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Identification of Parametric Underspread Linear
Systems and Super-Resolution Radar
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Abstract—Identification of time-varying linear systems, which
introduce both time-shifts (delays) and frequency-shifts (Doppler-
shifts), is a central task in many engineering applications. This
paper studies the problem of identification of underspread linear
systems (ULSs), whose responses lie within a unit-area region in the
delay-Doppler space, by probing them with a known input signal. It
is shown that sufficiently-underspread parametric linear systems,
described by a finite set of delays and Doppler-shifts, are iden-
tifiable from a single observation as long as the time-bandwidth
product of the input signal is proportional to the square of the total
number of delay-Doppler pairs in the system. In addition, an algo-
rithm is developed that enables identification of parametric ULSs
from an input train of pulses in polynomial time by exploiting re-
cent results on sub-Nyquist sampling for time delay estimation and
classical results on recovery of frequencies from a sum of com-
plex exponentials. Finally, application of these results to super-res-
olution target detection using radar is discussed. Specifically, it is
shown that the proposed procedure allows to distinguish between
multiple targets with very close proximity in the delay-Doppler
space, resulting in a resolution that substantially exceeds that of
standard matched-filtering based techniques without introducing
leakage effects inherent in recently proposed compressed sensing-
based radar methods.

Index Terms—Compressed sensing, delay-Doppler estimation,
rotational invariance techniques, super-resolution radar, system
identification, time-varying linear systems.

I. INTRODUCTION

P HYSICAL systems arising in a number of application
areas can often be described as linear and time varying [1],

[2]. Identification of such systems may help improve overall
performance, e.g., the bit-error rate in communications [1], or
constitute an integral part of the overall system operation, e.g.,
target detection using radar or active sonar [2].
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Mathematically, identification of a given time-varying linear
system involves probing it with a known input signal
and identifying by analyzing the single system output

[3], as illustrated in Fig. 1. Unlike time-invariant linear
systems, however, a single observation of a time-varying linear
system does not lead to a unique solution unless additional con-
straints on the system response are imposed. This is due to the
fact that such systems introduce both time-shifts (delays) and
frequency-shifts (Doppler-shifts) to the input signal. It is now a
well-established fact in the literature that a time-varying linear
system can only be identified from a single observation if

is known to lie within a region of the delay-Doppler
space such that [3]–[6]. Identifiable time-varying
linear systems are termed underspread, as opposed to noniden-
tifiable overspread linear systems, which satisfy
[3], [6].1

In this paper, we study the problem of identification of under-
spread linear systems (ULSs) whose responses can be described
by a finite set of delays and Doppler-shifts. That is,

(1)

where denotes a delay-Doppler pair and is
the complex attenuation factor associated with . Unlike
most of the existing work in the literature, however, our goal in
this paper is to explicitly characterize conditions on the band-
width and temporal support of the input signal that ensure iden-
tification of such ULSs from single observations. The impor-
tance of this goal can be best put into perspective by realizing
that ULSs of the form (1) tend to arise frequently in many ap-
plications. Consider, for example, a single-antenna transmitter
communicating wirelessly with a single-antenna receiver in a
mobile environment. Over a small-enough time interval, the
channel between the transmitter and receiver is of the form (1)
with each triplet corresponding to a distinct phys-
ical path between the transmitter and receiver [7]. Identification
of can enable one to establish a relatively error-free commu-
nication link between the transmitter and receiver. But wireless
systems also need to identify channels using signals that have
as small time-bandwidth product as possible so that they can
allocate the rest of the temporal degrees of freedom to commu-
nicating data [7], [8].

Similarly, in the case of target detection using radar or active
sonar, the (noiseless, clutter-free) received signal is of the form

1It is still an open research question as to whether critically spread linear sys-
tems, which correspond to ������� � �, are identifiable or nonidentifiable
[6]; see [3] for a partial answer to this question for the case when � is a rect-
angular region.
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Fig. 1. Schematic representation of identification of a time-varying linear system� by probing it with a known input signal. Characterization of an identification
scheme involves specification of the input probe, ����, and the accompanying sampling and recovery stages.

(1) with each triplet corresponding to an echo of the
transmitted signal from a distinct target in the delay-Doppler
space [2]. Identification of in this case enables one to ac-
curately obtain the radial position and velocity of the targets.
Radar systems also strive to operate with signals (waveforms)
that have as small temporal support and bandwidth as possible.
This is because the temporal support of the radar waveform is
directly tied to the time it takes to identify all the targets while
the bandwidth of the waveform—among other technical consid-
erations—is tied to the sampling rate of the radar receiver [2].

Given the ubiquity of time-varying linear systems in engi-
neering applications, there exists considerable amount of ex-
isting literature that studies identification of such systems in an
abstract setting. Kailath was the first to recognize that the iden-
tifiability of a time-varying linear system from a single ob-
servation is directly tied to the area of the region that contains

[4]. Kailath’s seminal work in [4] laid the foundations
for the future works of Bello [5], Kozek and Pfander [3], and
Pfander and Walnut [6], which establish the nonidentifiability
of overspread linear systems and provide constructive proofs for
the identifiability of arbitrary ULSs. However, none of these re-
sults shed any light on the bandwidth and temporal support of
the input signal needed to ensure identification of ULSs of the
form (1). On the contrary, the constructive proofs provided in
[3]–[6] require use of input signals with infinite bandwidth and
temporal support.

In contrast, to the best of our knowledge, this is the first paper
to develop a theory for identification of ULSs of the form (1),
henceforth referred to as parametric ULSs, that parallels that
of [3]–[6] for identification of arbitrary ULSs. One of the main
contributions of this paper is that we establish using a con-
structive proof that sufficiently-underspread parametric linear
systems are identifiable as long as the time-bandwidth product
of the input signal is proportional to the square of the total
number of delay-Doppler pairs in the system. Equally impor-
tantly, as part of our constructive proof, we concretely specify
the nature of the input signal (a finite train of pulses) and the
structure of a corresponding polynomial-time (in the number of
delay-Doppler pairs) recovery procedure that enable identifica-
tion of parametric ULSs. These ideas are also immediately ap-
plicable to super-resolution target detection using radar and we
show in the latter part of the paper that our approach indeed re-
sults in a resolution that substantially exceeds that of standard
matched-filtering based techniques without introducing leakage
effects inherent in recently proposed compressed sensing-based
radar methods [9].

The key developments in the paper leverage recent results on
sub-Nyquist sampling for time-delay estimation [10] and clas-
sical results on direction-of-arrival (DOA) estimation [11]–[14].
Unlike the traditional DOA estimation literature, however, we

do not assume that the system output is observed by an array
of antennas. Additionally, in contrast to [10], our goal here is
not a reduction in the sampling rate; rather, we are interested in
characterizing the minimum temporal degrees of freedom of the
input signal needed to ensure identification of a parametric ULS

. The connection to sub-Nyquist sampling can be understood
by noting that the sub-Nyquist sampling results of [10] enable
recovery of the delays associated with using a small-band-
width input signal. Further, the “train-of-pulses” nature of the
input signal combined with results on recovery of frequencies
from a sum of complex exponentials [14] allow recovery of the
Doppler-shifts and attenuation factors using an input signal of
small temporal support.

Several works in the past have considered identification of
specialized versions of parametric ULSs. Specifically, [9] and
[15]–[18] treat parametric ULSs whose delays and Doppler-
shifts lie on a quantized grid in the delay-Doppler space. On
the other hand, [19] considers the case in which there are no
more than two Doppler-shifts associated with the same delay.
The proposed recovery procedures in [19] also have exponential
complexity, since they require exhaustive searches in a -di-
mensional space, and stable initializations of these procedures
stipulate that the system output be observed by an -element
antenna array with .

While the insights of [9] and [15]–[18] can be extended to
arbitrary parametric ULSs by taking infinitesimally fine quan-
tization of the delay-Doppler space, this will require input sig-
nals with infinite bandwidth and temporal support. In contrast,
our ability to avoid quantization of the delay-Doppler space is
due to the fact that we treat the system-identification problem
directly in the analog domain. This follows the philosophy in
much of the recent work in analog compressed sensing, termed
Xampling, which provides a framework for incorporating and
exploiting structure in analog signals without the need for quan-
tization [20]–[25]. This is in particular the key enabling factor
that helps us avoid the catastrophic implications of the leakage
effects in the context of radar target detection.

Before concluding this discussion, we note that responses of
arbitrary ULSs can always be represented as (1) under the limit

. Therefore, the main result of this paper can also
be construed as an alternate constructive proof of the identifi-
ability of sufficiently underspread linear systems. Nevertheless,
just like [3]–[6], this interpretation of the presented results again
seem to suggest that identification of arbitrary ULSs requires
use of input signals with infinite bandwidth and temporal sup-
port.

The rest of this paper is organized as follows. In Section II,
we formalize the problem of identification of parametric ULSs
along with the accompanying assumptions. In Section III, we
propose a polynomial-time recovery procedure used for the
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identification of parametric ULSs, while Section IV specifies
the conditions on the input signal needed to guarantee unique
identification using the proposed procedure. We compare
the results of this paper to some of the related literature on
identification of parametric ULSs in Section V and discuss an
application of our results to super-resolution target detection
using radar in Section VI. Finally, we present results of some
numerical experiments in Section VII.

We make use of the following notational convention
throughout this paper. Vectors and matrices are denoted
by bold-faced lowercase and bold-faced uppercase letters,
respectively. The th element of a vector is written as

, and the th element of a matrix is denoted by
. Superscripts , , and represent conjugation,

transposition, and conjugate transposition, respectively. In
addition, the Fourier transform of a continuous-time signal

is defined by , while
denotes the inner product

between two continuous-time signals in . Similarly, the
discrete-time Fourier transform of a sequence is
defined by and is periodic in

with period . Finally, we use to write the Moore–
Penrose pseudoinverse of a matrix .

II. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we formalize the problem of identification of a
parametric ULS whose response is described by a total of
arbitrary delay-Doppler-shifts of the input signal. The task of
identification of essentially requires specifying two distinct
but highly intertwined steps. First, we need to specify the condi-
tions on the bandwidth and temporal support of the input signal

that ensure identification of from a single observation.
Second, we need to provide a polynomial-time recovery proce-
dure that takes as input and provides an estimate of
the system response by exploiting the properties of spec-
ified in the first step. We begin by detailing our system model
and the accompanying assumptions.

In (1), some of the delays, , might be repeated. Expressing
in terms of distinct delays in this case leads to

(2)

where denotes the th Doppler-shift associated with the th
distinct delay denotes the attenuation factor associ-
ated with the delay-Doppler pair , and .
We choose to express as in (2) so as to facilitate the
forthcoming analysis. Throughout the rest of the paper, we use

to denote the set of distinct de-
lays associated with . The first main assumption that we make
concerns the footprint of in the delay-Doppler space:

A1) The response of lies within a rectangular
region of the delay-Doppler space; in other words,

. This is in-
deed the case in many engineering applications (see, e.g.,
[1] and [2]). The parameters and are termed
in the parlance of linear systems as the delay spread and
the Doppler spread of the system, respectively.

Next, we use and to denote the temporal support and
the two-sided bandwidth of the known input signal used
to probe , respectively. We propose using input signals that
correspond to a finite train of pulses:

(3)

where is a prototype pulse of bandwidth that is (essen-
tially) temporally supported on and is assumed to have
unit energy , and is an -length
probing sequence. The parameter is proportional to the time-
bandwidth product of , which roughly defines the number
of temporal degrees of freedom available for estimating [8]:

.2 The final two assumptions that we make
concern the relationship between the delay spread and the
Doppler spread of , and the temporal support and
bandwidth of :

A2) The delay spread of is strictly smaller than the tem-
poral support of : , and

A3) The Doppler spread of is much smaller than the band-
width of .

Note that, since , A3) equivalently imposes that
. This assumption states that the temporal scale of

variations in is large relative to the temporal scale of varia-
tions in . It is worth pointing out that linear systems that are
sufficiently underspread in the sense that can
always be made to satisfy A2) and A3) for any given budget of
the time-bandwidth product.

Remark 1: In order to elaborate on the validity of A2) and
A3), note that there exist many communication applications
where underlying linear systems tend to be highly under-
spread [1, sec. 14.2]. Similarly, A2) and A3) in the context
of radar target detection simply mean that the targets are not
too far away from the radar and that their velocities are not
too high. Consider, for example, an -band radar (operating
frequency of 1.3 GHz) that transmits a pulse of bandwidth

10 MHz after every 50 s. Then both A2) and A3)
are satisfied when the distance between the radar and any target
is at most 7.5 km 50 s and the radial velocity of any
target is at most 185 km/h 445 Hz [2].

The following theorem summarizes our key result concerning
identification of parametric ULSs.

Theorem 1 (Identification of Parametric Underspread
Linear Systems): Suppose that is a parametric ULS that is
completely described by a total of triplets

. Then, irrespective of the distribution of
within the delay-Doppler space, can be identified in poly-
nomial-time from a single observation as long as
it satisfies A1)–A3), the probing sequence remains
bounded away from zero in the sense that for every

, and the time-bandwidth product of the
known input signal satisfies the condition

(4)

2Recall that the temporal support and the bandwidth of an arbitrary pulse ����
are related to each other as� � ��� .
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Fig. 2. Schematic representation of the polynomial-time recovery procedure for identification of parametric underspread linear systems from single observations.

where is the maximum number of
Doppler-shifts associated with any one of the distinct delays.
In addition, the time-bandwidth product of is guaranteed
to satisfy (4) as long as .

The rest of this paper is devoted to providing a proof of The-
orem 1. In terms of a general roadmap for the proof, we first
exploit the sub-Nyquist sampling results of [10] to argue that

with small bandwidth suffices to recover the delays asso-
ciated with . We then exploit the “train-of-pulses” structure
of and classical results on recovery of frequencies from a
sum of complex exponentials [14] to argue that with small
temporal support suffices to recover the Doppler-shifts and at-
tenuation factors associated with . The statement of Theorem
1 will then follow by a simple combination of the two claims
concerning the bandwidth and temporal support of . We will
make use of (2) and (3) in the following to describe:

1) the polynomial-time recovery procedure used for the iden-
tification of (cf. Section III);

2) the accompanying conditions on needed to guarantee
identification of (cf. Section IV).

III. POLYNOMIAL-TIME IDENTIFICATION OF ULSs

In this section, we characterize the polynomial-time recovery
procedure used for identification of ULSs of the form (2). In
order to facilitate understanding of the proposed algorithm,
shown in Fig. 2, we conceptually partition the method into two
stages: sampling and recovery. The rest of this section is de-
voted to describing these two steps in detail. Before proceeding
further, however, it is instructive to first make use of (2) and (3)
and rewrite the output of as

(5)

where follows from the assumption , which
implies that for all ,
and the sequences , , are defined as

(6)

A. The Sampling Stage

We leverage the ideas of [10] on time-delay estimation from
sub-Nyquist samples to describe the sampling stage of our re-
covery procedure. While the primary objective in [10] is time-
delay estimation from low-rate samples, the development here
is carried out with an eye towards identification of parametric
ULSs regardless of the distribution of system parameters within
the delay-Doppler space—the so-called super-resolution identi-
fication. In [10], a general multi-channel sub-Nyquist sampling
scheme was introduced for the purpose of recovering a set of un-
known delays from signals of the form (5). Here, we focus on
one special case of that scheme, which consists of a low-pass
filter (LPF) followed by a uniform sampler. This architecture
may be preferable from an implementation viewpoint since it
requires only one sampling channel, thereby simplifying analog
front-end of the sampling hardware. The LPF, besides being re-
quired by the sampling stage, also serves as the front-end of the
system-identification hardware and rejects noise and interfer-
ence outside the working spectral band.

Our sampling stage first passes the system output
through a LPF whose impulse response is given by

and then uniformly samples the LPF output at times
. We assume that the frequency response, ,

of the LPF is contained in the spectral band , defined as

(7)

and is zero for frequencies . Here, the parameter is
assumed to be even and satisfies the condition ; exact
requirements on to ensure identification of will be given
in Section IV. In order to relate the sampled output of the LPF
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with the multi-channel sampling formulation of [10], we define
sampling (sub)sequences as

(8)

These sequences correspond to periodically splitting the sam-
ples at the output of the LPF, which is generated at a rate of

, into slower sequences at a rate of each using a se-
rial-to-parallel converter; see Fig. 2 for a schematic representa-
tion of this splitting.

Next, we define the vector as the -length vector
whose th element is , which denotes the discrete-time
Fourier transform (DTFT) of . In a similar fashion, we de-
fine as the -length vector whose th element is given
by , the DTFT of . It can be shown following the
developments carried out in [10] that these two vectors are re-
lated to each other by

(9)

Here, is a matrix with th element

(10)

where , is a Vandermonde
matrix with th element

(11)

and is a diagonal matrix whose th diag-
onal element is given by . Assuming for the time being
that is a stably-invertible matrix, we define the modi-
fied measurement vector . De-
noting

(12)

we see from (10) that

(13)

Since is not a function of , (13) can be expressed in the
discrete-time domain using the linearity of the DTFT as

(14)

Here, the elements of the vectors and are discrete-time
sequences that are given by the inverse DTFT of the elements
of and , respectively.

The key insight to be drawn here is that (13), and its time-do-
main equivalent (14), can be viewed as an infinite ensemble of
modified measurement vectors in which each element corre-
sponds to a distinct matrix that, in turn, depends on the
set of (distinct) delays . Linear measurement models of the
form (14)—in which the measurement matrix is completely
determined by a set of (unknown) parameters—have been
studied extensively in a number of research areas such as

system identification [26] and direction-of-arrival and spectrum
estimation [14], [27]. One specific class of methods that has
proven to be quite useful in these areas in efficiently recovering
the parameters that describe the measurement matrix are the
so-called subspace methods [27]. Consequently, our approach
in the recovery stage will be to first use subspace methods
in order to recover the set from . Afterwards, since

because of the assumption that , we
will recover from using linear filtering operations
as follows [cf. (12), (13)]

(15)

Finally, the Doppler-shifts and attenuation factors associated
with are determined from the vector by an additional
use of the subspace methods.

Before proceeding to the recovery stage, we justify the as-
sumption that can be stably inverted. To this end, ob-
serve from (10) that can be decomposed as

(16)

where is a diagonal matrix with th diagonal
element

(17)

is a -point discrete Fourier transform (DFT) matrix with
th element equal to

(18)

and is a diagonal matrix whose th diagonal
element is given by

(19)

It can now be easily seen from the decomposition in (16) that,
in order for to be stably invertible, each of the above
three matrices has to be stably invertible. By construction, both

and are stably invertible. The invertibility require-
ment on the diagonal matrix leads to the following
conditions on the pulse and the kernel of the LPF.

Condition 1: In order for to be stably invertible, the
continuous-time Fourier transform of has to satisfy

(20)

for some positive constants and .
Condition 2: In order for to be stably invertible,

the continuous-time Fourier transform of the LPF has to
satisfy

(21)

for some positive constants and .
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Condition 1 requires that the bandwidth of the prototype
pulse has to satisfy

(22)

In Section IV, we will derive additional conditions on the pa-
rameter and combine them with (22) to obtain equivalent re-
quirements on the time-bandwidth product of the input signal

that will ensure invertibility of the matrix .
We conclude discussion of the sampling stage by pointing out

that the decomposition in (16) also provides an efficient way to
implement the digital-correction filter bank . This
is because (16) implies that

(23)

Therefore, the implementation of can be done in
three stages, where each stage corresponds to one of the three
matrices in (23). Specifically, define the set of digital filters

and as

(24)

and

(25)

where IDTFT denotes the inverse DTFT operation. The first cor-
rection stage involves filtering the sequences using the
set of filters . Next, multiplication with the DFT matrix

can be efficiently implemented by applying the fast Fourier
transform (FFT) to the outputs of the filters in the first stage.
Finally, the third correction stage involves filtering the resulting
sequences using the set of filters to get the desired se-
quences . This last correction stage can be interpreted as
an equalization step that compensates for the nonflatness of the
frequency responses of the prototype pulse and the kernel of the
LPF. A detailed schematic representation of the sampling stage,
which is based on the preceding interpretation of ,
is provided in Fig. 2.

B. The Recovery Stage

We conclude this section by describing in detail the recovery
stage, which—as noted earlier—consists of two steps. In the
first step, we rely on subspace methods to recover the delays

from [cf. (14)]. In the second step, we make use of the
recovered delays to obtain the Doppler-shifts and attenuation
factors associated with each of the delays.

1) Recovery of the Delays: In order to recover from ,
we rely on the approach advocated in [10] and make use of the
well-known ESPRIT algorithm [28] together with an additional
smoothing stage [29]. The exact algorithm is given in Table I;
we refer the reader to [10] and [28] for details.

2) Recovery of the Doppler-Shifts and Attenuation Factors:
Once the unknown delays are found, we can recover the vectors

through the frequency relation (15). Next, define for each
delay , the set of corresponding Doppler-shifts

(26)

TABLE I
DELAY RECOVERY ALGORITHM

and recall that the th element of is given by (6). We can
therefore write the -length sequence for each index
in the following matrix-vector form

(27)

where is a length- vector whose th element is ,
is an diagonal matrix whose th diagonal element is
given by , is an Vandermonde matrix with

th element , and is length- vector with
th element . The matrix in (27) can be inverted under the

assumption that the sequence satisfies for every
, resulting in

(28)

where . From a simple inspection, we can express
the elements of as

(29)

It is now easy to see from this representation that recovery of the
Doppler-shifts from the sequences is equivalent to the
problem of recovering distinct frequencies from a (weighted)
sum of complex exponentials. In the context of our problem,
for each fixed index , the frequency of the th exponential is

and its amplitude is .
Fortunately, the problem of recovering frequencies from

a sum of complex exponentials has been studied extensively
in the literature and various strategies exist for solving this
problem (see [14] for a review). One of these techniques that
has gained interest recently, especially in the literature on finite
rate of innovation [30]–[33], is the annihilating-filter method.
The annihilating-filter approach, in contrast to some of the other
techniques, allows the recovery of the frequencies associated
with the th index even at the critical value of .
On the other hand, subspace methods such as ESPRIT [12],
matrix-pencil algorithm [13], and the Tufts and Kumaresan
approach [11] are generally more robust to noise but also
require more samples than . Once the Doppler-shifts for
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each index have been recovered then, since
because of the requirement that , the attenuation
factors are determined as

(30)

IV. SUFFICIENT CONDITIONS FOR IDENTIFICATION

Our focus in Section III was on developing a recovery algo-
rithm for the identification of ULSs. We now turn to specify con-
ditions that guarantee that the proposed procedure recovers the
set of triplets that describe the parametric ULS

. We present these requirements in terms of equivalent con-
ditions on the time-bandwidth product of the input signal

. This is a natural way to describe the performance of system
identification schemes since roughly defines the number of
temporal degrees of freedom available for estimating [8].

To begin with, recall that the recovery stage involves first de-
termining the unknown delays from the set of equations given
by (14) (cf. Section III-B). Therefore, to ensure that our algo-
rithm successfully returns the parameters of , we first need to
provide conditions that guarantee a unique solution to (14). To
facilitate the forthcoming analysis, we let
and denote the set of all vectors and

, respectively. Using this notation, we can rewrite (14) as

(31)

We now leverage the analysis carried out in [10] to provide suf-
ficient conditions for a unique solution to (31); see [10] for a
formal proof.

Proposition 1: If solves (31) and if

(32)

then is the unique solution of (31). Here, is
used to denote the subspace of minimal dimensions that contains

.
Proposition 1 suggests that a unique solution to (31)—and, by

extension, unique recovery of the set of delays —is guaranteed
through a proper selection of the parameter . In particular, since

is a positive number in general, we have from
Proposition 1 that is a sufficient condition for unique
recovery of and . From Condition 1 in Section III, we have
seen that the parameter effectively determines the minimum
bandwidth of the prototype pulse [cf. (22)]. Combining the
condition and the one obtained earlier in (22) leads to
the following sufficient condition on the bandwidth of the input
signal for unique recovery of and :

(33)

The second step in the recovery stage involves recovering the
Doppler-shifts and attenuation factors (cf. Section III-B). We
now investigate the conditions required for unique recovery of
the Doppler-shifts. Recall that the vectors and are
related to each other by the invertible frequency relation (12).
Therefore, since the diagonal matrix is invertible

and completely specified by , the condition given in (33) also
guarantees unique recovery of the vectors from . Fur-
ther, it can be easily verified that the matrix in (28) has the
same parametric structure as that required by Proposition 1. We
can therefore once again appeal to the results of Proposition 1 in
providing conditions for unique recovery of the Doppler-shifts

from the vectors [cf. (28)]. To that end, we inter-
change with and with in Proposition 1 and use
the fact that (since it is a nonzero vector).
Therefore, by making use of Proposition 1, we conclude that a
sufficient condition for unique recovery of from (28) is

(34)

Condition (34) is intuitive in the sense that there are
unknowns in (28) ( unknown Doppler-shifts and un-
known attenuation factors) and therefore at least equa-
tions are required to solve for these unknown parameters. Fi-
nally, since we need to ensure unique recovery of the Doppler-
shifts and attenuation factors for each distinct delay , we have
the condition

(35)

which trivially ensures that (34) holds for every .
We summarize these results in the following theorem.

Theorem 2 (Sufficient Conditions for System Identification):
Suppose that is a parametric ULS that is completely described
by a total of triplets . Then, ir-
respective of the distribution of within the delay-
Doppler space, the recovery procedure specified in Section III
with samples taken at uniquely identifies
from a single observation as long as the system satisfies
A1)-A3), the probing sequence remains bounded away
from zero in the sense that for every ,
and the time-bandwidth product of the (known) input signal
satisfies the condition

(36)

where is the maximum number of
Doppler-shifts associated with any one of the distinct delays.

Proof: Recall from the previous discussion that the delays,
Doppler-shifts, and attenuation factors associated with can be
uniquely recovered as long as , ,
and . Now take and note that
under the assumption , we trivially have

. Further, since and since sampling
rate of implies , we also have that

, completing the proof.
Theorem 2 implicitly assumes that (or an upper bound

on ) and (or an upper bound on ) are known
at the transmitter side. We explore this point in further detail
in Section V and numerically study the effects of “model-order
mismatch” on the robustness of the proposed recovery proce-
dure. It is also instructive (especially for comparison purposes
with related work such as [9] and [17]) to present a weaker ver-
sion of Theorem 2 that only requires knowledge of the total
number of delay-Doppler pairs .



BAJWA et al.: IDENTIFICATION OF PARAMETRIC UNDERSPREAD LINEAR SYSTEMS AND SUPER-RESOLUTION RADAR 2555

Corollary 1 (Weaker Sufficient Conditions for System Identifi-
cation): Suppose that the assumptions of Theorem 2 hold. Then
the recovery procedure specified in Section III with samples
taken at uniquely identifies from a single ob-
servation as long as the time-bandwidth product of the
known input signal satisfies the condition

.
Proof: This corollary is a simple consequence of Theorem

2 and the fact that . To prove the
latter fact, note that for any fixed and , we always have

. Indeed, if were greater than
then either or there exists an

such that , both of which are contradictions. Conse-
quently, for any fixed , we have that

(37)

and since the maximum of occurs at
, we get .

V. DISCUSSION

In Sections III and IV, we proposed and analyzed a poly-
nomial-time recovery procedure that ensures identification of
parametric ULSs under certain conditions. In particular, one of
the key contributions of the preceding analysis is that it parlays
a key sub-Nyquist sampling result of [10] into conditions on
the time-bandwidth product, , of the input signal that
guarantee identification of arbitrary linear systems as long as
they are sufficiently underspread. Specifically, in the parlance of
system identification, Corollary 1 states that the recovery proce-
dure of Section III achieves infinitesimally-fine resolution in the
delay-Doppler space as long as the temporal degrees of freedom
available to excite a ULS are on the order of . In addition,
we carry out extensive numerical experiments in Section VII,
which confirm that—as long as the condition

is satisfied—the ability of the proposed procedure to dis-
tinguish between (resolve) closely spaced delay-Doppler pairs
is primarily a function of the signal-to-noise ratio (SNR) and
its performance degrades gracefully in the presence of noise. In
order to best put the significance of our results into perspective,
it is instructive to compare them with corresponding results in
recent literature. We then discuss an application of these results
to super-resolution target detection using radar in Section VI.

There exists a large body of existing work—especially in the
communications and radar literature—treating identification of
parametric ULSs; see, e.g., [2], [9], and [15]–[19]. One of the
approaches that is commonly taken in many of these works, such
as in [9] and [15]–[18], is to quantize the delay-Doppler space

by assuming that both and lie on a grid. The fol-
lowing theorem is representative of some of the known results
in this case.3

Theorem 3 [9], [17]: Suppose that is a parametric ULS
that is completely described by a total of
triplets . Further, let the delays and the Doppler-
shifts of the system be such that and

3It is worth mentioning here that a somewhat similar result was also obtained
independently in [34] in an abstract setting.

for and . Then can be identified in poly-
nomial-time from a single observation as long as the
system satisfies A1)–A3) and the time-bandwidth product of the
input signal satisfies .

There are two conclusions that can be immediately drawn
from Theorem 3. First, both [9] and [17] require about the same
scaling of the temporal degrees of freedom as that required by
Corollary 1: . Second, the resolution of the re-
covery procedures proposed in [9] and [17] is limited to
in the delay space and in the Doppler space because of the
assumption that and .4 Similarly, in
another related recent paper [18], two recovery procedures are
proposed that have been numerically shown to uniquely iden-
tify as long as and each corresponds to
one of the points in the quantized delay-Doppler space with res-
olution proportional to and in the delay space and the
Doppler space, respectively. Note that the assumption of a quan-
tized delay-Doppler space can have unintended consequences
in certain applications and we carry out a detailed discussion of
this issue in the next section in the context of radar target detec-
tion.

Finally, the work in [19] leverages some of the results
in DOA estimation to propose a scheme for the identifica-
tion of linear systems of the form (2) without requiring that

and . Nevertheless, our results
differ from those in [19] in three important respects. First,
we explicitly state the relationship between the time-band-
width product of the input signal and the number of
delay-Doppler pairs that guarantees recovery
of the system response by studying the sampling and recovery
stages of our proposed recovery procedure. On the other hand,
the method proposed in [19] assumes the sampling stage to
be given and, as such, fails to make explicit the connection
between the time-bandwidth product of and the number
of delay-Doppler pairs. Second, the algorithms proposed in
[19] have exponential complexity, since they require exhaustive
searches in a -dimensional space, which can be computa-
tionally prohibitive for large-enough values of . Last, but not
the least, recovery methods proposed in [19] are guaranteed to
work as long as there are no more than two delay-Doppler pairs
having the same delay, , and the system output
is observed by an -element antenna array with . In
contrast, our recovery algorithm does not impose any restric-
tions on the distribution of within the delay-Doppler
space and is guaranteed to work with a single observation of
the system output.

VI. APPLICATION: SUPER-RESOLUTION RADAR

We have established in Section IV that the polynomial-time
recovery procedure of Section III achieves infinitesimally-fine
resolution in the delay-Doppler space under mild assumptions
on the temporal degrees of freedom of the input signal. This

4Note that there is also a Bayesian variant of Theorem 3 in [9] that requires
� � � ���� under the assumption that � has a uniform statistical prior
over the quantized delay-Doppler space. A somewhat similar Bayesian variant
of Corollary 1 can also be obtained by trivially extending the results of this
paper to the case when� is assumed to have a uniform statistical prior over the
nonquantized delay-Doppler space.
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Fig. 3. Quantized representation of nine targets (represented by �) in the delay-
Doppler space with � � 10 �s and � � 10 kHz. The quantized delay-
Doppler approximation of the targets corresponds to � � 1.2 MHz and � �
0.48 ms.

makes the proposed algorithm extremely useful for application
areas in which the system performance depends critically on the
ability to resolve closely spaced delay-Doppler pairs. In partic-
ular, our method can be used for super-resolution target detec-
tion using radar. This is because the noiseless, clutter-free re-
ceived signal in the case of monostatic radars is exactly of the
form (1) with each triplet corresponding to an echo
of the radar waveform from a distinct target [2].5 The fact
that our recovery procedure allows to identify arbitrary para-
metric ULSs, therefore, enables us to distinguish between mul-
tiple targets even if their radial positions are quite close to each
other and/or their radial velocities are similar—the so-called
super-resolution detection of targets.

On the other hand, note that apart from the fact that none
of the methods based on the assumption of a quantized
delay-Doppler space can ever carry out super-resolution target
detection, a major drawback of the radar target detection
approach in works such as [9] and [18] is that targets in the
real-world do not in fact correspond to points in the quantized
delay-Doppler space, which causes leakage of their energies
in the quantized space. In order to elaborate further on this
point, define and and note
that (canonical) quantization corresponds to transforming the

continuous delay-Doppler
space into a two-di-
mensional quantized grid, which in turn transforms the received
signal at the radar into [35], [36, Ch. 4]

(38)

where
and the quantized delay-Doppler pairs

. It is now easy to conclude from (38) that, unless
the original targets (delay-Doppler pairs) happen to lie in ,
most of the attenuation factors will be nonzero because
of the sinc kernels—the so-called “leakage effect.” This has
catastrophic implications for target detection using radar since
leakage makes it impossible to reliably identify the original set

5In the radar literature, the term “monostatic” refers to the common scenario
of the radar transmitter and the radar receiver being collocated.

of delays and Doppler-shifts. This limitation of target-detec-
tion methods that are based on the assumption of a quantized
delay-Doppler space is also depicted in Fig. 3 for the case of
nine hypothetical targets. The figure illustrates that each of the
nine nonquantized targets not only contributes energy to its
own in but also leaks its energy to the nearby points
in the quantized space.

Owing to the fact that leakage can cause missed detections
and false alarms, conventional radar literature in fact tends to
focus only on recovery procedures that do no impose any struc-
ture on the distribution of within the delay-Doppler
space. The most commonly used approach in the radar signal
processing literature corresponds to matched-filtering (MF) the
received signal with the input signal in the delay-Doppler
space [2]. The MF output takes the form

(39)

where is termed
the Woodward’s ambiguity function of . It can be easily de-
duced from (39) that the resolution of the MF-based recovery
procedure is tied to the support of the ambiguity function in the
delay-Doppler space. Ideally, one would like to have

for super-resolution detection of targets but two funda-
mental properties of ambiguity functions, namely,

and , dictate that
no real-world signal can yield infinitesimally-fine resolu-
tion in this case either [2]. In fact, the resolution of MF-based
recovery techniques also tends to be on the order of and

in the delay space and the Doppler space, respectively,
which severely limits their ability to distinguish between two
closely-spaced targets in the delay-Doppler space. This inability
of MF-based methods to resolve closely-spaced delay-Doppler
pairs is depicted in Fig. 4. This figure compares the target-detec-
tion performance of MF and the recovery procedure proposed in
this paper for the case of nine closely-spaced targets. It is easy
to see from Fig. 4(a) that matched-filtering the received signal

with the input signal gives rise to peaks that are
not centered at the true targets for a majority of the targets. On
the other hand, Fig. 4(b) illustrates that our recovery procedure
correctly identifies the locations of all nine of the targets in the
delay-Doppler space.

VII. NUMERICAL EXPERIMENTS

In this section, we explore various issues using numerical ex-
periments that were not treated theoretically earlier in the paper.
These include robustness of our method in the presence of noise
and the effects of truncated digital filters, use of finite number
of samples, choice of probing sequence , and model-order
mismatch on the recovery performance. Throughout this sec-
tion, the numerical experiments correspond to a parametric ULS

that is described by a total of delay-Doppler pairs with
and . The locations of these pairs in
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Fig. 4. Comparison between the target-detection performance of matched-fil-
tering and our proposed recovery procedure for the case of nine targets (repre-
sented by �) in the delay-Doppler space with � � 10 �s, � � 10 kHz,
� � 1.2 MHz, and � � 0.48 ms. The sequence �� � corresponds to a
random binary (�1) sequence with � � ��, the pulse ���� is designed to have
a nearly-flat frequency response in the working spectral band � , and the pulse
repetition interval is taken to be � � 10 �s. (a) Target detection by matched-fil-
tering the received signal ������� with the input signal ����. (b) Target detec-
tion using the proposed recovery procedure with 	 � ��.

Fig. 5. Delay-Doppler representation of a parametric ULS� corresponding to

 � � delay-Doppler pairs with � � 10 �s and � � 10 kHz.

the delay-Doppler space are given by Fig. 5, while the attenua-
tion factors associated with each of the six delay-Doppler pairs
are taken to have unit amplitudes and random phases.

In order to identify , we design the prototype pulse to
have a constant frequency response over the working spectral
band with and 10 s,
that is, when and when .

Fig. 6. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio.

In other words, the input signal is chosen to have band-
width . In addition, unless otherwise noted, we
use a probing sequence corresponding to a random binary
( 1) sequence with , which leads to a time-bandwidth
product of . Note that the chosen time-bandwidth
product here is more than the lower bound of Theorem 2 by a
factor of 5 so as to increase the robustness to noise. Also, unless
otherwise stated, all experiments in the following use an ideal
(flat) LPF as the sampling filter (cf. Fig. 2). We use the ESPRIT
method described in Section III for recovery of the delays and
the matrix-pencil method [13] for recovery of the corresponding
Doppler-shifts. Given the rich history of these two subspace
methods, there exist many standard techniques in the literature
(see, e.g., [37] and [38]) for providing them with reliable esti-
mates of the model orders in the presence of noise. As such, we
assume in the following that both these methods have access to
correct values of and ’s. Finally, the performance met-
rics that we use in this section are the (normalized) mean-square
error (MSE) of the estimated delays and Doppler-shifts (aver-
aged over 100 noise realizations), defined as

(40)

and

(41)

where and denote the estimated delays and Doppler-shifts,
respectively.

1) Robustness to Noise: We first examine the robustness
of our method when the received signal is corrupted
by additive noise. The results of this experiment are shown
in Fig. 6, which plots the MSE of the estimated delays and
Doppler-shifts as a function of the SNR. It can be seen from
the figure that the ability of the proposed procedure to resolve
delay-Doppler pairs is primarily a function of the SNR and its
performance degrades gracefully in the presence of noise.

2) Effects of Truncated Digital-Correction Filter Banks: Re-
call from Section III that our recovery method is composed of
various digital-correction stages (see also Fig. 2). The filters
used in these stages, which include and , have
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Fig. 7. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for various lengths of the impulse responses
of the filters.

infinite impulse responses in general so that their practical im-
plementation requires truncation of their impulse responses. The
truncated lengths of these filters also determine the (computa-
tional) delay and the computational load of the proposed proce-
dure. Fig. 7 plots the MSE of the estimated delays [Fig. 7(a)]
and Doppler-shifts [Fig. 7(b)] as a function of the SNR for var-
ious lengths of the impulse responses of the filters. There are two
important insights that can be drawn from the results of this ex-
periment. First, for a fixed length of the impulse responses, there
is always some SNR beyond which the estimation error caused
by the truncation of the impulse responses becomes more dom-
inant than the error caused by the additive noise (as evident by
the error floors in Fig. 7). Second, and perhaps most importantly,
filters with 49 taps seem to provide good estimation accuracy up
to an SNR of 60 dB, whereas filters with even just 35 taps yield
good estimates at SNRs below 50 dB.

3) Effects of Finite Number of Samples: The sampling filter
used at the front-end in Fig. 2 is bandlimited in nature and,
therefore, has infinite support in the time domain. Consequently,
our sampling method theoretically requires collecting an infi-
nite number of samples at the back-end of this filter. The next
numerical experiment examines the effect of collecting a finite
number of samples on the estimation performance. The results
are reported in Fig. 8, which depicts the MSE of the estimated
delays [Fig. 8(a)] and Doppler-shifts [Fig. 8(b)] as a function
of SNR for different numbers of samples collected at the output

Fig. 8. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for different numbers of samples collected
at the output of the sampling filter (corresponding to an ideal low-pass filter).

of the sampling filter (corresponding to an ideal LPF). As in
the case of truncation of digital-correction filter banks, there
is always some SNR for every fixed number of samples be-
yond which the estimation error caused by the finite number of
samples becomes more dominant than the error due to additive
noise. Equally important, however, note that in these ex-
periments corresponds to a train of prototype pulses.
Therefore, under the assumption of samples per pulse pe-
riod , it is clear that we require at least samples in
total to represent just the input signal . On the other hand,
Fig. 8 shows that collecting 248 samples, which is roughly twice
the minimum number of samples required, provides good (delay
and Doppler) estimation accuracy for SNRs up to 70 dB.

Finally, it is worth noting here that making use of an ideal LPF
as the sampling filter requires collecting relatively more samples
at the filter back-end due to the slowly-decaying nature of the
sinc kernel. Therefore, in order to reduce the number of samples
required at the back-end of the sampling filter for reasonable
estimation accuracy, we can instead make use of sampling filters
whose (time-domain) kernels decay faster than the sinc kernel.
One such possible choice is a raised-cosine filter with roll-off
factor equal to 1, whose frequency response is given by

when and when
. It is a well-known fact (and can be easily checked) that

this filter decays faster in the time domain than the sinc kernel.
However, the main issue here is that raised-cosine filter does not



BAJWA et al.: IDENTIFICATION OF PARAMETRIC UNDERSPREAD LINEAR SYSTEMS AND SUPER-RESOLUTION RADAR 2559

Fig. 9. Frequency response of a raised-cosine filter with roll-off factor 1.

satisfy Condition 2 in Section III, since its frequency response
is not bounded away from zero at the ends of the spectral band

(see, e.g., Fig. 9).
However, we now show that this problem can be overcome

by slightly increasing the sampling rate and the bandwidth re-
quirement stated in Section IV. Specifically, note that Propo-
sition 1 requires that the parameter , which controls the min-
imal bandwidth of and the sampling rate of our proposed
procedure, satisfies under the current simulation setup
(since ). We now instead choose and argue that
raised-cosine filter can be successfully used under this choice of

. To this end, recall from Section III that the function of the dig-
ital-correction filters and is to invert the frequency
response of the sampling kernel corresponding to the frequency
bands denoted by 1 and 6 in Fig. 9, respectively (under the as-
sumption that the pulse has a flat frequency response). In
the case of a raised-cosine filter, however, we cannot compen-
sate for the nonflat nature of these two bands since they are not
bounded away from zero. Nevertheless, because of the fact that
we are using , we can simply disregard channels 1 and
6 after the first digital-correction stage and work with the rest
of the four channels (2–4) only. We make use of this insight
to repeat the last numerical experiment using a raised-cosine
filter and report the results in Fig. 10. It is easy to see from
Fig. 10 that, despite increasing to 6, raised-cosine filter per-
forms better than an ideal LPF using fewer samples.

4) Effects of the Probing Sequence: Theorem 2 in Section IV
stipulates that the choice of the probing sequence has no
impact on the noiseless performance of the proposed recovery
procedure as long as for every .
However, it is quite expected that will have an effect on
the performance in the presence of noise and implementation is-
sues related to truncated digital filters and use of finite number
of samples. The next experiment examines this effect for four
different choices of binary probing sequences of length
that periodically alternate between 1 and 1 every entries.
The results are reported in Fig. 11, which depicts the MSE of
the estimated delays [Fig. 11(a)] and Doppler-shifts [Fig. 11(b)]
as a function of the SNR for probing sequences with 1, 2,
4, and 32. We can draw two immediate conclusions from ob-
serving the results of this experiment. First, faster alternating
probing sequences (in other words, sequences with higher fre-
quency content) appear to provide better resilience against the

Fig. 10. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for different numbers of samples collected
at the output of a raised-cosine sampling filter with roll-off factor 1.

truncation of digital filters and the use of finite number of sam-
ples. Second, the effect of the choice of probing sequence is
less pronounced at low SNRs, since the error due to noise at
low SNRs dominates the errors caused by other implementation
imperfections.

5) Effects of Model-Order Mismatch: Our final numerical ex-
periment studies the situation where the conditions of Theorem
2 do not exactly hold. To this end, we simulate identification of
a parametric ULS with 4 delays. For the first three delays,
we take , 1, 2, 3, whereas we choose for
the last delay. Finally, we take the prototype pulse as at the
start of this section (with bandwidth ), but we use
a probing sequence corresponding to a random ( 1) se-
quence with . Clearly, this does not satisfy the conditions
of Theorem 2 because of the large number of Doppler-shifts as-
sociated with the last delay .

The results of this numerical experiment are reported in
Fig. 12. It can be easily seen from the figure that, despite the
fact that does not satisfy the conditions of Theorem 2,
our algorithm successfully recovers the first three delays and
the corresponding Doppler-shifts. In addition, the fourth delay
is correctly recovered but (as expected) the Doppler-shifts
associated with the last delay are not properly identified. Note
that in addition to demonstrating the robustness of our proce-
dure in the presence of model-order mismatch, this experiment
also highlights the advantage of the sequential nature of our
approach where we first recover the delays and then estimate
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Fig. 11. Mean-squared error of the estimated delays and Doppler-shifts as a
function of the signal-to-noise ratio for various probing sequences.

Fig. 12. Effects of model-order mismatch on the performance of the proposed
recovery procedure corresponding to� with� � �� delay-Doppler pairs.

the Doppler-shifts and attenuation factors associated with the
recovered delays. The main advantage of this being that if
the input signal does not satisfy for some then
recovery fails only for the Doppler-shifts associated with the
th delay. Moreover, recovery of the th delay itself does not

suffer from the mismodeling and it will be recovered correctly
as long as the bandwidth of is not too small.

VIII. CONCLUSION

In this paper, we revisited the problem of identification of
parametric underspread linear systems that are completely de-
scribed by a finite set of delays and Doppler-shifts. We estab-
lished that sufficiently underspread parametric linear systems

are identifiable as long as the time-bandwidth product of the
input signal is proportional to the square of the total number
of delay-Doppler pairs. In addition, we concretely specified the
nature of the input signal and the structure of a corresponding
polynomial-time recovery procedure that enable identification
of parametric underspread linear systems. Extensive simulation
results confirm that—as long as the time-bandwidth product of
the input signal satisfies the requisite conditions—the proposed
recovery procedure is quite robust to noise and other imple-
mentation issues. This makes our algorithm extremely useful
for application areas in which the system performance depends
critically on the ability to resolve closely spaced delay-Doppler
pairs. In particular, our proposed identification method can be
used for super-resolution target detection using radar.
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