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Abstract

This paper presents a system for visualizing mobile object frame-
works. In such frameworks, the objects can migrate to remote hosts,
along with their state and behavior, while the application is running.
An innovative graph-based visualization is used to depict the phys-
ical and the logical connections in the distributed object network.
Scalability is achieved by using a focus+context technique jointly
with a user-steered clustering algorithm. In addition, an event syn-
chronization model for mobile objects is presented. The system has
been applied to visualizing several mobile object applications.

CR Categories: I.3.8 [Computer graphics]: Applications; H.5.2
[Information interfaces and presentation]: User Interfaces—Gra-
phical user interfaces; C.2.4 [Computer-communication networks]:
Distributed systems—Distributed applications

Keywords: Software visualization, distributed software visualiza-
tion, mobile objects

1 Introduction

Software visualization is concerned with the creation of tools and
techniques to visualize different stages of software and algorithm
development [Stasko et al. 1998]. As software systems become
more complex, the need for effective methods of providing insight
into the structure and behavior of programs, increases.

As a consequence of the improvement in communication technol-
ogy and the growth of the Internet, the use of distributed soft-
ware is becoming more widespread. The mobile object paradigm,
a recently introduced architecture for distributed computing, al-
lows programs to migrate to remote hosts while they are run-
ning [Acharya et al. 1996; Holder et al. 1999a; Holder et al. 1999b;
Jum 1999; Milojicic et al. 1999; Voy 1997; Walsh et al. 2000]. This
paradigm offers scalability, availability and flexibility advantages
compared to other methods of creating distributed applications.
Creating effective visualizations of mobile object frameworks is a
challenging problem and is the subject of this paper.

Several tools have been developed for visualizing parallel and dis-
tributed programs [Kraemer and Stasko 1993]. The PVanim sys-
tem [Topol et al. 1998] is a toolkit for creating visualizations of
the execution of PVM programs. PARADE [Stasko and Kraemer
1993] in an environment for developing visualizations of paral-
lel and distributed programs. In [Moe and Carr 2001], tracing of
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Figure 1: Visualization system GUI

CORBA [OMG 1998] remote procedure calls is used to analyze
runtime activities and look for anomalous behavior. Vade [Moses
et al. 2004] is a distributed algorithm animation system in which
visualizations can be created and executed on a web page on the
client’s machine. Pablo [Reed et al. 1993] provides analysis and
presentation of performance data for massively parallel distributed
memory systems. Jinsight [Pauw et al. 2001] is a system for the
visual exploration of the run-time behavior of complex Java pro-
grams.

Although research on mobile objects is widespread, visualization
of such frameworks has hardly been done. To our knowledge, the
only work in this field is [Wang and Kunz 2000], where a modi-
fication of the process-time diagram, adopted from XPVM [Kohl
and Geist 1996], is used as the means of visualization. The cre-
ation, destruction and movements of mobile objects are visualized.
Event synchronization is handled by timestamps and ordering rules.
This system has a few drawbacks. It requires manual annotation of
source code in order to generate events. It does not visualize the
communication between objects nor does it display information re-
garding the communication between machines. The system does
not visualize the physical connections between machines nor does
it display the logical connections between objects. Finally, it is not
scalable. In this paper we discuss a different approach to the vi-
sualization of mobile object frameworks, attempting to solve these
problems.

This paper makes the following contributions: First, we detail the
requirements from a visualization system for mobile objects. Sec-
ond, a graph-based visualization that concurrently shows the physi-
cal connections in the computer network as well as the logical rela-
tions between the mobile objects is presented (see Figure 1). Third,



A context-sensitive focus+context fisheye type display technique
is suggested in order to provide hierarchical information display
and support scalability. Fourth, A clustering algorithm, which is
affected by nodes of interest to the user, is presented. Fifth, we
present a model for event synchronization that is used to guarantee
visualization consistency. Finally, we propose a method in which
events are automatically generated, avoiding additional work by the
programmer of the application.

The rest of this paper is structured as follows: Section 2 provides
the background on mobile object frameworks. In Section 3, the re-
quirements from a mobile object visualization system are discussed.
Our visualization is presented in Section 4. Section 5 describes the
methods developed in order to make the visualization scalable. Sec-
tion 6 discusses implementation issues, in particular event genera-
tion and synchronization. A case study is described in Section 7.
Finally, Section 8 concludes and discusses future directions.

2 Mobile Objects

In recent years, distributed objects have become prominent in the
design of distributed applications [Brown and Kindel 1998; OMG
1998; Sun 1997]. Mobile objects are a natural evolution of the dis-
tributed objects concept [Acharya et al. 1996; Holder et al. 1999a;
Holder et al. 1999b; Jum 1999; Milojicic et al. 1999; Voy 1997;
Walsh et al. 2000]. A mobile object framework has a few distinc-
tive features. The first feature is code mobility: objects can mi-
grate to remote hosts, together with their state and behavior, while
the application is running. We refer to the processes hosting mo-
bile objects as cores. Mobility may be further classified into weak
mobility, where only the object’s code and state are moved, as op-
posed to strong mobility where the full runtime context, including
the stack and the program counter, are moved.

The second feature of mobile objects is location transparency,
which allows the programmer to make calls to objects regardless
of their current location. Since the location of objects may change
over time, provisions must be supplied in order to track referenced
objects. Unlike regular distributed objects, in which the location
of a remote object is fixed, when making a call using a reference
to a mobile object, the parameters may pass through several inter-
mediary cores until reaching the called object. The introduction of
intermediary cores allows for a more scalable, lazy update of the
location of a referenced object [Holder et al. 1999a].

Another feature of mobile object frameworks is layout program-
ming. Apart from the behavior of objects, their co- and re-location
constraints may be specified. For example, the programmer may
specify that two objects α and β should always be located at the
same machine. This may be necessary if α and β are expected to
perform a lot of communication, for example.

In order to make effective use of mobility, a monitoring facility is
used to get up to date information about the network status and
object deployment. This profiling infrastructure can be part of
the mobile object infrastructure [Gazit 2000] or an external pro-
cess [Acharya et al. 1996].

Mobile object frameworks have several benefits. The first is flex-
ibility. In cases where a great deal of communication is expected
to be performed between two remote objects, α and β , α can mi-
grate, along with its state and behavior to β ’s location and perform
the communication locally, thereby avoiding the long delays asso-
ciated with remote method calls. If α needs to interact frequently
or pass a large amount of data to β , it might be preferable to pay the

overhead associated with migration rather than the cost of remote
communication.

The second benefit of mobile objects is their easy deployment: as-
suming a widespread existence of appropriate middleware, it is pos-
sible to deploy applications to new cores without the need to man-
ually install them ahead of time.

Third, mobile objects are scalable. When deploying an application
on a large number of cores, it is often impossible to know a pri-
ori the optimal network layout the application should use in order
to best leverage the resources of the computer network. The con-
stantly changing availability of communication and computing re-
sources call for the flexibility of dynamic object relocation in order
to maximize the use of available resources.

Finally, movement may also be used to increase the availability of
the application: in cases of failure of parts of the network, the ap-
plication can migrate or regenerate on live parts of the network.

3 Requirements

This section discusses the requirements from a visualization system
for mobile objects.

1. Physical and logical visualization: A mobile object application
has two distinct, yet related facets. The first is the physical com-
puter network with the interconnections between the cores. The
second is the logical network of mobile objects that can be used to
show the connections and interactions between objects. The visu-
alization should display both of these facets.

2. Interesting events: In any visualization system, the events that
need to be visualized greatly affect the design of the system. In the
case of mobile objects, the following interesting events should be
visualized:

• Object Movement: The movement of objects between cores
while the application is running is the main difference be-
tween mobile object frameworks and regular distributed ap-
plications. Therefore, a clear and concise depiction of such
activities is of great importance.

• Construction/destruction: Being a dynamic, distributed appli-
cation, both objects and cores may be added or removed dur-
ing the execution of the application.

• Communication: Being distributed in nature, the mes-
sages sent between the different parts of the system play a
paramount role during execution of the application and there-
fore provisions to visualize them should be supplied.

3. Consistent depiction: A consistent depiction of the events oc-
curring in the system is of vital importance. This is a challeng-
ing requirement since in distributed environments there is no global
clock that can be used to synchronize the events emitted by differ-
ent processes. Visualizing the execution of mobile objects adds an
additional complexity because parts of the application change their
physical location.

4. Transparency: Event generation should be transparent both to
the programmer and to the user of the application. Moreover, care
must be taken in order to reduce the perturbation of the application
caused by generating the events.

5. Interactive control: The user should be able to steer the visu-
alization system to display relevant and interesting data out of the
large amount of information collected. This control should be in-
teractive, allowing the user to feed back to the system new requests



based on the knowledge accumulated while viewing the unfolding
visualization.

6. Scalability: One of the main challenges in software visualiza-
tion is building a scalable visualization. This is especially impor-
tant when dealing with networks of computers, which can poten-
tially generate massive amounts of information. A visualization
system should be able to process large amounts of data while avoid-
ing swamping the user with information.

7. Online and offline: In order to facilitate both online and of-
fline (post-mortem) inspection of application execution, provisions
should be supplied in order to record and playback a sequence of
captured events. This capability allows, for example, the compari-
son of two different runs of the application, for debugging or opti-
mization purposes.

The following sections address these requirements. Section 4 dis-
cusses requirements 1 and 2. Section 5 addresses requirements 5
and 6. Section 6 addresses requirements 3, 4 and 7.

4 Mobile Object Visualization

As discussed in Section 3, two simultaneous networks are of in-
terest: the physical network of cores (machines) and the logical
relations and interactions between mobile objects. A graph is a nat-
ural choice for visualizing a distributed network. In our case, we
need to simultaneously visualize two graphs. We use the following
definition:

Definition 4.1 Clustered Graph: A clustered graph is an ordered
quadruple G = (V,C,Ev,Ec), where V is the node set, C is a set of
clusters which form a partition of the node set V , Ev is the set of
edges between nodes Ev ⊆

{

(vi,v j)|i 6= j,vi,v j ∈V
}

and Ec is the
set of cluster-cluster edges Ec ⊆

{

(Ci,C j)|i 6= j,Ci,C j ∈C
}

.

A clustered graph is a natural choice for displaying the simultane-
ous physical and logical graphs, as demonstrated in Figure 1. Every
mobile object is depicted by a node in the graph. The logical con-
nections between objects are shown using solid edges connecting
the nodes. In order to overlay the physical structure of the net-
work, clusters are used. Each core is represented by a cluster that
contains all of the objects currently residing in that core. Dashed
cluster-cluster edges are used to represent physical connections be-
tween cores (see Figure 5), as opposed to logical relations that exist
between objects.

The graph can be displayed in three dimensions, as illustrated in
Figure 2. Edges between nodes, showing relations between mobile
objects, are drawn on the lower plane, while cluster-cluster edges,
showing physical connections between cores, are drawn on the up-
per plane. In 3D, a cluster is drawn as a semi-transparent pyramid.
A small dummy node is added to each cluster, drawn at the apex
of the pyramid and serves as the endpoint of cluster-cluster edges.
One of our guidelines in creating this visualization is being able to
collapse the 3D view into a 2D view in a natural and comprehen-
sible way, as illustrated in Figure 3, which shows a 2D drawing of
the graph from Figure 2.

We use several techniques and attributes in order to display infor-
mation in this graph. Each cluster boundary is drawn using a dif-
ferent color. This helps the user track the different clusters while
changes are performed to the graph during the visualization.

Each node is drawn using color strips, utilizing the growing
squares [Elmqvist and Tsigas 2003] metaphor, as shown in Fig-
ure 4. The strips are colored according to the location history of

Figure 2: 3D view of a mobile object environment

Figure 3: 2D view of a mobile object environment

the object. The bottom strip is the current location (e.g. colored
with the same color as the cluster the node currently resides in),
the strip above corresponds to the previous location, etc. The max-
imum number of strips is configurable. Using the color strips, the
user can easily distinguish between highly mobile objects (showing
strips with many colors) and static ones (showing a single strip).

In order to create a more scalable and meaningful display, we em-
ploy lazy construction of edges. A new edge is drawn between
two nodes once a method call between the objects is detected. This
avoids cluttering the graph with edges (references) that are not used.
It may be argued that such unused references are interesting, how-
ever, the information gained is usually not worth the extra cluttering
of the graph or the increased complexity in detecting these refer-
ences.

In addition to the existence of communication between objects or
cores, the frequency of this communication is of interest to the
user. Line patterns are used to convey this information. The higher
the frequency of alternation in the dashed lines, the higher the fre-
quency of communication. See for example Figure 1. The sum of
two weighted averages is used to calculate the amount of commu-
nication between cores. The first is the average number of objects
moving between the cores connected by the edge. The second is
the average number of remote invocations performed between the



(a) Before object movement (b) After first movement (c) After second movement

Figure 4: Using color to show location history

two cores. The averages are calculated using a weighted sliding
window, taking the last N samples into account.

In some cases, it is more revealing to use icons, rather than rectan-
gles, to represent the objects. Our system allows the user to assign
icons to the nodes, as illustrated in Figures 9 and 10. Using infor-
mation about the type of each displayed object and a user-defined
mapping between texture files and object types, the display can be
augmented with class information.

Some mobile object frameworks [Holder et al. 1999a] allow tag-
ging of specific objects as stable, i.e. objects that remain at the
same location throughout their lifetime. Such objects may be used,
for example, to provide abstractions for hardware devices such as
printers or scanners connected to a specific computer. This distinc-
tion between stable and movable objects is visualized by laying out
the objects in each cluster using two concentric circles. The inner
circle contains the stable objects while the outer one contains mov-
able ones.

We have developed a special incremental graph layout algorithm
tailored for the requirements of mobile object visualization [Frish-
man and Tal 2004]. The algorithm produces a dynamic display of
clustered graphs, attempting to preserve the users mental map of the
graph, as it is being changed [Misue et al. 1995; North 1995]. The
algorithm uses a static force-directed layout algorithm as a basic
building block [Ellson et al. 2002; Kamada and Kawai 1989; Tollis
et al. 1999]. It uses invisible dummy nodes to create the clustered
structure and place-holder nodes to maintain layout stability. Edge
length and weight are used as a means of controlling the changes
made to the layout.

Our system uses animation in order to show different events. When
a new graph layout is performed, for example after an object moves
from one core to the other, the positions of nodes, edges and clusters
are linearly interpolated between the old and the new locations. A
method call between two remote objects is animated using a light-
ning bolt icon that moves from the caller to the called object.

5 Scalable Visualization

As the number of objects and cores increases, the visualization
might get cluttered with information. Gaining any insight from the
visualization will become increasingly difficult. In this section we

present a context sensitive focus + context technique that alleviates
this problem.

5.1 Levels of Detail

As the simultaneous core/object graph, presented in Section 4,
grows larger, it becomes difficult to display all of the nodes and
edges in the graph at the same time. The visualization should pro-
vide the user with an overview of the graph while at the same
time allowing focusing on specific, user-defined areas in order to
get more detailed information [Card et al. 1999; Furnas 1986]. To
achieve these goals, a hierarchy of levels of detail is defined. Differ-
ent parts of the graph can be displayed in different levels of detail.

At the highest level, full information is displayed, as shown in Fig-
ure 5(a). The next level of the hierarchy omits information about
the objects residing on each core. Instead of displaying a cluster
for each core in the network, a single node is used to depict each
core. As before, edges are used to convey the physical connections
to other cores in the network, as demonstrated in Figure 5(b). The
final level of the hierarchy combines several cores into one node in
the display. The size of such a node is proportional to the number of
cores it depicts. Figures 5(c) and (d) demonstrate graphs containing
nodes of various levels of detail.

The user has several methods to control which parts of the graph
will be displayed in which level of detail. The first is selecting fo-
cal nodes (cores) that are of primal interest to the user and thus
should be displayed with full detail. The second method is navi-
gating the graph using zoom-in and zoom-out operations. The third
is choosing the total number of nodes to be displayed in the graph
and letting the system cluster the graph nodes accordingly. Once
the user selects focus nodes, a clustering algorithm is employed in
order to decide in what level of detail each core will be displayed,
as described in the next subsection. The different levels of detail
are combined in a seamless, dynamic, user-steered manner.

Zoom–in and zoom–out operations are animated smoothly. The old
nodes fade out of the graph while the new nodes fade in. Next,
the new nodes smoothly move to their final location. This helps
the user understand the changes to the graph. A similar anima-
tion is performed when re–clustering is performed. The locations
of the new clusters are calculated by the layout algorithm, which
takes into account the previous locations of the nodes comprising
the cluster, thus maintaining layout stability.



(a) Original graph – 16 clusters (b) Manually zooming out of 3 clusters

(c) Clustering to 14 clusters (d) Clustering to 12 clusters

Figure 5: Levels of detail



5.2 Clustering

In this subsection we present the clustering algorithm that computes
the focus-based, hierarchical representation of the graph. The algo-
rithm, which is summarized in Figure 6, is based on an extension
of the agglomerative clustering algorithm [Duda et al. 2000].

Input: Set of focal nodes; distances between nodes; number of
desired clusters
Algorithm:

1. Calculate shortest distance between each node and the clos-
est focus node.

2. Update distances between nodes according to distance to fo-
cus node.

3. Perform hierarchical clustering.
Output: Clustering hierarchy of the nodes

Figure 6: Focus-based clustering algorithm

The algorithm has several inputs. The first is a set of focal nodes
(e.g., cores of interest), selected interactively by the user. The sec-
ond is the distances between nodes, designated D(u,v), which cor-
respond to the weights of edges in the graph. They are calculated
according to the frequency of method calls and object moves be-
tween cores, as described in Section 4. The third input is the desired
number of clusters. The output of the algorithm is a hierarchical
clustering of the graph.

In the first step of the algorithm, the shortest distance between each
node u and the closest focal node, D f ocal(u), is calculated. This is
done using Dijkstra’s algorithm on the focal nodes. Additionally,
the maximum between the minimal distances is computed as

dmax = maxv∈V {D f ocal(v)},

where V is the set of nodes in the graph.

In the second step, the distances, D(u,v), between every pair of
nodes u,v, are updated according to their proximity to focal nodes.
This is done in order to create a fisheye-type effect in which nodes
farther away from the focal points are displayed with less detail.
As opposed to the regular fisheye technique, in which geometric
distortion is used, our method moves the distortion to the clustering
phase. We set the initial, joint average distance of nodes u and v
and a focus node to

D f ocal
avg (u,v) =

D f ocal(u)+D f ocal(v)
2

.

It should be noted that the focal node used in D f ocal(u) may be dif-
ferent from the one used in D f ocal(v). The distance D(u,v) is dis-
torted to form Ddistorted(u,v), the updated distance between nodes
u and v, according to the following formula:

Ddistorted(u,v) =
D(u,v)

1+3 D f ocal
avg (u,v)

dmax

.

The behavior of this formula, as a function of the fraction D f ocal
avg (u,v)

dmax
is shown in Figure 7. As can been seen, the greater the average
distance between the nodes and the closest focal node, the bigger
the distortion. This behavior mimics the fisheye effect. Nodes in
the periphery are less interesting and therefore have a higher prob-
ability of being clustered together, since they are perceived to be
close.
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Figure 7: Distortion vs. distance from focus

Input: Distances between nodes; number of clusters
Algorithm:

1. Assign every node i to its own singleton cluster Ci.
2. Find the two closest clusters, designated Ci,C j.
3. Merge Ci,C j and update cluster distances.
4. Go to step 2 until the requested number of clusters is created.

Output: Clustering hierarchy of the nodes

Figure 8: Hierarchical clustering algorithm

In the last step of the algorithm the actual clustering is performed,
using the distances computed in the previous steps. The algorithm
is shown in Figure 8.

The distance between clusters Ci and C j is calculated using a mod-
ified average distance metric. Only edges (distances) e = (u,v) ∈ G
directly connecting a node u ∈ Ci and a node v ∈ C j (e.g., edges
crossing the boundary between the clusters) are taken into account.
The distance is

Dist(Ci,C j) =

∑
(u,v)∈G,u∈Ci,v∈C j

Ddistorted(u,v)

| {e = (u,v) ∈ G|u ∈Ci,v ∈C j} |

e.g., the sum of the lengths of the edges divided by the number
of edges. This formula is a tradeoff between using the closest-
neighbor distance that is fast, to calculating the exact average dis-
tance which gives better clustering results but is slower.

6 Implementation

We have implemented our system on top of FarGo [Holder et al.
1999a], a Java-based mobile object framework. FarGo contains
extensive monitoring facilities [Gazit 2000] and uses a source to
source compiler called Fargoc for generating proxies and other
code used to implement support for mobile objects. Our imple-
mentation is Java based. We use the Java3D API for generating the
visualization.

In each core (machine), a special local profiling object, used to
collect events, is instantiated when the core is started. This ob-
ject listens both to events generated by the Fargo monitor and to
events generated by our modified Fargoc compiler. The local pro-
filer object implements the active object design pattern [Lavender



and Schmidt 1996] in order to be able to handle high event through-
put without delaying the executing application.

The events generated by each core are forwarded to a main event
collection object. If a hierarchical profiling architecture, described
below, is used, the events arriving at the main event collector are
only the subset of the generated events that are of interest to the
user. They are forwarded to the event synchronization unit, de-
scribed Section 6.2. Events may be stored to a file for offline visu-
alization.

The visualization component receives the synchronized events,
from which a consistent run of the application can be constructed.
Events generated by the user, such as requests for re-clustering or
zoom in / zoom out operations are fused together with the events
collected from the system, in order to form a unified event queue
that is visualized.

Below we describe how events are generated and synchronized.

6.1 Event Generation

One of the goals of a program visualization system is to generate
events with minimal effort by the programmer and the user of the
application being visualized, while perturbing the running applica-
tion as little as possible. In this section we describe how this is
achieved.

The interesting events are related to communication between mo-
bile objects and movement of objects between cores. Since loca-
tion transparency needs to be maintained when communication is
performed between mobile objects, some kind of proxy needs to
be used in order to forward the method call to the actual destina-
tion object. This proxy is generated either statically [Holder et al.
1999a] or dynamically [Acharya et al. 1996; Voy 1997]. This is
where the event generation code is (automatically) inserted.

We assume the existence of a unique ID for each object in the sys-
tem. Further, we assume the capability of adding code at the en-
trance and exit points of calls to the interfaces of mobile objects.
These are the points to which the proxies interface, in order to send
parameters and receive return values to/from remote objects.

In order to trace calls, when the execution flow enters an interface
method of a mobile object, the ID of that object is recovered. The
problem is finding out the ID of the caller object. In order to do
that, we maintain a stack of object IDs through which the current
thread of execution has passed: when entering an interface method
of a mobile object, the current object ID is pushed onto the stack.
When performing a return from such a method, the object ID is
popped from the stack. It should be noted that in many cases mobile
objects contain internal objects and these internal objects may make
calls to other mobile objects. When a call is made from an internal
object, detecting the ID of the caller object without using our ID
stack method is not trivial.

Since objects can move between cores, the middleware should for-
ward method invocations to the core where the destination object
currently resides. Our system piggybacks essential information –
the IDs of the callee and caller object – to the remote method invo-
cation. Our method is able to handle exceptions by comparing the
stack of called method names to the list of stored IDs and class types
of objects on the object ID stack. When creating a new thread, the
current object ID stack is copied to the child thread using thread-
specific data. Bootstrapping the stack is done when entering the
first method of a mobile object.

Generating events for movement of objects between cores is im-
plemented by piggybacking onto the migration code supplied by
the middleware. The required information (object ID, source and
destination addresses) is easily obtainable.

Other types of actions for which events need to be generated include
the creation and destruction of mobile objects and cores (e.g., con-
necting/disconnecting from the application network). This can be
handled by adding code to the mobile object middleware through
which these actions are performed or by tapping into an existing
profiling interface of the middleware. We use the built-in monitor
for generating these events.

6.2 Event Synchronization

One of the main challenges in visualizing distributed environments
is the accurate depiction of events. Since in asynchronous dis-
tributed systems there is no way of knowing the real ordering of
events, it is necessary to generate a visualization that is consistent
with the events.

We base our solution to event synchronization on [Moses et al.
2004], where consistency of distributed environments with static
objects was addressed, and extend it to support mobile object
frameworks. In [Moses et al. 2004], the following is assumed:

1. There is a fixed (known) number of processes.

2. A process can perform two types of actions: sending a mes-
sage to a different process and an internal computation, possi-
bly modifying the process’s local state. Receiving a message
is considered an internal action.

3. The communication network and processes are reliable.

4. Messages sent by a single process to another process arrive in
the order they were sent.

5. The network is asynchronous - there is no universal clock.

Since the visualization process is part of the distributed environ-
ment, it cannot know the relative order of actions performed by
different processes. A way to solve this difficulty is to introduce
semantic causality.

Definition 6.1 With respect to a given algorithm run r, we say that
an event e in r semantically causes e′, denoted by e → e′, if one of
the following holds:

1. e and e′ are on the same process, e occurs before e′ and
indep(e,e′) does not hold (they are not semantically indepen-
dent).

2. e and e′ are on two different processes connected by a commu-
nication channel, e is a send event and e′ is the corresponding
receive event.

3. There is an event e′′ such that e → e′′ and e′′ → e′.

Semantic causality requires information to be supplied by the user
via the binary relation indep(a,b).

Let e and e′ be two events of the algorithm. Let An(e) and An(e′)
be the animation segments of these events, respectively. We say
that an animation An(e) precedes an animation An(e′), denoted by
An(e) ≺ An(e′), if An(e) completes before An(e′) starts.

Theorem 6.1 An animation is consistent with the execution of the
algorithm if and only if for every two algorithm events e and e′,
such that e → e′ also An(e) ≺ An(e′).



That is, in order to ensure that the animation is consistent with the
execution of the algorithm, we have to ensure that for every two
events e and e′, if e → e′ then An(e) ≺ An(e′).

A possible implementation of this requirement is called receive syn-
chronization. In this method, reports of send and receive events are
sent to the animation system immediately after they take place and
there is no delay in the execution of the algorithm. The animation
of the receive event is delayed until the corresponding send event
has been animated.

We now turn our attention to mobile object environments. The main
differences between this model and the distributed environments
model, in the context of consistency, are:

1. Assumption 1 is violated. Both cores and objects might join
or leave the network.

2. Objects might move between cores, which is not the case in
classical distributed environments.

3. Assumption 4 is violated. Since objects might move, mes-
sages sent by a single object to another might be received out
of order.

The first problem is addressed as follows. Dynamic creation and
deletion of cores and objects are modeled as internal messages. A
core / object is introduced to the animation system after its internal
create event is received. A core / object is deleted from the ani-
mation system once a deletion event is received and all proceeding
events have been animated.

To solve the second problem, object movement between locations is
modeled as a method call between the sending and receiving cores.
The parameters passed include the state and behavior (code) of the
object that is being moved from one core to the other.

The third problem, out-of-order messages, should be solved by the
middleware or the application. It is not a visualization problem, but
rather an inherent problem. When this is solved, all that remains is
to solve possible out-of-order messages to the visualization system.
This can be solved by adding an event counter to each object and
using the receive synchronization technique described above for vi-
sualization.

One possible approach to the event synchronization problem is to
treat every mobile object as a separate process and perform syn-
chronization accordingly. This means that all method calls into and
out of every mobile object need to be synchronized. This solution
is very fine-grained, since many method calls need to be traced.
Also, since mobile objects may contain multiple threads of execu-
tion (that may cross from one object to the other), it is necessary
to establish some kind of dependency relationship between the ac-
tions performed in different threads. Detecting such dependencies
automatically may require extensive profiling of the execution of
the application, which might slow it down by orders of magnitude.
Our conclusion therefore is that using such a fine-grained synchro-
nization method is not applicable in our case.

A second approach is to use a more coarse-grained view of the ex-
ecution, performing synchronization at the core level. Much like
regular distributed applications, each core is viewed as a separate
process, and events notifying about communication between sepa-
rate cores and activities internal to each core are emitted and syn-
chronized. The internal events in each core are serialized. This may
add redundant dependencies between activities that are independent
in a core but is guaranteed to create a consistent visualization. The
alternative of asking the user to explicitly define dependencies, is
not viable in the context of our problem.

Messages sent between cores are modeled as messages sent be-
tween processes. The dependency between receiving the param-
eters for a message call and forwarding the parameters to the next
core on the way to the destination core is handled automatically
since these are two events that occur at the same core, one after the
other. This is also true for messages sending the return value back
to the caller core.

This scheme can be extended further to support scalability by using
a hierarchy of synchronization units, constructed in a manner sim-
ilar to what is discussed in Section 5. Each level in the hierarchy
contains a synchronization unit. Events are forwarded to the next
(higher) level only if they are not contained in the current level in
the hierarchy.

Events showing average information that is periodically updated are
not synchronized. For example, in our system events notifying the
amount of communication between cores are periodically fired, yet
not synchronized.

7 Case Study

Our system has been used for visualizing several applications,
including a mobile object simulator, an e-commerce applica-
tion [Joseph et al. 2000] and a distributed e-mail system (abbre-
viated DEM) [Bercovici 2004]. Due to the lack of space we focus
on DEM.

E-mail is one of the most popular Internet applications. Nowadays,
e-mail architectures are governed by a server-centric design, which
implies a handful of weaknesses such as a single point of failure,
storage and processing stress, bottlenecks and inefficiency.

The goal of the DEM system is to overcome these drawbacks. The
service is provided through the use of the participants’ resources.
Lightweight servers and users’ mailboxes all scatter between par-
ticipants’ computers instead of residing on a single server (or clus-
ter). Through the use of the mobile objects paradigm, the mail-
boxes and servers are able to travel on the “live” network, so that
they continue their operation despite the fact that participants con-
stantly join and leave the network. Most of the communication is
done directly between users, thus removing the bottlenecks caused
by mail servers. The system’s components are replicated across nu-
merous hosts, eliminating single point of failure problems. Storage
and processing stress is reduced as participants take an even share
of the burden. All of this yields a reliable and scalable system, with
negligible operational and maintenance cost.

Visualization has been used during the development of this appli-
cation – for debugging purposes as well as for managing and moni-
toring its deployment across the network. Due to the complexity of
the architecture, its developer expressed a need for visualization at
the very early stages of implementation. Using visualization, sev-
eral problems were quickly discovered. For example, a case where
an object does not flee from a core that is shutting down was un-
covered.

In this application, icons have been used instead of the default rect-
angles, to represent the objects. The mailboxes are displayed using
a mailbox icon. Servers are represented as gray disks. Yellow pools
represent mailbox placeholders. Finally, the GUI is represented by
a mailbox icon with a white background.

Figure 9 shows a visualization of the movement of a mailbox be-
tween computers. In Figure 9(a) there is one mailbox in each core.
In Figure 9(b) a mailbox moved to a new core that connected to the
service, shown at the bottom.



(a) Before movement

(b) A new core was created and a mailbox migrated to it

Figure 9: Mailbox mobility in the DEM system

Figure 10: Sending an e-mail in the DEM system

Filtering of method calls was used in order to show specific
interesting events. For example, Figure 10 shows an e-mail
message being sent from the source mailbox directly to the
destination mailbox. The message, in transit, is drawn in-
side a red circle. An accompanying movie can be found at
http://www.ee.technion.ac.il/∼ayellet/Movies/FrishmanTal.mov.

8 Conclusion

We have presented a system for visualizing mobile object frame-
works. The key features of these frameworks – object mobility,
location transparency and distributed operation – are addressed by
our system. A clustered graph is used to concurrently show the
physical connections between cores as well as the logical connec-
tions between objects. A clustering algorithm, which is influenced
by the areas of interest to the user, is used to provide a hierarchical,
scalable context+focus view of the network. The overall complex-
ity of the graph is user controlled. The visualization is dynamic:
incremental graph layout and animation are used to depict changes
in a smooth, comprehensible manner.

Our system has been used in several scenarios ranging from simula-
tors to distributed e-mail and e-commerce applications. It has been
used for monitoring, debugging as well as for presenting system
architectures.

There are several avenues of future research. Additional levels of
detail can be integrated into the visualization. The existing profil-
ing infrastructure can be used to supply object-specific information
such as memory usage and creation time. It has been implied that
the delay between nodes in the network is of significance [Acharya
et al. 1996; Gazit 2000]. This can be integrated into our frame-
work. Finally, information about the cores themselves, such as
thread count, memory usage and CPU usage can be integrated into
the visualization.
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