Geometry, May 1993.

Open Software Foundation. OSF/Motif - Programmer’s

Reference. Prentice Hall, Inc., 1991.

C. Gunn. Discrete groups and visualization of three-

dimensional manifolds. In Computer Graphics (Proc. SIG-

GRAPH ’93), pages 255-262, August 1993.

C. Gunn and D. Maxell. Not Knot (video). Jones and

Bartlett, 1991.

L. Lamport. A Document Preparation System ATEX

User’s Guide and Reference Manual. Addison Wesley,

1986.

D. Lerner and D. Asimov. The sudanese mobius band

(video). In SIGGRAPH Video Review, 1984.

S. Levy, D. Maxwell, and T. Munzner. Outside in (video).

In SIGGRAPH Video Review, 1994.

A. Marcus. Graphics Design for Electronic Documents and

User Interfaces. ACM Press.

N. Max. Turning a Sphere Inside Out (video). International

Film Bureau, 1977.

M.A. Najork and M.H. Brown. A library for visualizing

combinatorial structures. In Proc. ’94 Visualization, pages

164-171, October 1994.

B.A. Price, R.M. Baecker, and I.S. Small. A principles

taxonomy of software visualization. Journal of Visual Lan-

guages and Computing, 4:211-266, 1993.

P. Schorn. Robust Algorithms in a Program Library

for Geometric Computation. PhD thesis, Informatik-

dissertationen eth zurich, 1992.

R. Sedgewick. Algorithms. Addison Wesley, second edition,

1989.

J. Snoeyink and J. Stolfi. Objects that cannot be taken

apart with two hands. In The Ninth Annual ACM Sym-

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

18]
[19]
[20]
(21]

(22]

(23]

[24]

(23]

[26]

16

[30]

[31]

[32]

33]

34]

posium on Computational Geometry, pages 247-256, May
1993.

J. Stasko. TANGO: A framework and system for algorithm
animation. Computer, 23(9):27-39, September 1990.

P.S. Strauss and R. Carey. An object-oriented 3D graphics
toolkit. In Computer Graphics (Proc. SIGGRAPH 92),
pages 341-349, July 1992.

A. Tal, B. Chazelle, and D. Dobkin. The New—Jersey line—
segment saw massacre (video). In The Eighth Annual ACM
Symposium on Computational Geometry, 1992.

A. Tal and D. Dobkin. GASP - a system to facilitate
animating geometric algorithms (video). In Third Annual
Video Review of Computational Geometry, June 1994.

A. Tal and D. Dobkin. GASP — a system for visualizing
geometric algorithms. In Proc. ’94 Visualization, pages
149-155, October 1994.

J.E. Taylor. Computing Optimal Geometries. Selected
Lectures in Mathematics, American Mathematical Society,
1991.

J.E. Taylor. Computational Crystal Growers Workshop.
Selected Lectures in Mathematics, American Mathematical
Society, 1992.

S. Wolfram. Mathematica - A System for Doing Mathemat-
ics by Computer. Addison-Wesley Publishing Company,
1988.

