
Reduced-Dimension Multiuser Detection
Yao Xie∗, Yonina C. Eldar∗†, Andrea Goldsmith∗

∗Department of Electrical Engineering, Stanford University, Stanford, CA.
†Department of Electrical Engineering, Technion, Israel Institution of Technology.
Email: yaoxie@stanford.edu, yonina@ee.technion.ac.il, andrea@wsl.stanford.edu

Abstract—We present a new framework for reduced-
dimension multiuser detection (RD-MUD) that trades off com-
plexity for bit-error-rate (BER) performance. This approach
can significantly reduce the number of matched filter branches
required by classic multiuser detection designs. We show that
the RD-MUD can perform similarly to the linear MUD detector
when M is sufficiently large relative to N and K, where N and
K are the number of total and active users, respectively. We
also study the inherent RD-MUD tradeoff between complexity
(the number of correlating signals) and BER performance. This
leads to a new notion of approximate sufficient statistics, whereby
sufficient statistics are approximated to reduce complexity at the
expense of some BER performance loss. 1

I. INTRODUCTION

Multiuser detection (MUD) is a classical problem in com-
munications and signal processing: given a noisy received
signal, we would like to detect all signals (out of a set
of possible choices) that comprise the received signal. For
instance, in a CDMA uplink system, a number of mobile
users communicate simultaneously with a given base station
(BS). The BS must demodulate all of these simultaneously
received signals in the presence of noise and other channel
impairments.

One of the conventional methods for MUD is a matched
filter (MF) bank followed by a sampler and demodulator
[1]. The bank of MFs correlates the received signal with
all possible waveforms, and the sampler and demodulator
demodulate all users’ information bits simultaneously. When
the waveforms are orthogonal this MF bank with a sampler
and demodulator maximizes the output signal-to-noise ratio
(SNR) of each individual user.

When the waveforms are not orthogonal this MF bank
structure does not optimize output signal-to-interference-plus-
noise-ratio (SINR) and it suffers from the near-far problem[2],
namely, that any user that has strong power at the receiver can
degrade the bit-error-rate (BER) performance of other users.
In general, the MUD that minimizes BER is the maximum
likelihood sequence estimator (MLSE) [1], but it is exponen-
tially complex in the number of users even with orthogonal
signals. A lower complexity sub-optimal linear MUD detector
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is the decorrelator, which consists of an MF bank followed
by an appropriate linear transform which eliminates multiuser
interference, thereby solving the near-far problem. An issue
with all of these conventional detectors using an MF bank
front end is that when the number of users is large, building
correlators for all possible waveforms can be costly in terms
of hardware.

In practical systems the number of active users, K , is much
smaller than the total number of users N . Motivated by the
idea of compressed sensing [3], we would like to exploit this
sparsity in the context of MUD to reduce the number of
correlators. The reduced-dimension multiuser detector (RD-
MUD) we propose can reduce the number of correlators
needed at the front end of MUDs. The RD-MUD correlates
the received signal with a set of M correlating signals, where
M is typically much smaller than N , followed by appropriate
processing on the outputs. As we show, the BER performance
of RD-MUD can be similar to that of standard linear MUD
receivers.

Previous work exploited compressed sensing ideas in MUD
by equating user detection with support recovery [4][5][6].
These works establish conditions for the number of correlating
signals M required to achieve a zero probability-of-false-
detection (PFD) when the number of signals N tends to infin-
ity. However, this asymptotic analysis sheds little insight into
system design questions such as, e.g., how many correlating
signals we should use to achieve a given probability of error
target, and how to choose the correlating signals.

A key aspect of our work is that we process analog signals;
most existing work on exploiting compressed sensing ideas for
MUD assumes discrete signals. In particular, these detectors
start with discrete samples obtained by sampling the received
analog signal at the Nyquist sampling rate. Some of these de-
tectors apply compressed sensing techniques by compressing
these samples via matrix multiplication [4][5][6][7][8][9][10].
The RD-MUD takes a different approach that is closely
related to analog compressive sensing [11][12][13]. However,
those works focus on sparse signal estimation rather than the
multiuser detection problem considered herein.

Finally, there is another branch of compressive detection,
which focuses on detecting the presence of a particular signal
with the signal itself being sparse [7][8][9][10]. The differ-
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ences between these works and our own are as follows. First,
the sparsity we employ is in the number of active signals;
however, each user’s signal may not be sparse. Second,
their formulations primarily focus on binary detection, which
corresponds to a single-user case. The PFD for a binary-
detection problem was given in these previous works using
the restricted-isometry-property (RIP) of correlation matrices.
Although [7] showed that their research can be extended to a
signal set with multiple waveforms, there was no further PFD
analysis.

In this paper, we present a framework for reduced-
dimension multiuser detection (RD-MUD) that exploits the
sparsity in the number of active users. Our contributions
include the following: (1) We present an RD-MUD which
can reduce the number of correlators compared to that of
the MF bank. The RD-MUD correlates the received signal
with M ≪ N correlating signals, followed by a linear
transform of the correlation coefficients (essentially corre-
lating the received signals with all possible discrete signal
vectors). The correlating signals are linear combinations of
the bi-orthogonal signals of the original signal set. (2) We
characterize the tradeoff between complexity (the number of
correlating signals) and BER performance, which offers a
continuum of design choices for practical implementations. (3)
We introduce the notion of approximate sufficient statistics:
correlating with our correlating signals does not provide a set
of sufficient statistics (which may be obtained by correlating
with N appropriate signals); however, the RD-MUD yields
approximate sufficient statistics in the sense that it attains a
BER performance similar to that which can be obtained by
linearly processing the sufficient statistics.

The rest of the paper is organized as follows. Section
II presents the system model and the RD-MUD structure.
In Section III we discuss the RD-MUD noise performance
and introduce the notion of approximate sufficient statistics.
Section IV demonstrates the performance of the RD-MUD
via several numerical examples. Throughout, we use standard
notation: 〈x(t), y(t)〉 = 1

T

∫ T

0 x(t)y(t)dt denotes the inner
product between two real analog signals in l2; ‖x(t)‖ =
〈x(t), x(t)〉1/2 is the norm of x(t); [X ]ij indicates the ijth
entry of a matrix X ; diag{x1, · · · , xn} denotes a diagonal
matrix with the specified entries on the diagonal; I represents
the identity matrix; XT , X−1, and X† denote the transpose,
inverse, and Moore-Penrose pseudo-inverse of a matrix (or
vector) X, respectively; ‖x‖ = (xT x)1/2 is the norm of the
vector x. The function δij is defined such that δij = 1 only
when i = j and equals 0 otherwise. The sign function is
defined as

sign(x) =







1 x > 0
−1 x < 0
0 x = 0.
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Fig. 1: Conventional MUD using a bank of MFs.
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Fig. 2: The proposed RD-MUD.

II. SYSTEM MODEL AND DETECTOR STRUCTURE

Consider a multiuser system with N users, where each user
is assigned a unique signal from the set S = {si(t), 1 ≤ i ≤
N}. The signals si(t) are linearly independent but do not have
to be orthogonal. We assume for convenience that si(t) has
unit energy: ‖si(t)‖ = 1 for all i. The users modulate their
signals using BPSK or higher level modulation in which the
information bit of user i is bi ∈ {1,−1}. The signal at the
receiver y(t) is a linear combination of the transmitted signals,
plus white Gaussian noise n(t) with variance σ2:

y(t) = x(t) + n(t), t ∈ [0, T ], (2)

where x(t) =
∑N

i=1 ribisi(t). The coefficient ri captures the
user’s transmitting power and channel gain. For simplicity, we
assume the channel gains are real and positive and that the
users are synchronized so that there is no relative delay at
the receiver. The nonactive users transmit at zero power, i.e.,
their ri = 0, so with K active users, only K coefficients ri are
non-zero. Our goal is to simultaneously detect the transmitted
symbols of the active users {bi : ri > 0}. We assume, for
simplicity, that K is known.

A classical solution to this problem is a bank of matched
filters (MFs) [1] followed by samplers, possibly a linear
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transformation on the samples, and finally by demodulators, as
illustrated in Figure 1. Each MF branch correlates the received
signal with a signal si(t). For a single-user system, the MF
is a maximum likelihood (ML) detector. The MF bank is an
extension of an MF when there are multiple users, and it has
N MFs in parallel. Using (2), the output of the MF bank can
be written as:

yi = 〈y(t), si(t)〉 = ribi +
∑

j 6=i

[G]jirjbj + ni, (3)

where [G]ji = 〈sj(t), si(t)〉 is the correlation between signals
in the set; here G is the Gram matrix. The output noise
ni = 〈n(t), si(t)〉 is a Gaussian random variable with zero
mean and variance equal to σ2 (since si(t)s have unit energy),
and covariance E{ni(t), nj(t)} = σ2[G]ij (for derivation of
covariance see Appendix A). We can express the outputs in
vector form:

y = GRb + n, (4)

where y = [y1, · · · , yN ]T , R = diag{r1, · · · , rN}, and
b = [b1, · · · , bN ]T . After the linear transform, the input to
the demodulator is:

c = Ty = TGRb + Tn. (5)

With BPSK symbols, the demodulator simply takes the sign
of the input:

b̂i = sign (ci) ,

if user i is active, i.e.,

|ci| is among the largest K elements of {|ci|}.

(6)

The more general demodulator maps the output into a set
of decision regions associated with the transmitted signal
constellation. In this conventional MUD structure, the linear
transform T ∈ R

N×N is used for various purposes. For
example, the decorrelator detector chooses T = G−1 to
remove the effect of signal correlation when the signals are
not orthogonal, and compensates for the difference in signal
power to solve the “near-far” problem.

The RD-MUD works differently: instead of correlating the
received signal y(t) with each of the si(t)s, it correlates with
a set of correlating signals hj(t), j = 1, · · ·M , as shown
in Fig. 2, where M is typically much smaller than N . By
using fewer correlating signals, we essentially project the
received signal from a space consisting of N signals (hence
N dimensional) into a lower M dimensional subspace. The
key idea is that with proper choice of the correlating signals,
we can approximately preserve the information in the received
signal about the transmitted symbols in the lower dimensional
space.

One way of constructing these correlating signals is to use
bi-orthogonal signals ŝi(t) [11]. The bi-orthogonal signals can
be obtained from the original signals using the inverse Gram

matrix as
ŝj(t) =

∑

j

[G−1]ijsi(t). (7)

Note that when the si(t)s are orthogonal, G is an identity
matrix, and ŝi(t) = si(t). Per this definition, the bi-orthogonal
signals have the property that 〈si(t), ŝj(t)〉 = δi,j , for all i,
j. The correlating signals hj(t) are constructed as a linear
combination of these bi-orthogonal signals:

hj(t) =
N
∑

i=1

ajiŝi(t), (8)

where ajis are the coefficients of the linear combinations.
Define the correlation matrix A ∈ R

M×N as [A]ji = aji, and
the ith column of A as ai = [a1i, · · · aNi]

T , i = 1, · · ·N . This
matrix plays an important role in the BER performance of the
RD-MUD and is our design parameter.

The outputs of the correlators in the RD-MUD are given
by:

ŷj = 〈hj(t), y(t)〉

=

〈

N
∑

i=1

ajiŝi(t),

N
∑

l=1

rlblsl(t)

〉

+

〈

N
∑

i=1

ajiŝi(t), n(t)

〉

=
N
∑

l=1

rlbl

N
∑

i=1

aji〈ŝi(t), sl(t)〉 + n̂j

=
N
∑

l=1

ajlrlbl + n̂j ,

(9)

where the output noise

n̂j =

N
∑

i=1

aji〈ŝi(t), n(t)〉, (10)

is a Gaussian random variable with zero-mean and variance
σ2‖aj‖2 (or σ2 since later we impose that ‖aj‖2 = 1). The co-
variance of the noise is given by E{n̂jn̂k} = σ2[AG−1AT ]jk
(for derivations of this covariance please see Appendix B.)
In (9) we have used the property of the biorthogonal signals
〈si(t), ŝj(t)〉 = δi,j . It is convenient to express (9) in vector
form:

ŷ = ARb + n̂, (11)

where ŷ = [ŷ1, · · · ŷM ]T , n̂ = [n̂1, · · · n̂M ]T . Comparing this
model with (4), we find that the RD-MUD differs from the
MF bank in the correlation matrix: the N ×N Gram matrix
G in the MF bank is replaced by the M ×N matrix A in the
RD-MUD. The matrix A projects the correlation coefficients
from the original signal space into a lower dimensional space.

To demodulate the transmitted symbols, we need to recover
information about the transmitted symbols from the projected
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subspace. This is achieved by using a linear transform

ỹ = AT ŷ. (12)

This linear transform essentially takes the inner products of
the correlation vector ŷ with all N columns of A, which span
the lower M -dimensional subspace. Hence we can view this
block in the RD-MUD, shown in Fig. 2, as a discrete correlator
in the lower dimensional space. Finally, the linear transform
T̂ ∈ R

M×M in the RD-MUD that precedes the demodu-
lators plays a similar role as the linear transform T in the
conventional MF bank: T̂ may compensate for users’ power
difference and alleviate the “near-far” problem. For instance,
if we choose T̂ = [AT (AG−1AT )A]−1AT (AG−1AT )−1 then
the distortions due to channel and correlating signals will
be compensated for. In summary, the RD-MUD demodulates
symbols for the K active users as follows:

b̂i = sign (ĉi) ,

if |ĉi| is among the largest K elements of {|ĉi|},
(13)

where ĉi is the ith element of the vector:

ĉ = T̂ỹ = T̂AT ARb + T̂AT n̂. (14)

Similarly, the more general demodulator maps the output into
a set of decision regions associated with the transmitted signal
constellation.

The correlation matrix A plays an important role in the
performance of the RD-MUD. The choice of A is the design
problem. Comparing (14) with (5), we can see that RD-MUD
is identical to a MF bank detector when AT A = I, G = I,
and T̂ = T. However, this is not possible unless A is a square
matrix. The intuition behind the choice of A is that if we can
choose A such that AT A is approximately an identity matrix,
then the BER performance of our RD-MUD will be similar
to that of detectors based on the MF bank. Indeed, the choice
of the matrix A links our RD-MUD to compressed sensing.
In the compressed sensing literature, various conditions on a
matrix A that yields AT A an approximate identity matrix have
been derived. A common measure is the restricted isometry
property (RIP) [3]. In the following we consider two types of
random matrices A that possess this RIP property:

(1) The Gaussian matrix, with entries aij i.i.d. N (0, 1), and
then normalized to have unit column norm;

(2) The partial orthogonal matrix. An example of this type
of matrix is the partial discrete Fourier transform (DFT)
matrix, which is formed by selecting uniformly at random
the rows of a DFT matrix F : [F ]lp = ej

2π

N
lp, and then

normalizing the columns of the matrix.

As we demonstrate in Section IV, the partial orthogonal matrix
outperforms the Gaussian matrix in terms of BER.

The following theorem shows that if there is only one active
user, then with only M = 2 correlating signals, the RD-MUD
can demodulate the symbols of the active user perfectly in the

absence of noise:

Theorem 1. In the absence of noise, if there is only one active
user K = 1, and if the correlation matrix A satisfies (i) the
unit column norm, (ii) any column ai is not a scalar multiple
of any of the other columns aj , i 6= j. Then, with M ≥ 2
correlating signals and T̂ = I, the RD-MUD can demodulate
the symbol of the active user with zero BER.

Proof: The demodulation of RD-MUD is based on ĉ,
which is given by (14). With K = 1, only one of the N users
is active. Suppose user k is active, so that ri = 0 for all i 6= k.
With T̂ = I, and n(t) = 0, from (14) we have

ĉ = AT ARb = rkbkAT ak. (15)

Equivalently, ĉi = rkbkaT
i ak. For any i 6= k, because of

condition (ii), we have from the Cauchy-Schwartz inequality:

|ĉi| = |rkbk|aT
i ak < |rkbk|‖ai‖‖ak‖ = |rkbk|‖ak‖2 = |ĉk|.

(16)
Hence the active user is correctly detected as the kth user.
Finally, the demodulator detects his transmitted symbol as:

sign(ĉk) = sign(rkbk‖ak‖2) = sign(bk) = bk. (17)

III. NOISE PERFORMANCE AND APPROXIMATE

SUFFICIENT STATISTICS

In the presence of noise, for the RD-MUD to correctly
demodulate the multiple users, we need several conditions.
First, the non-active users are not detected as active users,
i.e., the noise is not misinterpreted as transmitted symbols;
the active users are not classified as non-active users; and
third, the active users, when correctly identified as active,
must have their symbols demodulated correctly. All of these
conditions involves noise analysis. The third condition is
satisfied when the noise does not get so large that it exceeds
the decision boundary of the demodulator. The first two
conditions involve correct active user detection, for which
we have the following insights from a geometric point of
view: with the appropriate choice of M correlating signals
constructed using bi-orthogonal signals, RD-MUD projects
the received signal as well as the original N analog signals
onto a M dimensional vector subspace. The MF bank and RD-
MUD perform detection in the original and projection spaces,
respectively. The projection is illustrated in Fig. 3.

• MF bank: Project the received signal y(t) onto the space
spanned by the signals si(t) by correlation 〈y(t), si(t)〉,
i = 1, · · ·N ; then detect K signals with the largest
inner products to the received signal as active users:
〈y(t), si(t)〉.

• RD-MUD: Project both the received signal y(t) and all
signals si(t) onto the space spanned by the correlating
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signals hj(t), j = 1, · · ·M : ŷj = 〈hj(t), y(t)〉, ŝij =
〈hj(t), si(t)〉; then detect K projected signals with the
largest inner products to the projected received signal in
the lower dimensional space as active users.

In the presence of noise, if the inner product can be approx-
imately preserved in the projection space, the RD-MUD will
have a performance similar to that of the MF bank. This
explains why we would choose A to be a matrix with the
RIP: when the correlation matrix A has the RIP, the inner
products in the original space when projected by the matrix
A will be preserved in the lower dimensional space.
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Fig. 3: The projection performed by RD-MUD. The figure illustrate
the case N = 3, M = 2, and the received signal is due to two active
users.

All the information in y(t) about the transmitted symbols is
captured by the sufficient statistics for the transmitted symbols
[1]. The MF bank yields a set of sufficient statistics about the
transmitted symbols {bi} given y(t) [1]. Clearly, the output
from RD-MUD does not constitute a set of sufficient statistics.
However, as we will show in the numerical examples, the
performance of the RD-MUD is similar to that of a MF bank
if M is sufficiently large relative to N and K . In this sense,
the RD-MUD yields a set of “approximate sufficient statistics”
in that it approximates the BER performance of the sufficient
statistics for MUD.

In the presence of noise, we can prove that when the
number of correlating signals in RD-MUD is on the order
of O

(

K

SNR(1+SIR)
log

(

N
K

)

)

, and the correlating matrix A
satisfies the RIP, the BER performance of RD-MUD using
A can approach that of the MF bank (when the original

waveforms are orthogonal) or the decorrelator (when the
original waveforms are non-orthogonal), with high probability.
Here

SNR = max
k

{rk
σ

}

(18)

is the ratio of strongest signal amplitude over the square-root
of noise power, and

SIR = max
k







∑

j 6=k

rj [G]jk
rk







(19)

can be interpreted as the strongest interference-to-signal ratio
among all the users. The statement of the theorem and proof
will be presented in our future journal paper.

IV. NUMERICAL EXAMPLES

Next we will present some numerical examples for the
performance of RD-MUD. We use an average BER over all
users as a performance metric. We assume there are N = 8
users, and K = 2 active users in the system, the users’ signals
si(t) are orthogonal, and BPSK modulation is used. All the
following examples are obtained from 50000 Monte Carlo
trials.
Example 1: Multiuser Detection

We assume SNR = 15 dB, and use a Gaussian or partial
DFT correlation matrix for RD-MUD. Fig. 4 shows the BER
versus M . Note that when M approaches N , the RD-MUD
has a BER performance very similar to that of the MF bank.
If we allow a target BER of 10−2 then with RD-MUD M = 5
will achieve this goal. Also note that the partial DFT matrix
outperforms the Gaussian matrix in terms of BER.
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Fig. 4: BER versus M for N = 8 and K = 2 active users.

Example 2: Scaling of M vs. N
The second example studies how many correlating signals

M are needed for the RD-MUD to achieve (≤ 10%) BER
performance degradation relative to that of the MF bank.
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There is only one active user, i.e., K = 1. We use SNR =
20 dB and a partial DFT matrix. Fig. 5 shows that under this
setting M is at most N/2. This means that a 50% saving of
signal correlators is possible with the RD-MUD. Also note
that this saving in complexity increases with N .
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Fig. 5: M vs. N for a BER performance degradation (compared
with MF) less than 10%.

V. CONCLUSIONS AND FUTURE WORK

We have presented a general framework for reduced-
dimension multiuser detection (RD-MUD), which employs
the user sparsity in a multiuser system to achieve lower
complexity than the conventional matched filter (MF) bank for
multiuser detection. We proved theoretically and demonstrated
via numerical examples that RD-MUD can perform similarly
to a MF bank when the number of correlating signals is
sufficiently large. We also introduced the new notion of ap-
proximate sufficient statistics. This tradeoff can hopefully shed
more insights into the practical multiuser detection system
design tradeoffs.
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APPENDIX A
COVARIANCE OF MF BANK OUTPUT NOISE

E{ninj} = E

{

∫ T

0

∫ T

0

si(t)sj(u)n(t)n(u)dtdu

}

=

∫ T

0

∫ T

0

si(t)sj(u)E {n(t)n(u)} dtdu

=

∫ T

0

∫ T

0

si(t)sj(u)σ
2δ(t− u)dtdu

= σ2

∫ T

0

si(t)sj(t)dt = σ2[G]ij .

(20)

APPENDIX B
COVARIANCE OF RD-MUD OUTPUT NOISE

E{n̂j n̂k} = E

{

N
∑

i=1

N
∑

l=1

ajiakl〈ŝi(t), n(t)〉〈ŝl(t), n(t)〉

}

=

N
∑

i=1

N
∑

l=1

ajiaklE{〈ŝi(t), n(t)〉〈ŝl(t), n(t)〉}.

(21)

So all we need is E{〈ŝi(t), n(t)〉〈ŝl(t), n(t)〉}:

E{〈ŝi(t), n(t)〉〈ŝl(t), n(t)〉}

=

∫ T

0

∫ T

0

ŝi(t)ŝl(t)E{n(t)n(s)}dtds

=

∫ T

0

∫ T

0

ŝi(t)ŝl(t)σ
2δ(t− s)dtds

=σ2

∫ T

0

ŝi(t)ŝl(t)dt

=σ2

〈

∑

j

[G−1]ijsj(t),
∑

k

[G−1]lksk(t)

〉

=σ2
∑

j

∑

k

[G−1]ij [G
−1]lk〈sj(t), sk(t)〉
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=σ2
∑

j

∑

k

[G−1]ij [G
−1]lk[G]jk

=σ2[G−1]il

(22)

Plug this back to (21), we have

E{n̂j n̂k} = σ2
N
∑

i=1

N
∑

l=1

ajiakl[G
−1]il

= σ2[AG−1AT ]jk.

(23)
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