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ABSTRACT
New congestion control algorithms are rapidly improving datacen-
ters by reducing latency, overcoming incast, increasing through-
put and improving fairness. Ideally, the operating system in every
server and virtual machine is updated to support new congestion
control algorithms. However, legacy applications often cannot be
upgraded to a new operating system version, which means the ad-
vances are off-limits to them. Worse, as we show, legacy appli-
cations can be squeezed out, which in the worst case prevents the
entire network from adopting new algorithms.

Our goal is to make it easy to deploy new and improved conges-
tion control algorithms into multitenant datacenters, without having
to worry about TCP-friendliness with non-participating virtual ma-
chines. This paper presents a solution we call virtualized conges-
tion control. The datacenter owner may introduce a new congestion
control algorithm in the hypervisors. Internally, the hypervisors
translate between the new congestion control algorithm and the old
legacy congestion control, allowing legacy applications to enjoy
the benefits of the new algorithm. We have implemented proof-
of-concept systems for virtualized congestion control in the Linux
kernel and in VMware’s ESXi hypervisor, achieving improved fair-
ness, performance, and control over guest bandwidth allocations.
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1. INTRODUCTION
The rise of hyperscale datacenters has driven a huge growth in

network communications. Because the large datacenter companies
control both ends of the internal connections, they are now deploy-
ing new congestion control algorithms, either published (e.g., TCP
with ECN, DCTCP, TIMELY, etc.) [1–15] or proprietary, to reduce
latency and flow completion times for their traffic. This trend seems
likely to continue, as datacenter companies seek ways to maximize
utilization of their network, by customizing the network’s behavior
to best serve their large distributed applications.

Multitenant datacenters, in which many tenants lease and share a
common physical infrastructure to run their virtual machine (VM)
workloads, have a harder problem to solve [7]: their tenants im-
plement their own congestion control algorithms. Yet, the mul-
titenant datacenter owner must ensure that all the algorithms still
play well together in the shared datacenter network, so as to meet

Figure 1: 10 flows share the same bottleneck link: an ECN-
unaware flow (non-ECN), 8 ECN-enabled flows (ECN), and a
non-ECN flow augmented by vCC translation (virtual-ECN).
The figure plots the frequency, over many runs, of the average
goodput of each flow. The non-ECN flow is starved, reaching
only 10% of the ECN goodput on average. After translation
to virtual-ECN, the average goodput is near identical to that of
ECN.

agreed-upon SLAs. Given the complex interplay between different
congestion control algorithms (just think how hard it is to make a
single new algorithm TCP-friendly [7, 16]), what is a multitenant
datacenter owner to do?

A few approaches come to mind. For instance, the multitenant
datacenter owner can strictly divide the bandwidth among the ten-
ants, giving each a fixed allocation [17]. However, this prevents
statistical sharing of unused bandwidth. Another approach is to
modify all the datacenter switches and tweak the fairness rules be-
tween tenants at each switch, for example by implementing sep-
arate queues or applying different marking thresholds within the
same queue [7, 16]. Unfortunately, as the number of tenant al-
gorithms increases, this approach becomes harder to deploy while
still guaranteeing fairness. Instead, we adopt a different approach,
taking advantage of the fact that all traffic passes through hyper-
visors controlled by the multitenant datacenter owner. What if a
translation layer in the hypervisors ensured that the whole datacen-
ter uses a single best-of-breed congestion control algorithm, while
giving the illusion to each of the VM guests that it keeps using its
own congestion control algorithm? (as illustrated in Figure 2.) In
other words, the guest congestion control algorithm is an overlay



Figure 2: High-level illustration of vCC (virtualized conges-
tion control). The vCC translation layer sits in the hypervisor,
where it translates the guest’s legacy congestion control to a
target congestion control algorithm.

algorithm, while the hypervisor translates it (transparently) to the
underlay algorithm used in the datacenter network. We call this
approach virtualized congestion control, or vCC.

A common manifestation of the problem we are trying to solve
is when a legacy application runs on a legacy guest VM operating
system (OS) that uses an old TCP version (e.g., an ECN-unaware
TCP NewReno). The application has been functioning correctly for
years, with little or no maintenance, but has recently been moved to
the cloud. If other VMs are using more modern (e.g., ECN-aware)
congestion control algorithms, they can starve the older applica-
tion’s traffic, as seen in Figure 1.1

It is frequently impractical to port the old application to a newer
OS, and out of the question to force new applications to use out-
dated congestion control algorithms. Our approach solves this
problem by allowing both types of applications to enjoy the benefits
of ECN. As shown in Figure 1, while a non-ECN TCP flow can get
starved when running alongside many ECN flows, its virtual-ECN
augmentation with our vCC translation layer provides significantly
increased fairness. Specifically, in this case, the vCC translation
layer in the hypervisor (a) modifies the TCP header fields of the sent
packets to enable ECN support in the underlay; (b) upon receiving
an ECN congestion notification, decreases the receive window to
make the overlay TCP guest sender reduce its pace and behave as
if it were ECN-aware; and (c) modifies the TCP header fields of
the ACK packets to mask congestion notifications in the overlay.

The longer-term goal of our vCC datacenter solution is to be
able to introduce a new best-of-breed underlay congestion control
algorithm that is implemented in the hypervisor and is decoupled
from the congestion control algorithm in the overlay guest OS. The
new underlay algorithm would not need to limit itself to be TCP-
friendly or legacy-friendly, and therefore may be even more effi-
cient than existing algorithms in multitenant datacenters. This vCC
architecture should seamlessly support arbitrary legacy guest OSes
and congestion control algorithms. The software implementation
of vCC at the hypervisor allows update of the datacenter-wide con-
gestion control algorithm without changes in the guest VMs. Fi-
nally, since each hypervisor can determine the application and ten-
ant that generated each of the hypervisor flows, vCC can implement

1The data presented here represents 140 runs of the experiment.
Each run lasted 37 seconds; the first 5 and last 2 seconds were
not included in the goodput average to avoid experiment start-up
and tear-down effects. Each of the 10 senders is connected to a
single switch, which is connected to a single receiver by a single
(bottleneck) link. All links have a bandwidth of 10 Mbps and a
delay of 250 µs, so the round-trip time (RTT) is 1 ms. ECN and
non-ECN flows rely on TCP NewReno. The virtual-ECN flow was
provided by our Linux vCC translation layer, described in Section
3. The switch’s port connected to the receiver was configured with
the RED1 parameter set presented in Table 1.

congestion control algorithms that generalize fairness among flows
to fairness and resource allocation among both tenants and applica-
tions.

Fundamentally, we view our problem as an instance of a concept
that we denote algorithmic virtualization. While resource virtual-
ization is about sharing a common resource and making each guest
believe that it keeps using the resource privately, algorithmic virtu-
alization is about implementing a common algorithm while making
each guest believe that it keeps using its private algorithm. In our
setting, we provide an algorithmic virtualization of congestion con-
trol.2 The hypervisor implements a common best-of-breed conges-
tion control algorithm while allowing each guest to keep using its
private legacy congestion control algorithm. Formally, a congestion
and flow control algorithm is a function from a sequence of input
events (e.g., ACKs or receive window sizes from the network, or
new data from the application layer) to a sequence of output events
(releasing packets to the network). Given an input sequence x, we
define our target output f(x) as the output obtained by the target
underlay datacenter congestion control algorithm f . The goal of
our hypervisor translation layer T is to map input x into T (x) so
that the private guest overlay congestion control algorithm g ap-
plied to the modified input T (x) yields the same target output, i.e.,

g(T (x)) = f(x). (1)

In this paper, we propose to add a translation layer at the hyper-
visor that will virtualize the congestion control. While the guest-
VM legacy applications will continue to use their legacy TCP im-
plementations, the hypervisor will translate this legacy TCP into a
newer congestion control algorithm under-the-hood. As a result,
the hypervisor can provide a large set of benefits (e.g., ECN aware-
ness, Selective ACK, smaller timeouts, etc.) to all legacy applica-
tions. It will ensure that all datacenter applications are afforded the
same benefits, resulting in similar expected performance and there-
fore in increased fairness. In particular, our contributions are as
follows:
Techniques. In Section 2, we consider a wide range of techniques
that the hypervisor can implement, and discuss the tradeoffs be-
tween their implementation complexity and the potential benefits
that they can provide. For instance, an algorithm that allows the
hypervisor to directly modify the guest memory essentially enables
it to replace the whole networking stack, but at the cost of a com-
plex implementation. Likewise, by breaking a TCP connection into
several sub-connections, a TCP proxy-like [19,20] solution can im-
plement nearly any congestion control algorithm, but may violate
TCP end-to-end semantics by acknowledging packets that were not
received by the destination receiver.

We also suggest more lightweight approaches that provide a
more limited set of benefits. For example, if the hypervisor can
update the receive window field in ACKs, then we show that it can
provide ECN-like or DCTCP-like properties to an ECN-unaware
TCP congestion control. In fact, in specific cases, we prove that it
can exactly emulate either ECN or DCTCP.
Fairness in mixed-ECN environments.3 In Section 3, we show
that a minority of non-ECN legacy flows can get starved by a ma-
jority of ECN flows. This is in part because when a switch buffer
becomes congested, packets from the ECN flows continue to enter
the buffer for at least an RTT, keeping the buffer congested. As a
result, the switch may drop long sequences of non-ECN packets,
causing timeouts in non-ECN flows.
2Fibbing can be seen as another recent example of algorithmic vir-
tualization in the routing layer [18].
3All of our Linux code and experimental settings are publicly avail-
able on Github [21].



We subsequently demonstrate that fairness can be achieved by
using our Linux-based vCC translation layer to make non-ECN
flows ECN-capable. In addition to restoring fairness, we provide
the benefits of ECN to the non-ECN flows, i.e., achieve high link
utilization without dropping and retransmitting packets.
Dynamic hypervisor-based TCP bandwidth sharing. In Section
4, we present a proof-of-concept VMware ESXi vSwitch imple-
mentation of the vCC translation layer. We show that this vCC
layer is capable of dynamically throttling traffic using the TCP re-
ceive window, and therefore provides preferential treatment to cer-
tain applications without queueing or dropping packets in the net-
work.
Discussion. In Section 5, we discuss the architectural roadblocks
to the implementation of our vCC solution in datacenters.

2. HYPERVISOR TRANSLATION TECH-
NIQUES

In this section, we look at several available TCP modification
techniques that may be used in our vCC architecture. These tech-
niques are roughly ordered from the most to least intrusive. The
first two techniques are specific to hypervisors, while those fol-
lowing can also be used in network edge middleboxes, including
several existing techniques that were proposed in the literature to
regulate the rate of TCP flows [22–26]. In this paper, we focus on
the simpler and least intrusive techniques, since they are the most
appealing and practical to implement.

Additionally, we explain the drawbacks of each technique, in-
cluding how each may violate networking architecture principles.
Not all lies are created equal: breaking the end-to-end principle
can be considered more severe than merely reducing the receive
window.
Write into guest memory. Modern virtualization techniques such
as active memory introspection [27,28] and industry products such
as VMware’s VMSafe [29] enable the hypervisor to securely mon-
itor a guest VM by having complete visibility over its raw memory
state, and write into this memory when needed. Therefore, the hy-
pervisor could directly modify the congestion control algorithm in
the guest by writing the desired TCP parameters in the correspond-
ing guest memory and registers.
Example. Assume we want to add a full modern congestion control
stack to an old guest VM. Then the hypervisor could inject code in
the guest as if it were malware with unlimited memory access.
Cons. Tenants may expect stronger VM isolation guarantees and
not accept that the hypervisor writes into the VM memory, even
for the purpose of improving performance. In cases where both the
hypervisor and the guest VM control the networking stack, writ-
ing into memory may also slow down the VM because of the need
for keeping consistency and ensuring synchronization between the
write operations.
Read from guest memory. As above, the hypervisor may access
the guest memory using guest introspection. However, by avoiding
memory writes, it only monitors the memory and does not need
synchronizations.
Example. This white-box solution makes the guest parameters
transparent to the hypervisor translation layer. It could provide ac-
cess to the congestion window without the need to maintain state
to track it in the hypervisor.
Cons. Again, tenants may not accept that the hypervisor gets a
sneak peek inside their VMs. Also, when the hypervisor accesses
the guest memory instead of keeping an internal state machine, it
adds processing and communication delays.
Split connection. The split-connection approach breaks a

TCP connection into several sub-connections, e.g., using a TCP
proxy [19, 20]. It can acknowledge packets to the guest VM at
some desired rate, then send them on the datacenter network using
the desired target congestion control algorithm.
Example. This black-box solution functions as a pipe, and can im-
plement nearly any congestion control algorithm. For instance, to
implement MPTCP, the hypervisor can quickly prefetch packets
from the guest VM at a high rate, then send them to the destina-
tion hypervisor using several paths.
Cons. In addition to requiring many resources for buffering pack-
ets, this solution goes against TCP end-to-end semantics. For in-
stance, a barrier-based application may believe that all its packets
were ACKed, and advance to the next phase, while they were not
actually received, potentially causing errors in the application.
Buffer packets. The hypervisor translation layer can buffer in-
flight packets, e.g., to be able to resend them without informing the
guest [20, 30].
Example. In order to solve TCP incast, it can be useful to reduce
the retransmission timeout value RTOmin. vCC can buffer in-flight
packets and retransmit according to its own RTOmin buffer, even
when the guest OS does not support the desired value or does not
support changing the RTOmin at all.
Cons. The hypervisor needs to manage packet buffers. Generally,
packet buffers may also increase latency when they are used to store
packets coming in too quickly (instead of copies of sent packets).
Large buffers significantly increase the memory footprint of vCC.
Buffer ACKs. The hypervisor can similarly buffer received
ACKs [23–25]. If an ACK is piggybacked on data, the acknowl-
edged sequence number is reduced and the remaining bytes to ac-
knowledge are later sent as a pure ACK.
Example. The hypervisor can pace ACKs to make TCP less bursty.
Cons. The hypervisor needs to manage ACK buffers. It may also
increase latency when ACKs are delayed.
Duplicate ACKs. The hypervisor can duplicate and resend the last
sent ACK to force the guest to halve its congestion window.
Example. In case of TCP incast, the hypervisor can force a fast
retransmit by sending three duplicate ACKs.
Cons. Beyond the need to keep the last ACK, this technique may
also violate TCP semantics4. For instance, sending three ACKs on
the last outstanding packet means that three additional packets have
been received, which cannot happen.
Throttle the receive window. The hypervisor can decrease the re-
ceive window [22,23,25] to force the guest to have fewer outstand-
ing packets, since the number of packets in flight is upper-bounded
by the minimum of the congestion and the receive windows. There-
fore, the advertised receive window could follow the target conges-
tion window to make the guest adapt to this target.
Example. The hypervisor can implement ECN or DCTCP. Specifi-
cally, upon explicit congestion notification, the hypervisor transla-
tion layer decreases the receive window that it sends to the guest,
without forwarding the explicit congestion notification itself (see
experiments in Section 3).
Cons. This technique can make the congestion window meaning-
less, since it relies on the receive window to bound the number of
in-flight packets. Also, a delicate point to note is that the receive
window should not be decreased to less than the current number of
in-flight packets. This may conflict with common implementations
of the TCP buffer management. Therefore, the hypervisor needs to
manage a gradual decrease while closely monitoring the connection
state. Finally, a significant shortcoming is that while the technique

4Although it does not seem to directly go against RFC 5681 [31],
which mentions the possibility of the replication of ACK segments
by the network.
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Figure 3: Interactions of the vCC translation layer in the hy-
pervisor with TCP traffic. From top to bottom: (a) Connec-
tion negotiation, where the translation layer enables the ECE
and CWR flag in the SYN packet to indicate ECN support,
but hides the ECE field in the returning SYNACK; (b) normal
data packets get their ECT bit set in the IP header and ACKs
pass through the translation layer unchanged. The translation
layer updates its internal state as data packets and ACKs pass
through; (c) when an ACK with ECE bit is received, the trans-
lation layer masks the ECE bit, modifies the RWIN in the TCP
header, and sets CWR on the next outgoing packet.

helps make TCP less aggressive, it cannot make it more aggressive.
For that, we would need to rely on a heavier technique, such as a
split connection.
Modify the three-way handshake. The hypervisor can change the
options that are negotiated when setting up the connection.
Example. The hypervisor can modify the negotiated MSS, or en-
able timestamps. This technique is also needed for several of the
above techniques, e.g., to enable ECN support (see experiments in
Section 3).
Cons. The technique can barely help for most practical benefits
without additional techniques.

These techniques can translate the congestion control most accu-
rately when the hypervisor knows the specific OS version and con-
gestion control algorithm. In some cases, it may be straightforward
to detect these automatically either by packet inspection, VM meta-
data, guest introspection, or other communication with the guest.
However, if the hypervisor either does not know or does not want
to trust the information [32], it could simply limit the sender; e.g.,
when applying the receive window throttling technique, it could
drop anything beyond the allowed receive window.

In addition, note that these techniques can be implemented ei-
ther on a single side of the flow (i.e., receiver or sender), yield-
ing a virtual-to-native communication, or on both sides, yielding
a virtual-to-virtual communication. When the guest already im-
plements the target modern congestion control algorithm, vCC can
either tunnel its traffic transparently, or still translate the traffic to
make sure it obeys the exact same protocol implementation as other
translated vCC traffic.

Figure 3 illustrates how a combination of the three-way hand-
shake modification and the receive window throttling techniques
can help provide virtual-ECN benefits to non-ECN TCP traffic (we
later implement a proof-of-concept of this solution in Section 3).
The vCC translation layer in the hypervisor first uses the three-way
handshake modification technique: in Figure 3(a), it modifies the
TCP header fields of the sent packets to enable ECN support in the

underlay. Next, while vCC only sets the ECT bit in the IP header of
outgoing data packets and forwards incoming ACKs transparently
(Figure 3(b)), it uses the receive window throttling technique upon
congestion. As shown in Figure 3(c), upon receiving an ECN con-
gestion notification, it decreases the advertised receive window to
force the overlay TCP guest sender to reduce its pace and behave as
if it were ECN-aware. It also modifies the TCP header fields of the
ACK packets to mask congestion notifications in the overlay. Note
that we assume that the receiver either is ECN-enabled, or also has
a vCC translation layer. In addition, in all these cases, we need to
recompute the checksum when the fields change. We can do so by
looking at the changed bytes only.

Formally, when using the three-way handshake and receive win-
dow techniques, we are able to prove that we can exactly emu-
late ECN and DCTCP (where emulation is defined as in Equa-
tion (1) in the Introduction). We need two major assumptions.
First, we assume that all the processing and communication times
within the guest and hypervisor are negligible. Second, we build a
TCP NewReno state machine that is based on RFC 5681 [31] and
RFC 6582 [33] and assume that the guest follows this state ma-
chine. We do so because our proof depends on this state machine,
and we found that different OSes and even different OS versions
can follow different state machines even for TCP NewReno. We
can then prove the following emulation theorems:

THEOREM 1. The translation layer can exactly emulate an
ECN-aware TCP NewReno protocol given a non-ECN TCP
NewReno guest.

THEOREM 2. The translation layer can exactly emulate
DCTCP given a non-ECN TCP NewReno guest.

The full formal proofs of these two theorems are in the Ap-
pendix. We gained two insights on full emulation when writing
the proofs. First, the proofs strongly rely on the fact that given the
same sequence of inputs (e.g., ACKs), ECN and DCTCP are sur-
prisingly less aggressive than non-ECN TCP, in the sense that their
resulting congestion windows will never be larger. For instance,
if an explicit congestion notification arrives at an ECN or DCTCP
sender, it may reduce its congestion window, while we assume that
the notification should be ignored by a non-ECN TCP sender. The
second insight is that it is much easier to prove full emulation when
the timeouts are simultaneous in the state machines of the guest and
of the hypervisor translation layer. This is why we assume negligi-
ble processing and communication times.

We believe that we could generalize these theorems to more com-
plex translations by concatenating simpler translations in the vCC
translation layer: e.g., we could translate TCP NewReno with ECN
to DCTCP by concatenating (a) TCP NewReno with ECN to TCP
NewReno without ECN (simply modify the three-way handshake);
and (b) TCP NewReno without ECN to DCTCP (as shown above).

3. EVALUATION: SOLVING ECN UNFAIR-
NESS

In Sections 3 and 4, we show how a practical implementation
of vCC can improve the performance and fairness of the network.
We implement vCC in two distinct environments. The first im-
plementation is realized at the edge of the Linux kernel TCP im-
plementation. We demonstrate that vCC can help address unfair-
ness between ECN and non-ECN traffic in this Linux environment.
All experiments in this Linux vCC system are carried out with
Mininet [34] for reproducibility. Our experiments use a virtual ma-
chine running Ubuntu 14.04 with Linux kernel version 3.19, except



for the experiments with 1 Gbps links, which were performed using
Mininet on a native Ubuntu 14.04 with Linux kernel version 3.13.
We set TSO (TCP Segmentation Offloading) off in all Mininet ex-
periments, because there is no real NIC within Mininet to imple-
ment TSO. The CPU and memory were never a bottleneck in all
experiments.

The second environment is a proof-of-concept system in the
VMWare ESXi hypervisor’s vSwitch. We illustrate in Section 4
how vCC can provide bandwidth sharing in this hypervisor envi-
ronment.

3.1 ECN Unfairness
ECN allows flows to react to congestion before any data has been

lost [35]. ECN can be a valuable tool to increase network perfor-
mance, but it has not been widely supported in operating systems
until recently [36]. Thus, legacy guests in a datacenter may not
support ECN. Unfortunately, a lack of ECN support can cause such
legacy systems to suffer. Figure 1 shows that, even across many
dozens of runs (140 in this case), there is consistent starvation of
non-ECN flows.

We first run an experiment to analyze the unfairness between
ECN and non-ECN flows, for various numbers of ECN and non-
ECN flows. 10 senders are connected through a switch to a single
receiver. To demonstrate the ability of vCC-augmented guests to
interact with any guest in a virtual-to-native communication, we
set the receiver to be a simple native Linux guest without vCC. As
a result, it can be seen as a non-ECN receiver for non-ECN flows,
and an ECN receiver for ECN and virtual-ECN flows. All links
have a bandwidth of 100 Mbps and a delay of 0.25 ms, so the RTT
is 1 ms. The switch queue uses RED with parameter set RED1 as
detailed in Table 1. We use TCP NewReno as the congestion con-
trol algorithm in all our experiments. We measure the goodput of
long-lived TCP flows, using iPerf as the traffic source and TShark
for capturing packets and measuring statistics. Each datapoint rep-
resents the average goodput over a second for a single flow.

Figure 4 demonstrates the unfairness between ECN and non-
ECN flows by plotting the time-series of their goodput. It shows
that while the ECN flows fairly share the bottleneck link among
themselves, the non-ECN flows can become significantly starved.
The unfairness grows as ECN becomes more widespread and the
ratio of ECN flows to non-ECN flows increases. This unfairness
points out a curse of legacy: as applications increasingly adopt
ECN, the holdout legacy applications become increasingly starved.
Limited unfairness between ECN and non-ECN TCP flows was
known given equal numbers of flows in each group [37]. How-
ever, the large impact of a plurality of newer ECN guests on a few
non-ECN legacy guests appears to be new. To address this issue, it
is possible to design alternative switch marking schemes that would
favor legacy applications instead. However, ensuring fairness with
legacy applications appears quite challenging.

We have also repeated this experiment with higher-rate links to
emulate a datacenter environment more closely. Specifically, in
this setting we use 1 Gbps links, a delay of 0.025 ms (i.e., RTT is
100 µs), an RTOmin of 20 ms (instead of the default 200 ms) and
RED parameter set RED1 from Table 1. The results are presented
in Figure 5. The same trend is evident.

We next analyze the impact of different ratios of ECN to non-
ECN flow numbers and of various RED parameter sets (Table 1)
on this ECN unfairness. The RED1 parameter set emulates a hard
threshold AQM, where packets are dropped for non-ECN flows
once the queue occupancy exceeds a certain threshold (REDmin),
in a similar way to the AQM described for DCTCP [1]. The
REDburst parameter is set to the minimum allowed value in tc-red

Parameter
Value

RED1 RED2 RED3

REDmin 90000 30000 30000

REDmax 90001 90000 90000

REDlimit 1M 400K 400K

REDburst 61 55 55

REDprob 1.0 0.02 1.0

Table 1: RED Parameters used in the experiments.

for RED1 parameters. RED2 is the recommended setting for RED
in the tc-red man page example. RED3 is a modification of RED2
(modified REDprob) to test a more aggressive marking/dropping
policy.

Figure 6 plots the ratio of the mean non-ECN flow goodput to
the mean ECN flow goodput, i.e., a measure of this unfairness, as
a function of the number of ECN flows, given a total of 10 flows.
It illustrates how for all tested parameter sets, introducing even a
small number of ECN flows into the mix breaks fairness between
ECN and non-ECN flows. Moreover, when there is only one non-
ECN flow left out of the 10 flows, its goodput is at most 45% of the
goodput of the ECN flows.

Figure 7 explores how modifying the REDmin parameter in
the RED1 parameter set affects fairness. We set REDmax =
REDmin + 1, and set REDburst to the minimum allowed by tc-
red. The figure depicts the goodput ratio for different values of
REDmin. In general we see that as the proportion of ECN flows in
the mix increases and as REDmin decreases, the unfairness wors-
ens and the non-ECN flows suffer from increasing goodput loss.

What is causing this unfairness? Figure 8 presents a 100 ms
binned histogram of the time between consecutive acknowledg-
ments sent by the receiver to a non-ECN and to an ECN flow,
where the non-ECN flow is competing with 9 ECN flows on a
100 Mbps link using RED1 parameters. The non-ECN flow suf-
fers from repeated retransmission timeouts, as seen by the 200 ms
and the 600 ms latencies. We found two dominant factors for these
repeated timeouts:
Queue length averaging. Consider a state in which the average
queue length measured by the switch grows beyond REDmax. It
may remain above REDmax for a few RTTs due to the moving ex-
ponential averaging of the queue length. Meanwhile, every incom-
ing packet of the non-ECN flow is discarded, causing the sender to
time out waiting for ACKs on the dropped packets. Note that in this
scenario fast retransmit is often not sufficient to save the sender’s
window, because the fast-retransmitted packets are dropped as well.
After such a timeout, the non-ECN sender returns to slow-start,
which further decreases its ability to recover due to the small num-
ber of duplicate ACKs at its disposal in a case of additional drops.
In contrast, the packets of an ECN-capable sender are marked and
not dropped. Upon receipt of an ACK-marked ECE, the sender
halves its window and continues in congestion avoidance, without
losing a packet or experiencing a timeout.
ECN to non-ECN flows ratio. Why does the unfairness to non-
ECN flows become more severe as the proportion of ECN flows in-
creases? Assume the switch buffer becomes congested, i.e., crosses
the marking threshold beyond which ECN packets are marked and
non-ECN packets are dropped. Then packets from the ECN flows
continue to enter the buffer for at least an RTT, potentially keeping
the buffer congested. As a result, the switch may drop long se-
quences of non-ECN packets, causing timeouts in non-ECN flows.
This effect is particularly pronounced with a higher proportion of



(a) 9 non-ECN vs. 1 ECN flows (b) 5 non-ECN vs. 5 ECN flows (c) 1 non-ECN vs. 9 ECN flows

Figure 4: Unfairness between ECN and non-ECN flows, given a constant total number of 10 flows going through a shared 100 Mbps
bottleneck link. As the ratio of ECN to non-ECN flows increases, the non-ECN flows suffer from increasing starvation and can send
fewer and fewer packets.

(a) 9 non-ECN vs. 1 ECN flows (b) 5 non-ECN vs. 5 ECN flows (c) 1 non-ECN vs. 9 ECN flows

Figure 5: Repeated unfairness test between ECN and non-ECN flows with a 1 Gbps bottleneck link.

(a) 10 Mbps links (b) 100 Mbps links

Figure 6: Unfairness between ECN and non-ECN flows for several flow-type mixes and RED parameter sets, given a constant number
of 10 flows. In all parameter sets, the unfairness becomes larger when there are fewer remaining non-ECN legacy flows.

ECN flows, which typically leads to a higher ECN traffic rate. As
a result, it will take longer to drain the queue below the marking
threshold as more ECN traffic keeps arriving, and therefore may
cause a longer congestion period.

3.2 Receive-Window Throttling
In order to address this unfairness problem, we propose using the

vCC translation layer to provide ECN capabilities to the non-ECN
flows. We transform non-ECN flows from a guest to virtual-ECN



(a) 10 Mbps links (b) 100 Mbps links

Figure 7: Average goodput ratio with varying values of REDmin, given 10 senders. Increased numbers of ECN flows lead to starva-
tion of non-ECN flows.

Figure 8: Histogram of time between consecutive acknowledg-
ments sent by the receiver, divided into 100 ms bins, given a sin-
gle non-ECN flow competing with 9 ECN flows on a 100 Mbps
link. A representative ECN flow is plotted along with the non-
ECN flow.

flows that take advantage of ECN, using receive-window throttling
in the vCC translation layer. To demonstrate this, we configure one
sender to send traffic through a switch to a receiver. The sender uses
virtual-ECN provided by the vCC translation layer (wherein the
ECE bits are hidden from the guest to simulate ECN-ignorance).
The switch is configured with the RED1 parameter set from Ta-
ble 1. The sender-to-switch link has a bandwidth of 12 Mbps, while
the switch-to-receiver link has a bandwidth of 10 Mbps. The delay
of each link is 250 µs (i.e., RTT = 1 ms). The system is given 5
seconds to stabilize before data is collected for 12 seconds.

Figure 9 depicts the send window for the vCC experiment as
reported by the tcp_probe kernel module. We can observe the fa-
miliar sawtooth pattern that would otherwise be seen in the con-
gestion window. In our Linux implementation, when the receive

Figure 9: Send window time series for a virtual-ECN flow.

window was the limiting window, the congestion window stayed
larger than the receive window for the entire experiment, rendering
the congestion window meaningless. Thus, modulating the receive
window modulates the send window of the guest directly, and the
resulting traffic flows are very similar. We have therefore created a
virtual-ECN flow.

To demonstrate that indeed we get the ECN benefit of reduced re-
transmissions when using virtual-ECN, we run an experiment with
10 identical senders connected with 10Mbps links to a single re-
ceiver through a single switch.

Figure 10(a) illustrates that when using only non-ECN flows,
some 2.3% of the link capacity is wasted on retransmissions due
to packets dropped in the congested queue at the port connecting
the switch to the receiver. However, as shown in Figure 10(c), once
virtual-ECN is activated, the lost capacity is regained as virtual-
ECN can react to congestion without dropping packets and retrans-
mitting them (exactly like ECN’s behavior in Figure 10(b)).



(a) 10 non-ECN flows (b) 10 ECN flows (c) 10 virtual-ECN flows

Figure 10: Total retransmission throughput for (a) 10 concurrent non-ECN flows sharing a 10 Mbps link, compared to the same
experiment with (b) 10 concurrent ECN flows, and (c) 10 concurrent virtual-ECN flows.

(a) 9 ECN flows and one non-ECN flow (b) 9 ECN flows with one virtual-ECN flow

Figure 11: 9 ECN flows share a 10Mbps bottleneck with either (a) one non-ECN flow; or (b) one virtual-ECN flow. (a) The non-ECN
flow goodput is only 14.2% of the average goodput of the ECN flows. The fairness index is 0.921. (b) When virtual-ECN is used, the
average goodput of the virtual-ECN flow is 103.8% of the average ECN flow goodput, and the fairness index is 0.994.

3.3 Restoring Fairness with virtual-ECN
vCC offers the ability to transform a non-ECN flow into a virtual-

ECN flow. We now evaluate whether this is sufficient to address the
unfairness discussed in Section 3.1.

Figure 11(a) plots the goodput achieved with 9 ECN flows and
one non-ECN flow sharing a 10 Mbps bottleneck link. It shows
again how the non-ECN flow suffers from strong unfairness.

Figure 11(b) shows the goodput achieved in the same setting,
except that the non-ECN flow has been replaced with virtual-ECN.
The resulting goodput of the flow from the ECN-incapable guest is
now similar to that of its ECN-capable peers, with goodput 103.8%
of the average goodput of the ECN-capable flows.

To summarize, the translation layer uses receive-window throt-
tling to cause the guest that does not support ECN to mimic its ECN
peers, significantly improving its own goodput and the fairness of
the network.

4. EVALUATION: HYPERVISOR BAND-
WIDTH SHARING

In this section, we describe a proof-of-concept vCC translation

layer, which we implement on the VMware vSphere ESXi 6.0 hy-
pervisor. We later illustrate how it can be used to provide band-
width sharing.

The vCC translation layer is implemented as a filter called DV-
Filter [38] in the hypervisor’s vSwitch. All per-flow states neces-
sary for translation are stored in the hypervisor’s own memory. The
translation layer monitors flows passing through the switch, and in-
spects the headers in order to maintain correct state information
about the flow (e.g., the current srtt, or the number of packets in
flight). When the vCC translation layer determines it should mod-
ify headers, it changes the packet headers, recomputes the check-
sum, and allows the packet to pass through the filter. In particular,
in this section, we demonstrate how we implemented receive win-
dow throttling in this vCC layer.

Consider a multi-tenant datacenter. Each virtual machine may
be the source of many TCP flows. However, not all of these flows
should necessarily be treated the same for optimal performance.
For example, some may be short but time-sensitive, while others
are long but elastic. Thus, it can be useful to limit the rate at which
certain applications are able to send. More generally, the ability to
enforce tenant-based dynamic bandwidth allocations down to the



granularity of applications is important to meet performance and
SLA targets. WAN traffic shaping using a local Linux bandwidth
enforcer is a promising approach [39]. This requires a uniform
OS installation that does not generally allow multi-tenant hosting.
Bandwidth limiting is available at guest granularity in some modern
hypervisors (such as Microsoft’s Hyper-V and VMware’s ESXi),
but per-application throttling is generally not. Moreover, to throttle
bandwidth, these techniques can rely on either dropping packets or
building large queues, which can have a detrimental effect on flow
performance and latency.

Here we show another application of the receive-window throt-
tling abilities of vCC. By controlling the end-to-end number of in-
flight packets, vCC provides a fine-grained, datacenter-wide coor-
dination of bandwidth allocation. The hypervisor detects the sig-
nature of a tenant, port or packet, and restricts the bandwidth used
by this particular set of traffic. In addition, the bandwidth limit can
be changed dynamically, depending on signals from the network or
from the guest.

Our hypervisor implementation provides a proof-of-concept for
dynamic application-graunlarity bandwidth throttling. In this ex-
periment, the vCC-enabled hypervisor is nested on another ESXi
running on a Dell Poweredge T610 server, with 12 GB of RAM
and two Intel Xeon processors at 2.4 GHz. Two guest VMs (Linux
Centos 6.4) are hosted on top of the hypervisor, with the vCC trans-
lation layer installed in its vSwitch. They communicate through
that hypervisor’s vSwitch. One guest runs an iPerf server on 5 TCP
ports. We divide flows into preferred and unpreferred flows. The
preference can be seen as reflecting time-sensitive or higher-paying
tenants, for example. Three ports are given to unpreferred flows,
and two to preferred flows. The total amount of window space,
i.e., the sum of the RWINs of all active flows, remains constant at
all times. The translation layer is configured to evenly divide the
available window space among unpreferred flows in the absence of
preferred ones. When it detects active in-flight preferred flows, the
translation layer dynamically changes the window space allocation
to proportionally assign more window space to preferred flows (3
times as much per preferred flow as per unpreferred flow), and di-
vides the remainder among the unpreferred flows evenly.

Figure 12 illustrates a time series of this experiment. It shows
that after the introduction of the preferred flows, the throughput
of unpreferred flows drops due to receive window throttling, thus
providing the preferred flows a larger share of the bandwidth. The
total throughput before and after the introduction of preferred flows
remains relatively constant.

5. IMPLEMENTATION DISCUSSION
In this section, we discuss the architectural issues that a vCC

implementation needs to address in the hypervisor.
Architectural complexity. Many hypervisor switches support an
architecture where an independent module can inspect, modify, and
re-inject the packet (e.g., Microsoft’s Hyper-V Extensible Switch
extension [40], VMware’s ESXi DVFilter [38], and so on). This
architecture is typically used by firewalls and security modules. For
instance, a firewall implementation may allow over 1 million active
connections with a per-connection state of under 1KB, given a total
memory size of about 1GB.

A vCC implementation can leverage this architecture in order
to modify packets, as we illustrate in our ESXi implementation.
We would expect similar numbers given our simplest techniques
without buffering. For instance, our Linux vCC implementation
stores only 37 bytes per flow. This leaves room for a more com-
plex implementation, given a per-connection footprint budget under
1KB. In addition, in most of the techniques mentioned in Section 2,

Figure 12: Stacked throughputs for three unpreferred and two
preferred flows. The flows are receive-window throttled by the
ESXi vCC layer. The sum of the windows of all the live flows is
kept constant throughout the experiment, but the vCC throttles
unpreferred flows once preferred flows start in order to give
the preferred flows greater bandwidth. The vCC layer uses the
port number to differentiate between flows and preferences.

the main CPU load consists of keeping track of the per-connection
states of the guest congestion control algorithm.
Hypervisor delay. Processing delays in the hypervisor can in-
crease the latency, and therefore the flow completion time, as well
as affect the RTT estimation in the guest TCP algorithm. This ef-
fect would be more pronounced when the load of the hypervisor
CPU is sufficiently high to cause context switches. In such a case,
the delay would be on the order of context switching delays, i.e.,
several µs.
Hypervisor bypass. High-performance virtualized workloads can
benefit from bypassing the hypervisor and directly accessing the
network interface card (NIC), using technologies such as SR-
IOV [41–44]. vCC would not work in such architectures. However,
hypervisor bypass is typically used in high-end devices with the
newest OSes. Such OSes often already implement the latest con-
gestion control, if only to obtain the best available performance.
In addition, future NICs could also implement vCC, although (a)
software updates would not be as easy as for hypervisors, and (b)
NICs may not have access to the more intrusive techniques such as
guest introspection. The same would be true if servers had FPGAs
or middleboxes.
TSO and LRO. TCP Segmentation Offload (TSO) and Large Re-
ceive Offload (LRO) are techniques for increasing the throughput of
high-bandwidth network connections by reducing CPU overhead.
TSO transfers large packet buffers to the NIC and lets it split them,
while LRO does the reverse operation. The hypervisor needs to
modify the vCC translation layer accordingly. Most techniques re-
main nearly unchanged. However, techniques that rely on packet
buffering will need much larger buffers, and, if vCC wishes to re-
transmit TCP segments, it will also need to recreate individual seg-
ments.
Configuration. In the vCC architecture, the network administra-
tor can assign a different congestion control to different ports, IP
addresses, applications, OSes, or tenants. For instance, long-term
background flows may have a less aggressive congestion control
than short urgent flows, or a proprietary congestion control can



be restricted to intra-datacenter connections. Of course, a major
disadvantage of modulating the congestion control is that several
congestion control algorithms will coexist again in the datacenter.
Note that it is easy to configure vCC to not modify certain traffic.
Future work could include automatic detection of flows that need
translation, reducing the need for administrator configuration.
Delay-based congestion control. We believe vCC can trans-
late to/from delay-based TCP algorithms like TCP Vegas and
TIMELY [8]. To do so, it would need to use the more heavyweight
techniques at its disposal, such as split connections and buffers.
UDP. This paper focuses on TCP, and therefore we would expect
the hypervisor to let UDP traffic go through the translation layer
in a transparent manner. Of course, we could generalize the same
translation idea to UDP, and for instance make the translation layer
translate UDP to a proprietary reliable UDP algorithm, at the cost
of additional buffering and complexity.
Universal language. In order to directly translate between n con-
gestion control algorithms, we would theoretically need to imple-
ment O(n2) translations. Instead, we could envision a universal
atomic congestion control protocol enabling us to implement only
2n translation to/from this protocol.
Encryption: Our analysis suggests that the vCC architecture can
similarly be used to offer encryption services, such as TCPCrypt
and IPSec [45, 46], to legacy unencrypted TCP flows. If the guest
is already encrypting communications, vCC would need to access
session keys in order to operate, for instance by reading guest mem-
ory.
Debugging. Adding packet-processing modules at the connection
end-point necessarily makes debugging more complex when there
are connection issues on a host. On the other hand, normalizing
all the congestion control algorithms to the same reference algo-
rithm, as enabled by vCC, can greatly simplify in-network debug-
ging: where there were once many versions of different congestion
control algorithms, there is now a single version of a single algo-
rithm.
Inside connections. When two guest VMs on the same hypervisor
communicate, they still go through the hypervisor, and therefore
through the same translation layer. As a result, vCC is expected to
work without changes.

6. RELATED WORK
AC/DC. AC/DC [47] has independently and concurrently intro-
duced a similar approach to ours. It shares many of the main goals
and ideas of this paper. AC/DC suggests that datacenter adminis-
trators could take control of the TCP congestion control of all the
VMs. In particular, it demonstrates this approach by implementing
a vSwitch-based DCTCP congestion control algorithm. AC/DC
provides a thorough evaluation, including a demonstration of the
effectiveness of AC/DC in solving the incast and fairness problems
identified in [7] and CPU overhead measurements.

We view our virtualized congestion control (vCC) solution as a
general framework for translating between congestion control algo-
rithms. For example, our framework allows the translation of only
the legacy flows, or the translation of only the sender (or receiver)
side. Our experiments show that vCC allows virtually-translated
legacy flows to fairly co-exist with modern non-virtualized flows.
On the conceptual side, we survey additional translation tech-
niques, such as introspection and split-connection. In addition, we
provide emulation proofs for ECN and DCTCP in specific cases.
Beyond vCC, we also introduce the general concept of algorithmic
virtualization for legacy algorithms.
Congestion control algorithms. Many congestion control algo-
rithms and extensions have been suggested for datacenters, in-

cluding ECN, DCTCP, D2TCP, MPTCP, TCP-Bolt, TIMELY, DX,
Halfback and DCQCN [1–12]. A goal of this paper is to enable
the hypervisor to implement such novel algorithms in the underlay
physical network given legacy algorithms in the guest VMs on the
network.

Several papers have also suggested that the congestion control
algorithm could adapt to the datacenter network conditions, e.g. by
using Remy, Tao or PCC [13–15]. Our vCC architecture is ideally
situated to implement such an adaptable congestion control algo-
rithm in the underlay network.
TCP rate control. The ACK pacing and TCP rate control ap-
proaches attempt to regulate the sending rate of each TCP flow [22–
26]. These papers present the techniques of buffering TCP pack-
ets and ACKs, as well as throttling the receive window. Our vCC
approach uses similar approaches. While these papers typically
attempt to reach a fixed sending rate, the goal of vCC is to trans-
late between legacy congestion control algorithms and any modern
congestion control algorithm.
Link-level retransmissions. In wireless communications, the
Snoop protocol [20, 30] can buffer data packets at the base station,
and then snoop on ACKs and retransmit lost packets on behalf of
the sender, making sure to block duplicate ACKs from reaching
the sender. This is similar to a link-level retransmission proto-
col, and can help address large loss rates at the last-mile link. Our
vCC hypervisor can similarly snoop on ACKs and prevent dupli-
cate ACKs from reaching the sender. However, it operates at the
end-to-end level, and not at the link level.
Split connection. The split-connection approach breaks a
TCP connection into several sub-connections, e.g., using a TCP
proxy [19, 20, 48]. In contrast, vCC need not break the end-to-end
principle; it can keep the original connection and does not need to
create ACKs for data not received by the destination receiver.
Fairness between VMs. An alternative approach for providing
fairness between VMs is to use datacenter-wide isolation-based
techniques that are able to enforce bandwidth guarantees while at-
tempting to maintain work-conserving link usage [49–53]. Also, a
related approach for the multitenant datacenter owner is to strictly
divide the bandwidth among the tenants, giving each a fixed al-
location [17]. Rate limiters and shapers in hypervisors and in NIC
hardware [41,54] can also help enable better fairness between local
VMs.

7. CONCLUSION
Our goal was to make it easy to deploy new and improved con-

gestion control algorithms into multitenant datacenters, without
having to worry about TCP-friendliness with non-participating vir-
tual machines. This paper presents vCC, which enables the data-
center owner to introduce a new congestion control algorithm in the
hypervisors. Internally, the hypervisors translate between the new
congestion control algorithm and the old legacy congestion control,
allowing legacy applications to enjoy the benefits of the new algo-
rithm. Using the example of ECN traffic, we show how this vCC
solution can have an impact on fairness among tenants.

In the longer term, our goal is for the hypervisor translation layer
to provide hooks that would simplify the coding of new conges-
tion control algorithms, similarly to the existing hooks in the cur-
rent Linux TCP stack implementations. These hooks would sig-
nificantly reduce the deployment time of novel congestion control
algorithms in large-scale datacenters.
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APPENDIX
A. EMULATION PROOFS

Our goal in this appendix is to prove the emulation results of
Theorems 1 and 2.We start by proving emulation results for TCP-
Reno guests. Then, we build on these proofs to demonstrate the
emulation results in Theorems 1 and 2 for TCP-NewReno guests.

A.1 Notations and definitions
We begin by making the following notations. Wc is the conges-

tion window of a TCP sender. Wr is the latest advertised receive
window of a TCP receiver that was received by a TCP sender. fs is
the flight-size of the TCP sender, namely, the number of bytes sent
but not yet cumulatively acknowledged. Weff is the effective send
window of the TCP sender and is defined as follows:

Weff = max{min{Wc,Wr} − fs, 0} (2)

Namely, the effective send window is the number of additional
bytes that the sender is allowed to send. Let ssthresh be the slow-
start threshold of a TCP sender and MSS be the maximum segment
size agreed between the sender and the receiver during the three-
way handshake.

We denote the TCP guest by gst, the hypervisor as vcc and the
TCP receiver as rcv. We use a superscript to denote a corresponding
congestion parameter owner. For example, Wgst

c is the congestion
window of the guest and fsvcc is the flight-size of the hypervisor.

We denote by n the nth (input) event experienced by the TCP
congestion control state machine owner. Specifically, an event can
be (a) the arrival of an ACK, (b) resuming transmission after an
idle period, or (c) a timeout. Let f be any TCP congestion variable,
then we denote by f(n) the size of f right after the nth event.
For example, Wgst

c (n) is the congestion window of the guest and
fsvcc(n) is the flight-size of the hypervisor right after event number
n.

Next, we present the detailed actions that are taken in each state
for each event.

A.2 TCP-Reno congestion control
For our proofs, we use a conceptual TCP-Reno congestion con-

trol state machine that corresponds to RFC 5681 [31]. Specifically,
we consider the TCP-Reno state diagram in Figure 13. Then, the
congestion parameters obey the following rules:
Slow Start: Upon receiving m newly acknowledged bytes:

Wc(n) =Wc(n− 1) +m (3)

Congestion Avoidance: Upon receiving m newly acknowledged
bytes:

Wc(n) =Wc(n− 1) +m · MSS

Wc(n− 1)
(4)

https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://pubs.vmware.com/vsphere-60/index.jsp?topic=%2Fcom.vmware.vsphere.networking.doc%2FGUID-639ED633-A89A-470F-8056-5BB71E8C3F8F.html
https://msdn.microsoft.com/en-us/library/windows/hardware/jj673961%28v=vs.85%29.aspx
https://msdn.microsoft.com/en-us/library/windows/hardware/jj673961%28v=vs.85%29.aspx
https://tools.ietf.org/html/draft-bensley-tcpm-dctcp-05
https://tools.ietf.org/html/rfc6937


Figure 13: TCP-Reno congestion control state machine that corresponds to RFC 5681.

Fast Recovery: Upon any acknowledgment:

Wc(n) =Wc(n− 1) +MSS (5)

Upon entering Fast Recovery:

ssthresh(n) = max

{⌊
1

2
· fs(n− 1)

⌋
, 2 ·MSS

}
(6)

Wc(n) = ssthresh(n) + 3 ·MSS (7)

Upon leaving Fast Recovery:

Wc(n) = ssthresh(n) (8)

Upon Timeout:

Wc(n) =MSS (9)

ssthresh(n) = max

{⌊
1

2
· fs(n− 1)

⌋
, 2 ·MSS

}
(10)

Upon Idle period: (i.e., when the connection is idle for more than
an RTO). In this case RFC 5681 recommends to resume the trans-
mission from slow start with the following congestion restart win-
dow:

Wc(n) = min{Winit,Wc(n− 1)} (11)

and

ssthresh(n) = ssthresh(n− 1), (12)

where Winit is the initial window size after the connection estab-
lishment.

So far we have described our considered TCP-Reno congestion
control. We next define a TCP-Reno-based ECN support that cor-
responds to RFC 3168 and a TCP-Reno-based DCTCP that corre-
sponds to [55].
ECN support: in order to support ECN, the additions to a TCP
sender are:

• A received ACK that arrives with an ECN-Echo (ECE) flag
set, is treated by the sender as if a packet was lost (i.e., Equa-
tions (6) and (7)). However, this ECE flag does not affect the
TCP sender state. Specifically, the TCP sender does not enter
Fast Recovery but maintains its current state.
• The sender will not decrease its congestion window and slow

start threshold as a reaction to additional ECE flags that arrive
within the same window of data as the previous one.

• The sender will not increase its congestion window as a re-
sponse to an ACK with ECE flag.

DCTCP support: the sender maintains a running estimate of the
fraction of its newly acknowledged bytes that are marked with a
congestion flag. This estimate, which is denoted by α, is updated
once for every window of data. Then, DCTCP uses the updated α
value to reduce its window as follows:

Wc, new =Wc, last ·
(
1− α

2

)
(13)

where Wc, last is the size of the window just before applying Equa-
tion (13) and,

0 ≤ α ≤ 1. (14)

Namely, the window is reduced, at most, by a factor of 2 approxi-
mately each RTT.

In addition, for both ECN and DCTCP, the arrival of congestion
flags does not change the state of the congestion control state ma-
chine and does not change the reaction to other events experienced
by the sender.

Next we continue by presenting the main idea that allows full
emulation of ECN and DCTCP and the assumption that we make
to be able to conduct a formal proof.

A.3 Synchronization and invariants
We continue to show that we can provide an exact translation

from the considered TCP-Reno to a TCP-Reno with ECN support
and TCP-Reno-based DCTCP with a hypervisor using only three-
way handshake modification and receive window throttling tech-
niques and under the following assumptions:

Assumption 1. All the processing and communication times
within the guest and hypervisor are negligible.

Assumption 2. The guest follows the TCP-Reno congestion
control that is considered in Section A.1.

Why do we need those assumptions? We observe that in order to
provide exact emulation capabilities, we would like the hypervisor
to behave according to the TCP we want to emulate (specifically,
ECN or DCTCP) and the guest to provide the required packets to
the hypervisor whenever they are needed (i.e., not to starve the hy-
pervisor unless there are no packets to send). On the other hand,
since we want to avoid buffering, we do not want the guest to pro-
vide packets to the hypervisor if the later cannot send those packets
to the network according to its congestion control.

In addition, we observe that TCP congestion control algorithms



are deterministic. Thus, if the TCP used by the hypervisor was
identical to the one used by the guest and fed by the same input
(i.e., the same received ACKs at the same time), then both will
produce the same output (i.e., both will send the same packets at
the same time). Specifically, we would obtain:

W
gst
c =W vcc

c , (15)

and thus achieve the desired result. However, we want to emulate a
different congestion control algorithms. Our solution is to control
the advertised receive window that is forwarded to the guest by the
hypervisor and enforce,

W
gst
eff =W vcc

eff . (16)

This way, we achieve two guarantees. (1) The guest will forward
packets to the hypervisor only when the latter is allowed to forward
them according to its congestion control. Thus, no buffering at the
hypervisor is needed (we shall refer this as the in-flight invariant).
(2) The guest will not starve the hypervisor due to a smaller con-
gestion window.

(1) To achieve this, we use the following assignment:

W
gst
r = fsvcc +W vcc

eff (17)

This assignment never goes below the flight-size of the guest and
additionally ensures that each packet that is sent by the guest can
also be immediately sent by the hypervisor.

This assignment also reveals the need for Assumption 1. Specif-
ically, we want to avoid a situation in which the following order of
events will violate the in-flight invariant:

• at time t Equation (16) holds and in addition the congestion
window of the guest is significantly bigger than its flight size
due to temporary starvation by the application.

• at time t+ε two events take place. (1) The hypervisor receives
a congestion notification. (2) The application pushes to the
guest additional data to send.

Namely, if the processing delay of the hypervisor and the guest is
not negligible, then we might encounter a situation in which the
hypervisor already decreased its congestion window but the guest
sent new packets before receiving the new advertised window. As-
sumption 1 essentially states that all events (i.e., arrived ACKs and
timeouts) are simultaneous for both the guest and the hypervisor
with no possibility of interleaving events between the guest and the
application. Thus, such order of events as described is not possible.

(2) This reveals the need for Assumption 2. Specifically, we will
show that when the hypervisor (a) uses the same exact TCP-Reno
congestion control as the guest (including RTT estimation tech-
nique), (b) uses Equation (17), and in addition (c) supports ECN
or DCTCP, then we obtain:

W vcc
c ≤Wgst

c . (18)

Finally, combining Equations (17) and (18) will yield Equation
(16). Namely, no buffering is needed and the hypervisor is never
starved by the guest (unless both are starved by the application) -
an exact emulation.

A.4 Reno exact emulation
Next, we prove that indeed when the hypervisor supports ECN

or DCTCP and uses Equation (17) within our considered model we
obtain Equation (18). Then, using this result we will show that it is
a sufficient condition for an exact emulation.

Throughout our proofs we consider Assumptions 1 and 2. In ad-
dition, as mentioned, we assume that the hypervisor uses the same

congestion control as the guest (including RTT estimation tech-
nique), uses the assignment in Equation (17), and supports ECN
as described in Section A.2.

LEMMA 1.

W vcc
c (n) ≤Wgst

c (n) ∀n, (19)

and

ssthreshvcc(n) ≤ ssthreshgst(n) ∀n. (20)

PROOF. Since the hypervisor uses the assignment that is pre-
sented in Equation (17) Assumption 1 ensures the following in-
flight invariant: all the packets sent by the guest are immediately
forwarded by the hypevisor. This important invariant ensures:

• Provided that both the guest and the hypervisor use the same
RTT estimation technique and have the same RTOmin value,
all timeout events are simultaneous in both (i.e., both send
packets at the same time and receive ACKs at the same time:
(i) their RTO timers are set and reset at the same time. (ii)
Both have the same RTT estimation).

• Both enter and leave Fast Recovery simultaneously (i.e., both
receive any third duplicate ACK and any New ACK simulta-
neously).

With these observations at hand, we prove the Lemma by induc-
tion on the number of events at the guest and hypervisor senders
(i.e., n).

Base: n = 0. Since both the guest and the hypervisor use the
same initial window size and initial slow start threshold it trivially
holds that:

W vcc
c (0) ≤Wgst

c (0), (21)

and

ssthreshvcc(0) ≤ ssthreshgst(0). (22)

Induction hypothesis: Assume that:

W vcc
c (n− 1) ≤Wgst

c (n− 1), (23)

and

ssthreshvcc(n− 1) ≤ ssthreshgst(n− 1). (24)

Inductive step: We split the proof into five possible cases (a
case for each event):

Case 1: Timeout. According to Equation (9) we immediately
obtain the result for the congestion windows. Formally:

W vcc
c (n) =W

gst
c (n) =MSS. (25)

Regarding ssthresh , since the hypervisor uses Equation (17), we
obtain the in-flight invariant. Specifically it holds that:

fsgst(n− 1) = fsvcc(n− 1). (26)

Next, applying Equation (26) to Equation (10) yields the desired
result. Formally:

ssthreshgst(n) =

max

{⌊
1

2
· fsgst(n− 1)

⌋
, 2 ·MSS

}
=

max

{⌊
1

2
· fsvcc(n− 1)

⌋
, 2 ·MSS

}
=

ssthreshvcc(n).

(27)



Case 2: New ACK. Fist we notice that the slow start thresh-
old does not change for both. For the analysis of the congestion
windows, we split into five possible configurations:

• Both in slow start. In this case, applying the induction hy-
pothesis and Equation (3) yields the results.

• Both in congestion avoidance. In this case, applying the in-
duction hypothesis and Equation (4) yields the result.

• The guest is in slow start and the hypervisor is in congestion
avoidance. In this case, applying the induction hypothesis and
Equations (3) and (4) yields the result.

• The hypervisor is in slow start and the guest is in congestion
avoidance. In this case, according to the induction hypothesis
(specifically, the ssthresh inequity) it must hold that Wgst

c >
W vcc

c (namely, strict inequity). Thus, applying Equations (3)
and (4) yields the result.

• Both in fast recovery. In this case, applying the induction
hypothesis and Equation (8) yields the results.

In addition, when ACKs get lost or delayed, we might have a cu-
mulative ACK. Namely, the congestion window of the guest and
the hypervisor grow according to the number of acked bytes. This
does not affect the above analysis.

Case 3: First or second Duplicate ACK. It must hold that both
in fast recovery or both are not in fast recovery, thus the claim holds.
Specifically, if both in fast recovery, both windows grow by one
MSS and if not, both windows do not change. ssthresh does not
change for both.

Case 4: Third Duplicate ACK. Then, both enter fast recovery.
In this case, applying the in-flight invariant and Equations (7) and
(6) yields the results.

Case 5: Resuming after Idle period. In this case, applying the
induction hypothesis and Equations (11) and (12) yields the result.

What about cases in which an ECE flag arrives (with an ACK)
to which the hypervisor reacts? The correctness for these cases
follows immediately since such a flag is treated like a loss by the
hypervisor without affecting its state. Thus, such an event can only
further decrease the congestion window and the slow start threshold
of the hypervisor and the inductive step holds.

Additionally, in some implementation of TCP-Reno congestion
control, it might be the case that when the limiting window of the
sender is the receive window, then even upon the arrival of a new
ACK the congestion window should not be increased. Such im-
plementation does not harm the correctness of these proofs. The
reason is that we have only two possible options: (1) the receive
window is the limiting window for both the guest and the hyper-
visor - in that case both congestion windows do not grow. (2) the
receive window is the limiting window only for the guest - in that
case the congestion window of the guest in strictly bigger than the
congestion window of the hypervisor.

With this lemma at hand, we continue to show that an exact em-
ulation of ECN is possible.

PROPOSITION 1. The translation layer can exactly emulate an
ECN-aware TCP Reno protocol given a TCP Reno guest.

PROOF. To prove an exact emulation it is sufficient to show that
Equation (16) holds for all times.

Let W vcc
eff (n) = k. According to Equation (17) and the in-flight

invariant we obtain:

W
gst
r (n) = fsvcc(n) + k = fsgst(n) + k. (28)

Applying Equation (28) on Equation (2) yields:

W
gst
eff (n) =

max{min{Wgst
c (n), fsgst(n) + k} − fsgst(n), 0}.

(29)

Additionally, according to Lemma 1 and Equation (17) it must hold
that:

W
gst
c (n) ≥W vcc

c (n) ≥

fsvcc(n) + k = fsgst(n) + k.
(30)

Applying Equation (30) on Equation (29) yields:

W
gst
r (n) = k. (31)

This concludes the proof.

Next, we continue to prove that DCTCP exact emulation is pos-
sible, where again, we begin by the following lemma.

LEMMA 2.

W vcc
c (n) ≤Wgst

c (n) ∀n, (32)

and

ssthreshvcc(n) ≤ ssthreshgst(n) ∀n. (33)

PROOF. DCTCP reaction to congestion flags is different than
ECN as described in Section A.2. However, it still can only further
reduce the congestion parameters of the hypervisor without affect-
ing its state. Thus, the proof is identical to the proof of Lemma 1.

With this lemma at hand, again, we continue to show that an
exact emulation of DCTCP is possible.

PROPOSITION 2. The translation layer can exactly emulate a
TCP Reno-based DCTCP given a TCP Reno guest.

PROOF. Again, the proof is identical to the proof of Theorem 1,
with the only exception that we rely on Lemma 2 instead of Lemma
1.

A.5 The NewReno modification to Reno’s fast
recovery algorithm

We next extend our results to the TCP NewReno congestion con-
trol that corresponds to [33]. Essentially, the NewReno modifica-
tion of Reno describes a specific algorithm for responding to partial
acknowledgments. NewReno applies to the fast recovery procedure
that begins when three duplicate ACKs are received, and ends when
either a retransmission timeout occurs or an ACK arrives that ac-
knowledges all of the data up to (and including) the data that was
outstanding when the fast recovery procedure began. Figure 14 de-
picts a high-level diagram of the NewReno modification.

We first introduce a new variable that is used in TCP NewReno.
New (sender’s side) state variable – recover: When in fast recov-
ery, this variable records the send sequence number that must be
acknowledged before the fast recovery procedure is declared to be
over. Let Rgst and Rvcc be the recover variables of the guest and
the hypervisor, respectively.

We next list our considered changes to the TCP Reno state ma-
chine that is presented in Figure 13 in order to obtain a correspond-
ing TCP NewReno state machine.
Upon initialization: recover is set to the first sequence number
sent. Trivially, we obtain:

Rgst(0) = Rvcc(0). (34)



Figure 14: High-level illustration of the TCP NewReno modification of TCP Reno Fast recovery that corresponds to RFC 6582. A
new congestion parameter denoted recover is introduced. Fast recovery continues until a Full ACK is received (i.e., it covers recover).
The black circles indicate the events upon which recover is set to the highest outstanding sequence numbers. Duplicate ACKs are
accounted for only if they cover more than recover.

Upon a third duplicate ACK:
Case 1: The cumulative acknowledgment field of this ACK cov-

ers more than recover. In that case:

Rgst(n) = kgst, Rvcc(n) = kvcc, (35)

where kgst and kvcc are the highest sequence numbers transmit-
ted so far by the guest and the hypervisor, respectively. Enter fast
recovery.

Case 2: The cumulative acknowledgment field of this ACK does
not cover more than recover. In that case:

Rgst(n) = Rgst(n− 1), Rvcc(n) = Rvcc(n− 1). (36)

Do not enter fast recovery.
Upon newly acknowledged data:

Case 1: Full acknowledgment – acknowledges all of the data up
to and including recover. In this case, exit fast recovery.

Case 2: Partial acknowledgment – does not acknowledge all of
the data up to and including recover. In this case, retransmit the
first unacknowledged segment and stay in fast recovery.
Upon Timeout: record the highest sequence number transmitted
in the variable recover, i.e., Equation (35).

All updates to the congestion window and slow start threshold
are assumed to correspond to TCP Reno, as detailed in Section A.2.

A.6 NewReno exact emulation
Since all updates to the congestion windows and slow start

thresholds are assumed to be according to Section A.2, in order
to obtain exact emulation it is sufficient to show that the recover
value of the guest and the hypervisor are always identical.

LEMMA 3.

Rvcc(n) = Rgst(n) ∀n, (37)

PROOF. Again, we prove this lemma by induction on the num-
ber n of events at the guest and hypervisor senders.

Base: n=0. This holds according to Equation (34).
Induction hypothesis: Assume that:

Rvcc(n− 1) = Rgst(n− 1). (38)

Inductive step: We split the proof into two possible cases (a
case for each event followed by an update of recover).

Case 1: Timeout. The correctness in this case follows immedi-
ately from the in-flight invariant and the simultaneous timeouts of
the guest and the hypervisor. Namely, both the guest and the hyper-
visor set recover to hold the highest sequence number transmitted,
which is identical in both.

Case 2: Third duplicate ACK that acknowledges more than
recover. The correctness in this case follows immediately from the
in-flight invariant and Equation (35).

COROLLARY 1. The equations of Lemma 1 still hold when ap-
plied to a TCP NewReno-based guest and hypervisor.

With this lemma at hand, we continue to show that an exact em-
ulation of ECN based on TCP NewReno is possible.

THEOREM 1. The translation layer can exactly emulate an
ECN-aware TCP NewReno given a non-ECN TCP NewReno guest.

PROOF. Consider Corollary 1. Then, the proof is identical to
the proof of Proposition 1.

Next, we continue to prove that DCTCP exact emulation is pos-
sible, where again, we begin by the following lemma.

LEMMA 4.

Rvcc(n) = Rgst(n) ∀n. (39)
PROOF. The proof is the same as that of Lemma 3.

COROLLARY 2. The equations of Lemma 2 still hold when ap-
plied to a TCP NewReno-based guest and hypervisor.

THEOREM 2. The translation layer can exactly emulate
DCTCP given a non-ECN TCP NewReno guest.

PROOF. Consider Corollary 2. Then, the proof is identical to
the proof of Proposition 2.

Interestingly, these proofs do not depend on the specific way to
reduce the congestion variables of the hypervisor as a reaction to
congestion flags. Thus, as long as the specific reaction does not
trigger a change of state, a similar result can apply to arbitrary vari-
ations of the ECN and DCTCP congestion control algorithms.



(a) 1 non-ECN flow (b) 1 ECN flow, PRR enabled (c) 1 ECN flow, PRR disabled

Figure 15: Congestion window of a single non-ECN flow, a single ECN flow, and a single ECN flow with PRR disabled. The ECN
flow experiences double drops, while the non-ECN flow and the ECN flow without PRR obey the textbook single drop.

A.7 Emulating ECN and DCTCP receivers
We have shown above how to exactly emulate ECN and DCTCP

senders. We next briefly discuss the emulation of ECN and DCTCP
receivers as well.

ECN receiver: When an ECN-capable receiver detects a CE flag
in the header of a received packet, it sets the ECN-Echo flag in the
TCP header of the subsequent ACK packet. The receiver continues
setting the ECN-Echo flag on each outgoing ACK until it receives
a CWR flag from the sender.

In the emulation, this functionality can be carried out by the hy-
pervisor, which also resets the CE flags before forwarding the ar-
riving packets to the guest receiver.

DCTCP receiver: To support delayed ACKs, the DCTCP re-
ceiver needs to maintain an additional congestion variable: DCTCP
Congestion Encountered (DCTCP.CE). At the connection estab-
lishment, DCTCP.CE is initialized to false. Then, according to
[55], when sending an ACK, the ECE flag is set if and only if
DCTCP.CE is true. The updates to DCTCP.CE are as follows:

• If the CE flag is set and DCTCP.CE is false, send an ACK for
any previously unacknowledged packets and set DCTCP.CE
to true.

• If the CE flag is not set and DCTCP.CE is true, send an
ACK for any previously unacknowledged packets and set
DCTCP.CE to false.

• In any other case, ignore the CE flag.

To emulate this behaviour, the hypervisor needs to maintain
DCTCP.CE and in addition to have knowledge about received but
not yet acknowledged sequence numbers. This behaviour is regu-
larly carried out by the hypervisor by maintaining two additional
variables on top of DCTCP.CE that hold the last received (by the
guest receiver) and the last acknowledged (by the guest sender) se-
quence numbers. While this may force the hypervisor to create and
send an ACK packet, it does not require usage of any other tech-
niques. In addition, in order to avoid redundant duplicate ACKs,
the hypervisor needs to check the ACK sequence numbers sent by
the guest sender. In case these sequence numbers predate the last
sent ACK (by the hypervisor), the hypervisor updates the sequence
numbers accordingly.

B. ECN + PRR = DOUBLE DROPS
In our experiments, we encountered a surprising phenomenon in

regular ECN flows: using both ECN and proportional rate reduc-
tion (PRR) [56] can cause double drops. This is apparently the
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Figure 16: Double-drop diagram.

first mention in the literature of this phenomenon, which seems to
go against the textbook single drop. Figure 15(a) depicts the con-
gestion window time series for a single non-ECN flow in a Mininet
experiment5, while Figure 15(b) shows the congestion window for
the ECN experiment; both are as reported by the tcp_probe kernel
module. In the non-ECN case, as expected, the congestion window
drops to half of its previous value. However, in the ECN case it
drops to a quarter, i.e., it drops twice upon congestion. We have
verified this double drop by examining the packet traces on the re-
ceiver and sender. As Figure 16 illustrates, just after congestion
starts, when the sender receives the first ACK with an ECE bit set
(A0), it almost immediately sends a packet P1 with the CWR bit
set. It will not respond with another window reduction during the
remainder of the window of packets that were outstanding when the
ECE bit was first received. However, P1 arrives at the queue while
congestion has not abated yet, so the switch sets the EC bit in the
IP header of packet P1 and of (at least) the next packet P2 sent by

5The experiments here use the same topology and RED parameters
as described in Section 3.2 and Figure 9.



Figure 17: Send window time series for virtual-ECN.

the sender. Since this EC bit for P2 arrives at the receiver after the
CWR for P1 is processed, it is interpreted as a new congestion no-
tification and results in additional ECEs sent back to the sender, in
ACKs acknowledging packets that were not outstanding when the
first ECE was received. Therefore, the sender has to respond with
another congestion window reduction.

The root cause for this double window reduction in ECN is the
PRR mechanism implemented in Linux. PRR spreads out the win-
dow reduction across a whole RTT (or more specifically, across the
ACKs on the outstanding window). It allows the sender to send
packets right after receiving an ECE, and to send even more pack-
ets afterwards during the window reduction phase. This is different
from a non-PRR implementation, where the congestion window is
immediately halved upon receiving the first ECE, thereby prevent-
ing any packets from being sent until at least half of the outstanding
window is acknowledged. By the time the transmitter can send a
new packet, the queue size is reduced below the threshold. To ver-
ify this we modified Linux v3.19 and disabled its PRR mechanism.
Figure 15(c) shows how we obtained again the usual single window
reductions per congestion event.

Why do we not see the same effect for non-ECN flows? In this
case, when the queue length exceeds the threshold, the newly ar-
rived packet is discarded, and since packets are still dequeued and
transmitted at the other end of the queue, the average queue length
is reduced. In this experiment, this reduction is enough to en-
sure that no packet drop is detected (by receiving three duplicate
ACKs) immediately after the window reduction phase is complete.
Namely, the next packet drop is detected either (a) before the con-
gestion window phase ends, which means it will not initiate another
congestion window reduction, or (b) much after the window is re-
duced by half.

Figure 18: Queue occupancy for the non-ECN, ECN and
virtual-ECN experiments.

To make sure our virtual-ECN mimics the normal ECN behav-
ior, we have incorporated the PRR mechanism into our receive-
window throttling mechanism, which results in near-identical win-
dows when comparing virtual-ECN’s send window and ECN’s con-
gestion window, as seen in Figure 17. Compare this to Figure 9,
where PRR is not implemented in the vCC mechanism. This is
also evident in the comparison of the queue length occupancy in
the three different experiments, as depicted in Figure 18. In simu-
lations, we find that fairness between virtual-ECN and ECN flows
is achieved both with and without PRR enabled in all flows.

We have also tested for this phenomenon with different link
propagation delays (0.025 ms, 0.1 ms, 0.25 ms and 0.5 ms), dif-
ferent Linux kernels (3.13, 3.19), different link speeds (10 Mbps
and 100 Mbps for the bottleneck link and 12 Mbps, 100 Mbps and
1 Gbps for the sender’s link) and for the three RED parameter sets
described in Table 1. The links speeds, kernel versions and link
propagation delays have little to no effect on the double-drop phe-
nomenon (except for links with 0.5 ms delay when using kernel
version 3.13, where double-drops occur less frequently). The dom-
inant factor affecting double-drops is the RED parameter set. The
double drops are observed more frequently when the graph of the
RED marking probability vs. queue occupancy gets closer to a step
function (as in the RED1 parameter set). When using RED2 we see
infrequent occurrences of double-drops. Such drops appear more
frequently when using RED3 (which is a more aggressive version
of RED2), and almost at each congestion event when using RED1.
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