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Abstract—Traditional sampling theories consider the problem of
reconstructing an unknown signal � from a series of samples. A
prevalent assumption which often guarantees recovery from the
given measurements is that � lies in a known subspace. Recently,
there has been growing interest in nonlinear but structured signal
models, in which � lies in a union of subspaces. In this paper, we de-
velop a general framework for robust and efficient recovery of such
signals from a given set of samples. More specifically, we treat the
case in which � lies in a sum of � subspaces, chosen from a larger set
of � possibilities. The samples are modeled as inner products with
an arbitrary set of sampling functions. To derive an efficient and
robust recovery algorithm, we show that our problem can be for-
mulated as that of recovering a block-sparse vector whose nonzero
elements appear in fixed blocks. We then propose a mixed �����
program for block sparse recovery. Our main result is an equiv-
alence condition under which the proposed convex algorithm is
guaranteed to recover the original signal. This result relies on the
notion of block restricted isometry property (RIP), which is a gen-
eralization of the standard RIP used extensively in the context of
compressed sensing. Based on RIP, we also prove stability of our
approach in the presence of noise and modeling errors. A special
case of our framework is that of recovering multiple measurement
vectors (MMV) that share a joint sparsity pattern. Adapting our
results to this context leads to new MMV recovery methods as well
as equivalence conditions under which the entire set can be deter-
mined efficiently.

Index Terms—Block restricted isometry property, block spar-
sity, compressed sensing, mixed-norm recovery, multiple measure-
ment vectors (MMV), union of linear subspaces.

I. INTRODUCTION

S AMPLING theory has a rich history dating back to Cauchy.
Undoubtedly, the sampling theorem that had the most im-

pact on signal processing and communications is that associated
with Whittaker, Kotelńikov, and Shannon [1], [2]. Their famous
result is that a bandlimited function can be recovered from
its uniform samples as long as the sampling rate exceeds the
Nyquist rate, corresponding to twice the highest frequency of
the signal [3]. More recently, this basic theorem has been ex-
tended to include more general classes of signal spaces. In par-
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ticular, it can be shown that under mild technical conditions, a
signal lying in a given subspace can be recovered exactly from
its linear generalized samples using a series of filtering opera-
tions [4]–[7].

Recently, there has been growing interest in nonlinear signal
models in which the unknown does not necessarily lie in a
subspace. In order to ensure recovery from the samples, some
underlying structure is needed. A general model that captures
many interesting cases is that in which lies in a union of sub-
spaces. In this setting, resides in one of a set of given sub-
spaces , however, a priori it is not known in which one. A
special case of this framework is the problem underlying the
field of compressed sensing (CS), in which the goal is to recover
a length- vector from linear measurements, where

has no more than nonzero elements in some basis [8], [9].
Many algorithms have been proposed in the literature in order
to recover in a stable and efficient manner [9]–[13]. A variety
of conditions have been developed to ensure that these methods
recover exactly. One of the main tools in this context is the
restricted isometry property (RIP) [9], [14], [15]. In particular,
it can be shown that if the measurement matrix satisfies the RIP
with an appropriate constant, then can be recovered by solving
an minimization algorithm.

Another special case of a union of subspaces is the setting
in which the unknown signal has a multiband struc-
ture, so that its Fourier transform consists of a limited number
of bands at unknown locations [16], [17]. By formulating this
problem within the framework of CS, explicit sub-Nyquist sam-
pling and reconstruction schemes were developed in [16], [17]
that ensure perfect recovery at the minimal possible rate. This
setup was recently generalized in [18], [19] to deal with sam-
pling and reconstruction of signals that lie in a finite union of
shift-invariant subspaces. By combining ideas from standard
sampling theory with CS results [20], explicit low-rate sampling
and recovery methods were developed for such signal sets. In
[21], an extension was considered to a special case of an infinite
union of shift-invariant subspaces. The infinite union is a result
of the fact that each generator of the space has an unknown time
delay. Another example of a union of subspaces is the set of fi-
nite rate of innovation signals [21]–[23], that are modeled as a
weighted sum of shifts of a given generating function, where the
shifts are unknown.

In this paper, our goal is to develop a unified framework for
efficient recovery of signals that lie in a structured union of sub-
spaces. Our emphasis is on computationally efficient methods
that are stable in the presence of noise and modeling errors. In
contrast to our previous work [16]–[19], [21], here we consider
unions of finite-dimensional subspaces. Specifically, we restrict
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our attention to the case in which resides in a sum of sub-
spaces, chosen from a given set of subspaces .
However, which subspaces comprise the sum is unknown. This
setting is a special case of the more general union model treated
in [24], [25]. Conditions under which unique and stable sam-
pling are possible were developed in [24], [25]. However, no
concrete algorithm was provided to recover such a signal from
a given set of samples in a stable and efficient manner. Here, we
propose a convex optimization algorithm that will often recover
the true underlying , and develop explicit conditions under
which perfect recovery is guaranteed. Furthermore, we prove
that our method is stable and robust in the sense that the recon-
struction error is bounded in the presence of noise and mismod-
eling; namely, when does not lie exactly in the union. Our
results rely on a generalization of the RIP which fits the union
setting we treat here.

Our first contribution is showing that the problem of recov-
ering in a structured union of subspaces can be cast as a sparse
recovery problem, in which it is desired to recover a sparse
vector that has a particular sparsity pattern: the nonzero values
appear in fixed blocks. We refer to such a model as block spar-
sity. Clearly, any block-sparse vector is also sparse in the stan-
dard sense. However, by exploiting the block structure of the
sparsity pattern, recovery may be possible under more general
conditions.

Next, we develop a concrete algorithm to determine a block-
sparse vector from given measurements, which is based on min-
imizing a mixed norm. This problem can be cast as a
convex second-order cone program (SOCP), and solved effi-
ciently using standard software packages. A mixed norm ap-
proach for block-sparse recovery was also considered in [26],
[27]. By analyzing the measurement operator’s null space, it
was shown that asymptotically, as the signal length grows to in-
finity, and under ideal conditions (no noise or modeling errors),
perfect recovery is possible with high probability. However, no
robust equivalence results were established between the output
of the algorithm and the true block-sparse vector for a given fi-
nite-length measurement vector, or in the presence of noise and
mismodeling.

Generalizing the concept of RIP to our setting, we introduce
the block RIP, which is a less stringent requirement. We then
prove that if the measurement matrix satisfies the block RIP,
then our proposed convex algorithm will recover the underlying
block sparse signal. Furthermore, under block RIP, our algo-
rithm is stable in the presence of noise and mismodeling er-
rors. Using ideas similar to [13], [28] we then prove that random
matrices satisfy the block RIP with overwhelming probability.
Moreover, the probability to satisfy the block RIP is substan-
tially larger than that of satisfying the standard RIP. These re-
sults establish that a signal that lies in a finite structured union
can be recovered efficiently and stably with overwhelming prob-
ability if the measurement matrix is constructed from a random
ensemble.

An interesting special case of the block-sparse model is the
multiple measurement vector (MMV) problem, in which there
is a set of unknown vectors that share a joint sparsity pattern.
MMV recovery algorithms were studied in [20], [29]–[32].
Equivalence results based on mutual coherence for a mixed

program were derived in [30]. These results turn out to be
the same as that obtained from a single measurement problem.
This is in contrast to the fact that in practice, MMV methods
tend to outperform algorithms that treat each of the vectors
separately. In order to develop meaningful equivalence results,
we cast the MMV problem as one of block-sparse recovery. Our
mixed method translates into minimizing the sum of the

row-norms of the unknown matrix representing the MMV
set. Our general results lead to RIP-based equivalence condi-
tions for this algorithm. Furthermore, our framework suggests
a different type of sampling method for MMV problems which
tends to increase the recovery rate. The equivalence condition
we obtain in this case is stronger than the single measurement
setting. As we show, this method leads to superior recovery rate
when compared with other popular MMV algorithms.

The remainder of the paper is organized as follows. In Sec-
tion II, we describe the general problem of sampling from a
union of subspaces. The relationship between our problem and
that of block-sparse recovery is developed in Section III. In Sec-
tion IV, we explore stability and uniqueness issues which leads
to the definition of block RIP. We also present a nonconvex opti-
mization algorithm with combinatorial complexity whose solu-
tion is the true unknown . A convex relaxation of this algorithm
is proposed in Section V. We then derive equivalence conditions
based on block RIP. The concept of block RIP is further used to
establish robustness and stability of our algorithm in the pres-
ence of noise and modeling errors. This approach is specialized
to MMV sampling in Section VI. Finally, in Section VII, we
prove that random ensembles tend to satisfy the block RIP with
high probability.

Throughout the paper, we denote vectors in an arbitrary
Hilbert space by lower case letters e.g., , and sets of
vectors in by calligraphic letters, e.g., . Vectors in
are written as boldface lowercase letters e.g., , and matrices
as boldface uppercase letters e.g., . The identity matrix of
appropriate dimension is written as or when the dimension
is not clear from the context, and is the transpose of the
matrix . The th element of a vector is denoted by .
Linear transformations from to are written as upper
case letters . The adjoint of is written as .
The standard Euclidean norm is denoted and

is the norm of . The Kronecker product
between matrices and is denoted , and is
the vector obtained by concatenating the columns of . The
following variables are used in the sequel: is the number
of samples, is the length of the input signal when it is a
vector, is the sparsity or block sparsity (to be defined later
on) of a vector , and is the number of subspaces. For ease
of notation, we assume throughout that all scalars are defined
over the field of real numbers; however, the results are also
valid over the complex domain with appropriate modifications.

II. UNION OF SUBSPACES

A. Subspace Sampling

Traditional sampling theory deals with the problem of re-
covering an unknown signal from a set of samples

where is some function of . The signal can
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be a function of time , or can represent a finite-length
vector . The most common type of sampling is linear sam-
pling in which

(1)

for a set of functions [4], [33]–[39]. Here denotes
the standard inner product on . For example, if is the
space of real finite-energy signals then

(2)

When for some

(3)

Nonlinear sampling is treated in [40]. However, here our focus
will be on the linear case.

When the unknown as well as the sampling
functions are vectors in . Therefore, the samples can
be written conveniently in matrix form as , where is
the matrix with columns . In the more general case in which

or any other abstract Hilbert space, we can use the set
transformation notation in order to conveniently represent the
samples. A set transformation corresponding to
sampling vectors is defined by

(4)

for all . From the definition of the adjoint, if ,
then . Note that when , and

. Using this notation, we can always express the samples as

(5)

where is a set transformation for arbitrary , and an appro-
priate matrix when .

Our goal is to recover from the samples . If the
vectors do not span the entire space , then there are many
possible signals consistent with . More specifically, if we
define by the sampling space spanned by the vectors , then
clearly for any . Therefore, if is not the
trivial space then adding such a vector to any solution of (5)
will result in the same samples . However, by exploiting prior
knowledge on , in many cases uniqueness can be guaranteed.
A prior very often assumed is that lies in a given subspace
of [4]–[7]. If and have the same finite dimension, and

and intersect only at the vector, then can be perfectly
recovered from the samples [6], [7], [41].

B. Union of Subspaces

When subspace information is available, perfect reconstruc-
tion can often be guaranteed. Furthermore, recovery can be im-
plemented by a simple linear transformation of the given sam-
ples (5). However, there are many practical scenarios in which
we are given prior information about that is not necessarily in
the form of a subspace. One such case studied in detail in [41]

is that in which is known to be smooth. Here we focus our
attention on the setting where lies in a union of subspaces

(6)

where each is a subspace. Thus, belongs to one of the
, but we do not know a priori to which one [24], [25]. Note

that the set is no longer a subspace. Indeed, if is, for ex-
ample, a one-dimensional space spanned by the vector , then

contains vectors of the form for some but does not in-
clude their linear combinations. Our goal is to recover a vector

lying in a union of subspaces, from a given set of samples. In
principle, if we knew which subspace belonged to, then re-
construction can be obtained using standard sampling results.
However, here the problem is more involved because conceptu-
ally we first need to identify the correct subspace and only then
can we recover the signal within the space.

Previous work on sampling over a union focused on invert-
ibility and stability results [24], [25]. In contrast, here, our main
interest is in developing concrete recovery algorithms that are
provably robust. To achieve this goal, we limit our attention to a
subclass of (6) for which stable recovery algorithms can be de-
veloped and analyzed. Specifically, we treat the case in which
each has the additional structure

(7)

where are a given set of disjoint subspaces,
and denotes a sum over indices. Thus, each subspace

corresponds to a different choice of subspaces that com-
prise the sum. We assume throughout the paper that and the
dimensions of the subspaces are finite. Given

samples

(8)

and the knowledge that lies in exactly one of the subspaces ,
we would like to recover the unknown signal . In this setting,
there are possible subspaces comprising the union.

An alternative interpretation of our model is as follows. Given
an observation vector , we seek a signal for which
and in addition can be written as

(9)

where each lies in for some index .
A special case is the standard CS problem in which is

a vector of length , that has a sparse representation in a given
basis defined by an invertible matrix . Thus, where

is a sparse vector that has at most nonzero elements. This
fits our framework by choosing as the space spanned by the
th column of . In this setting , and there are

subspaces comprising the union.
Another example is the block sparsity model [26], [42] in

which is divided into equal-length blocks of size , and at
most blocks can be nonzero. Such a vector can be described
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in our setting with by choosing to be the space
spanned by the corresponding columns of the identity matrix.
Here and there are subspaces in the union.

A final example is the MMV problem [20], [29]–[32] in
which our goal is to recover a matrix from measurements

, for a given sampling matrix . The matrix is
assumed to have at most nonzero rows. Thus, not only is each
column -sparse, but in addition the nonzero elements of
share a joint sparsity pattern. This problem can be transformed
into that of recovering a -block sparse signal by stacking the
rows of and , leading to the relationship

(10)

The structure of leads to a vector that is -block
sparse.

C. Problem Formulation and Main Results

Given and the subspaces , we would like to address the
following questions.

1) What are the conditions on the sampling vectors
in order to guarantee that the sampling is invertible

and stable?
2) How can we recover the unique (regardless of computa-

tional complexity)?
3) How can we recover the unique in an efficient and stable

manner?
The first question was addressed in [24], [25] in the more gen-
eral context of unions of spaces (without requiring a particular
structure such as (7)). However, no concrete methods were pro-
posed in order to recover . Here we provide efficient convex
algorithms that recover in a stable way for arbitrary under
appropriate conditions on the sampling functions and the
spaces .

Our results are based on an equivalence between the union
of subspaces problem assuming (7) and that of recovering
block-sparse vectors. This allows us to determine from the
given samples by first treating the problem of recovering a
block -sparse vector from a given set of measurements.
This relationship is established in Section III. In the reminder
of the paper we therefore focus on the block -sparse model
and develop our results in that context. In particular, we in-
troduce a block RIP condition that ensures uniqueness and
stability of our sampling problem. We then suggest an efficient
convex optimization problem which approximates an unknown
block-sparse vector . Based on block RIP we prove that
can be recovered exactly in a stable way using the proposed
optimization program. Furthermore, in the presence of noise
and modeling errors, our algorithm can approximate the best
block- sparse solution.

III. CONNECTION WITH BLOCK SPARSITY

Consider the model of a signal in the union of out of
subspaces , with as in (6) and (7). To write

explicitly, we choose a basis for each . Denoting by
the set transformation corresponding to a basis for

, any such can be written as

(11)

Fig. 1. A block-sparse vector ��� over � � �� � � � � � � �. The gray areas repre-
sent 10 nonzero entries which occupy two blocks.

where are the representation coefficients in , and
denotes a sum over a set of indices. The choice of

indices depend on the signal and are unknown in advance.
To develop the equivalence with block sparsity, it is useful to

introduce some further notation. First, we define
as the set transformation that is a result of concatenating the
different , with

(12)

Next, we define the th subblock of a length- vector over
. The th subblock is of length , and the

blocks are formed sequentially so that

(13)

We can then define by

(14)

When for some , is a matrix and is
the matrix obtained by column-wise concatenating . If for a
given the th subspace does not appear in the sum (7), or
equivalently in (11), then .

Any in the union (6), (7) can be represented in terms of of
the bases . Therefore, we can write where there are
at most nonzero blocks . Consequently, our union model
is equivalent to the model in which is represented by a sparse
vector in an appropriate basis. However, the sparsity pattern
here has a unique form which we will exploit in our conditions
and algorithms: the nonzero elements appear in blocks.

Definition 1: A vector is called block -sparse over
if is nonzero for at most indices where

.

An example of a block-sparse vector with is depicted
in Fig. 1. When for each , block sparsity reduces to the
conventional definition of a sparse vector. Denoting

(15)

where is an indicator function that obtains the
value if and otherwise, a block -sparse vector

can be defined by .
Evidently, there is a one-to-one correspondence between a

vector in the union, and a block-sparse vector . The mea-
surements (5) can also be represented explicitly in terms of as

(16)
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where is the matrix defined by

(17)

We can therefore phrase our problem in terms of and as
that of recovering a block- sparse vector over from the
measurements (16).

Note that the choice of basis for each subspace does not
affect the sparsity pattern of our model. Indeed, choosing alter-
native bases will lead to where is a block diagonal
matrix with blocks of size . Defining , the block spar-
sity pattern of is equal to that of . On the other hand, the basis
can affect the properties of the resulting matrix . This point is
beyond the scope of the present paper; further discussion can be
found in [42].

Since our problem is equivalent to that of recovering a block
sparse vector over from linear measurements , in the
reminder of the paper we focus our attention on this problem.

IV. UNIQUENESS AND STABILITY

In this section, we study the uniqueness and stability of our
sampling method. These properties are intimately related to the
RIP, which we generalize here to the block-sparse setting.

The first question we address is that of uniqueness, namely,
conditions under which a block-sparse vector is uniquely de-
termined by the measurement vector .

Proposition 1: There is a unique block- sparse vector con-
sistent with the measurements if and only if
for every that is block -sparse.

Proof: The proof follows from [24, Proposition 4].

We next address the issue of stability. A sampling operator is
stable for a set if and only if there exists constants ,

such that

(18)

for every , in . The ratio provides a measure
for stability of the sampling operator. The operator is maximally
stable when . In our setting, is replaced by , and
the set contains block- sparse vectors. The next proposition
follows immediately from (18) by noting that given two block-
sparse vectors , their difference is block- sparse.

Proposition 2: The measurement matrix is stable for every
block -sparse vector if and only if there exists and

such that

(19)

for every that is block -sparse.
It is easy to see that if satisfies (19) then for all

block -sparse vectors . Therefore, this condition implies both
invertibility and stability.

A. Block RIP

Property (19) is related to the RIP used in several previous
works in CS [9], [14], [15]. A matrix of size is said to
have the RIP if there exists a constant such that for
every -sparse

(20)

Extending this property to block-sparse vectors leads to the fol-
lowing definition.

Definition 2: Let be a given matrix. Then
has the block RIP over with parameter
if for every that is block -sparse over we have that

(21)

By abuse of notation, we use for the block-RIP constant
when it is clear from the context that we refer to blocks.

Block-RIP is a special case of the -restricted isometry defined
in [25]. From Proposition 1, it follows that if satisfies the RIP
(21) with , then there is a unique block-sparse vector
consistent with (16).

Note that a block -sparse vector over is -sparse in the
conventional sense where is the sum of the largest values in

, since it has at most nonzero elements. If we require to
satisfy RIP for all -sparse vectors, then (21) must hold for all

-sparse vectors . Since we only require the RIP for block
sparse signals, (21) only has to be satisfied for a certain subset of

-sparse signals, namely, those that have block sparsity. As a
result, the block-RIP constant is typically smaller than
(where depends on ; for blocks with equal size , ).

To emphasize the advantage of block RIP over standard RIP,
consider the following matrix, separated into three blocks of two
columns each:

(22)

where is a diagonal matrix that results in with unit-norm
columns, i.e., . In this example,

and . Suppose that
is block- sparse, which corresponds to at most two nonzero

values. Brute-force calculations show that the smallest value of
satisfying the standard RIP (20) is . On the other

hand, the block-RIP (21) corresponding to the case in which
the two nonzero elements are restricted to occur in one block is
satisfied with . Increasing the number of nonzero
elements to , we can verify that the standard RIP (20) does
not hold for any . Indeed, in this example there exist
two -sparse vectors that result in the same measurements. In
contrast, satisfies the lower bound in (21) when
restricting the four nonzero values to two blocks. Consequently,
the measurements uniquely specify a single block-
sparse .

In (5), we will see that the ability to recover in a computa-
tionally efficient way depends on the constant in the block
RIP (21). The smaller the value of , the fewer samples are
needed in order to guarantee stable recovery. Both standard and
block RIP constants are by definition increasing with

. Therefore, it was suggested in [13] to normalize each of the
columns of to , so as to start with . In the same spirit,
we recommend choosing the bases for such that
has unit-norm columns, corresponding to .
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B. Recovery Method

We have seen that if satisfies the RIP (21) with ,
then there is a unique block-sparse vector consistent with (16).
The question is how to find in practice. Below we present an
algorithm that will in principle find the unique from the sam-
ples . Unfortunately, though, it has exponential complexity. In
Section V, we show that under a stronger condition on we
can recover in a stable and efficient manner.

Our first claim is that can be uniquely recovered by solving
the optimization problem

s.t. (23)

To show that (23) will indeed recover the true value of , suppose
that there exists a such that and

. Since both , are consistent with the measurements

(24)

where so that is a block -sparse vector. Since
satisfies (21) with , we must have that or

.
In principle, (23) can be solved by searching over all possible

sets of blocks whether there exists a that is consistent with
the measurements. The invertibility condition (21) ensures that
there is only one such . However, clearly this approach is not
efficient.

V. CONVEX RECOVERY ALGORITHM

A. Noise-Free Recovery

We now develop an efficient convex optimization problem
instead of (23) to approximate . As we show, if satisfies (21)
with a small enough value of , then the method we propose
will recover exactly.

Our approach is to minimize the sum of the energy of the
blocks . To write down the problem explicitly, we define the
mixed norm over the index set as

(25)

The algorithm we suggest is then

s.t. (26)

Problem (26) can be written as an SOCP by defining
. Then (26) is equivalent to

s.t.

(27)

which can be solved using standard software packages.

The next theorem establishes that the solution to (26) is the
true as long as is small enough.

Theorem 1: Let be measurements of a block
-sparse vector . If satisfies the block RIP (21) with

then
1) there is a unique block- sparse vector consistent with ;
2) the SOCP (27) has a unique solution;
3) the solution to the SOCP is equal to .

Before proving the theorem, we note that it provides a gain
over standard CS results. Specifically, it is shown in [15] that if
is -sparse and the measurement matrix satisfies the standard
RIP with , then can be recovered exactly from
the measurements via the linear program

s.t. (28)

Since any block -sparse vector is also -sparse with equal
to the sum of the largest values of , we can find of The-
orem 1 by solving (28) if is small enough. However, this
standard CS approach does not exploit the fact that the nonzero
values appear in blocks, and not in arbitrary locations within the
vector . On the other hand, the SOCP (27) explicitly takes the
block structure of into account. Therefore, the condition of
Theorem 1 is not as stringent as that obtained by using equiv-
alence results with respect to (28). Indeed, the block RIP (21)
bounds the norm of over block sparse vectors , while the
standard RIP considers all possible choices of , also those that
are not -block sparse. Therefore, the value of in (21) can
be lower than that obtained from (20) with , as we illus-
trated by an example in Section III. This advantage will also be
demonstrated by a concrete example at the end of the section.

Our proof below is rooted in that of [15]. However, some
essential modifications are necessary in order to adapt the results
to the block-sparse case. These differences are a result of the
fact that our algorithm relies on the mixed norm rather
than the norm alone. This adds another layer of complication
to the proof, and therefore we expand the derivations in more
detail than in [15].

Proof of Theorem 1: We first note that guarantees
uniqueness of from Proposition 1. To prove parts 2) and 3)
we show that any solution to (26) has to be equal to . To this
end, let be a solution of (26). The true value
is nonzero over at most blocks. We denote by the block
indices for which is nonzero, and by the restriction of
to these blocks. Next, we decompose as

(29)

where is the restriction of to the set which consists of
blocks, chosen such that the norm of over is largest, the
norm over is second largest, and so on. Our goal is to show
that . We prove this by noting that

(30)
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In the first part of the proof, we show that
. In the second part, we establish that ,

which completes the proof.
Part I: .
We begin by noting that

(31)

Therefore, it is sufficient to bound for . Now

(32)

where we defined . The first inequality
follows from the fact that for any block -sparse

(33)

The second inequality in (32) is a result of the fact that the norm
of each block in is by definition smaller or equal to the norm
of each block in . Since there are at most nonzero blocks,

. Substituting (32) into (31)

(34)

where the equality is a result of the fact that
if and are nonzero on disjoint blocks.

To develop a bound on note that since is a solution
to (26), . Using the fact that
and is supported on we have

(35)

from which we conclude that

(36)

The last inequality follows from applying Cauchy–Schwarz to
any block -sparse vector

(37)

Substituting (36) into (34)

(38)

which completes the first part of the proof.
Part II: .
We next show that must be equal to . In this part we

invoke the RIP.

Since , we have . Using the fact that

(39)

From the parallelogram identity and the block-RIP it can be
shown that

(40)

for any two-block -sparse vectors with disjoint support. The
proof is similar to [15, Lemma 2.1] for the standard RIP.
Therefore

(41)

and similarly for . Substituting into (39)

(42)

From the Cauchy–Schwarz inequality, any length- vector sat-
isfies . Therefore

(43)

where the last equality is a result of the fact that and
have disjoint support. Substituting into (42) and using (32), (34),
and (36)

(44)

where the last inequality follows from .
Combining (44) with the RIP (21) we have

(45)
Since , (45) can hold only if ,
which completes the proof.

We conclude this subsection by pointing out more explicitly
the differences between the proof of Theorem 1 and that in [15].
The main difference begins in (32); in our formulation, each
of the subvectors may have a different number of nonzero
elements, while the equivalent equation in [15] (10) relies on the
fact that the maximal number of nonzero elements in each of the
subvectors is the same. This requires the use of several mixed
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norms in our setting. The rest of the proof follows the spirit of
[15], where in some of the inequalities conventional norms are
used, while in others the adaptation to our setting necessitates
mixed norms.

B. Robust Recovery

We now treat the situation in which the observations are noisy,
and the vector is not exactly block- sparse.

Specifically, suppose that the measurements (16) are cor-
rupted by bounded noise so that

(46)

where . In order to recover , we use the modified
SOCP

s.t. (47)

In addition, given a , we denote by the best approxi-
mation of by a vector with nonzero blocks, so that mini-
mizes over all block -sparse vectors . Theorem 2
shows that even when is not block -sparse and the measure-
ments are noisy, the best block- approximation can be well ap-
proximated using (47).

Theorem 2: Let be noisy measurements of a
vector . Let denote the best block -sparse approximation
of , such that is block -sparse and minimizes
over all block -sparse vectors , and let be a solution to (47).
If satisfies the block RIP (21) with then

(48)

Before proving the theorem, note that the first term in (48) is a
result of the fact that is not exactly -block sparse. The second
expression quantifies the recovery error due to the noise.

Proof: The proof is very similar to that of Theorem 1 with
a few differences which we indicate. These changes follow the
proof of [15, Theorem 1.3], with appropriate modifications to
address the mixed norm.

Denote by the solution to (47). Due to the noise
and the fact that is not block -sparse, we will no longer
obtain . However, we will show that is bounded.
To this end, we begin as in the proof of Theorem 1 by using
(30). In the first part of the proof we show that

where and is the
restriction of onto the blocks corresponding to the largest

norm. Note that . In the second part, we develop a
bound on .

Part I: Bound on .
We begin by decomposing as in the proof of Theorem 1.

The inequalities until (35) hold here as well. Instead of (35) we
have

(49)

Therefore

(50)

where we used the fact that .
Combining (34), (37), and (50) we have

(51)

where .
Part II: Bound on .
Using the fact that , we have

(52)

From (21)

(53)

Since both and are feasible

(54)

and (53) becomes

(55)

Substituting into (52)

(56)

Combining with (42) and (44)

(57)

Using (37) and (50) we have the upper bound

(58)

On the other hand, the RIP results in the lower bound

(59)

From (58) and (59),

(60)

or

(61)
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TABLE I
COMPARISON OF ALGORITHMS FOR SIGNAL RECOVERY FROM ��� ������� � ���

The condition ensures that the denominator in
(61) is positive. Substituting (61) results in

(62)

which completes the proof of the theorem.

To summarize this section, we have seen that as long as sat-
isfies the block-RIP (21) with a suitable constant, any block-
sparse vector can be perfectly recovered from its samples

using the convex SOCP (26). This algorithm is stable in
the sense that by slightly modifying it as in (47) it can tolerate
noise in a way that ensures that the norm of the recovery error
is bounded by the noise level. Furthermore, if is not block

-sparse, then its best block-sparse approximation can be ap-
proached by solving the SOCP. These results are summarized
in Table I. In the table, refers to the block RIP constant.

C. Advantage of Block Sparsity

The standard sparsity model considered in CS assumes that
has at most nonzero elements, however it does not impose any
further structure. In particular, the nonzero components can ap-
pear anywhere in the vector. There are many practical scenarios
in which the nonzero values are aligned to blocks, meaning they
appear in regions, and are not arbitrarily spread throughout the
vector. One example in the structured union of subspaces model
we treat in this paper. Other examples are considered in [27].

Prior work on recovery of block-sparse vectors [26] assumed
consecutive blocks of the same size. It was shown that in this
case, when , go to infinity, the algorithm (26) will recover
the true block-sparse vector with overwhelming probability.
Their analysis is based on characterization of the null space of

. In contrast, our approach relies on RIP which allows the
derivation of uniqueness and equivalence conditions for finite
dimensions and not only in the asymptotic regime. In addition,
Theorem 2 considers the case of mismodeling and noisy obser-
vations while in [26] only the ideal noise-free setting is treated.

To demonstrate the advantage of our algorithm over standard
basis pursuit (28), consider the matrix of (22). In Section V,
the standard and block RIP constants of were calculated and
it was shown that block RIP constants are smaller. This sug-
gests that there are input vectors for which the mixed
method of (26) will be able to recover them exactly from mea-
surements while standard minimization will fail.
To illustrate this behavior, let be a

-sparse vector, in which the nonzero elements are known to ap-
pear in blocks of length . The prior knowledge that is -sparse
is not sufficient to determine from . In contrast, there is a
unique block-sparse vector consistent with . Furthermore, our
algorithm which is a relaxed version of (23), finds the correct

while standard minimization fails in this case; its output is
.

Fig. 2. Recovery rate of block-sparse signals using standard � minimization
(basis pursuit) and the mixed � �� algorithm.

We further compare the recovery performance of mini-
mization (28) and our algorithm (26) for an extensive set of
random signals. In the experiment, we draw a matrix of size

from the Gaussian ensemble. The input vector is
also randomly generated as a block-sparse vector with blocks
of length . We draw nonzero entries from a
zero-mean unit variance normal distribution and divide them
into blocks which are chosen uniformly at random within .
Each of the algorithms is executed based on the measurements

. In Fig. 2, we plot the fraction of successful recon-
structions for each over 500 experiments. The results illustrate
the advantage of incorporating the block-sparsity structure into
the optimization program. An interesting feature of the graph
is that when using the block-sparse recovery approach, the per-
formance is roughly constant over the block length ( in this
example). This explains the performance advantage over stan-
dard sparse recovery.

VI. APPLICATION TO MMV MODELS

We now specialize our algorithm and equivalence results
to the MMV problem. This leads to two contributions which
we discuss in this section: The first is an equivalence result
based on RIP for a mixed-norm MMV algorithm. The second
is a new measurement strategy in MMV problems that leads to
improved performance over conventional MMV methods, both
in simulations and as measured by the RIP-based equivalence
condition. In contrast to previous equivalence results, for this
strategy we show that even if we choose the worst possible ,
improved performance over the single measurement setting can
be guaranteed.

A. Equivalence Results

As we have seen in Section II, a special case of block spar-
sity is the MMV model, in which we are given a matrix of mea-
surements where is an unknown matrix
that has at most nonzero rows. Denoting by ,

, we can express the vector of
measurements as where is a block sparse vector
with consecutive blocks of length . Therefore, the results of
Theorems 1 and 2 can be specified to this problem.
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Recovery algorithms for MMV using convex optimization
programs were studied in [30], [32] and several greedy algo-
rithms were proposed in [29], [31]. Specifically, in [29]–[32],
the authors study a class of optimization programs, which we
refer to as M-BP

M-BP s.t. (63)

where is the th row of . The choice ,
was considered in [32], while [30] treated the case of
and arbitrary . Using and was suggested in
[29], [43], leading to the iterative algorithm M-FOCUSS. For

, , the program (63) has a global minimum which
M-FOCUSS is proven to find. A nice comparison between these
methods can be found in [32]. Equivalence for MMV algorithms
based on RIP analysis does not appear in previous papers. The
most detailed theoretical analysis can be found in [30] which
establishes equivalence results based on mutual coherence. The
results imply equivalence for (63) with under conditions
equal to those obtained for the single measurement case. Note
that RIP analysis typically leads to tighter equivalence bounds
than mutual coherence analysis.

In our recent work [20], we suggested an alternative approach
to solving MMV problems. Our strategy is based on merging the

measurement columns with random coefficients and in such
a way transforming the multiple measurement problem into a
single measurement counterpart. As proved in [20], this tech-
nique preserves the nonzero location set with probability one
thus reducing computational complexity. Moreover, we showed
that this method can be used to boost the empirical recovery rate
by repeating the random merging several times.

Using the block-sparsity approach we can alternatively cast
any MMV model as a single measurement vector problem by de-
terministically transforming the multiple measurement vectors
into the single vector model .
Here, is block- sparse with consecutive blocks
of length . In contrast to [20], this does not reduce the number
of unknowns so that the computational complexity of the re-
sulting algorithm is on the same order as previous approaches,
and also does not offer the opportunity for boosting. However,
as seen in the next subsection, with an appropriate choice of
measurement matrix this approach results in improved recovery
capabilities.

Since we can cast the MMV problem as one of block-sparse
recovery, we may apply our equivalence results of Theorem 1
to this setting leading to RIP-based equivalence. To this end, we
first note that applying the SOCP (26) to the effective measure-
ment vector is the same as solving (63) with , .
Thus, the equivalence conditions we develop below relate to this
program. Next, if where is a block -sparse vector
and , then taking the structure of into account,

where is a size matrix whose th row is
equal to , and similarly for . The block sparsity of im-
plies that has at most nonzero rows. The squared norm

is equal to the squared norm of the rows of which can
be written as

(64)

where denotes the Frobenius norm. Since
the RIP condition becomes

(65)

for any matrix with at most nonzero rows.
We now show that (65) is equivalent to the standard RIP

condition

(66)

for any length vector that is -sparse. To see this, suppose
first that (65) is satisfied for every matrix with at most
nonzero rows and let be an arbitrary -sparse vector. If we
define to be the matrix whose columns are all equal to , then

will have at most nonzero rows and therefore satisfies (65).
Since the columns of are all equal, and

so that (66) holds. Conversely,
suppose that (66) is satisfied for all -sparse vectors and let

be an arbitrary matrix with at most nonzero rows. De-
noting by the columns of , each is -sparse and there-
fore satisfies (66). Summing over all values results in (65).

To summarize, if satisfies the conventional RIP condition
(66), then the algorithm (63) with , will recover the
true unknown . This requirement reduces to that we would
obtain if we tried to recover each column of separately, using
the standard approach (28). As we already noted, previous
equivalence results for MMV algorithms also share this feature.
Although this condition guarantees that processing the vectors
jointly does not harm the recovery ability, in practice exploiting
the joint sparsity pattern of via (63) leads to improved re-
sults. Unfortunately, this behavior is not captured by any of the
known equivalence conditions. This is due to the special struc-
ture of . Since each measurement vector is af-
fected only by the corresponding vector , it is clear that in the
worst case we can choose for some vector . In this
case, all the ’s are equal so that adding measurement vectors
will not improve our recovery ability. Consequently, worst case
analysis based on the standard measurement model for MMV
problems cannot lead to improved performance over the single
measurement case.

B. Improved MMV Recovery

We have seen that the pessimistic equivalence results for
MMV algorithms is a consequence of the fact that in the worst
case scenario in which , using a separable measurement
strategy will render all observation vectors equal. In this sub-
section, we introduce an alternative measurement technique for
MMV problems that can lead to improved worst case behavior,
as measured by RIP, over the single channel case.

One way to improve the analytical results is to consider an
average case analysis instead of a worst case approach. In [44],
we show that if the unknown vectors are generated randomly,
then the performance improves with increasing number of mea-
surement vectors. The advantage stems from the fact that the
situation of equal vectors has zero probability and therefore
does not affect the average performance. Here we take a dif-
ferent route which does not involve randomness in the unknown
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Fig. 3. Recovery rate for different number � of nonzero rows in��� . Each point on the graph represents an average recovery rate over 500 simulations.

vectors, and leads to improved results even in the worst case
(namely, without requiring an average analysis).

To enhance the performance of MMV recovery, we note that
when we allow for an arbitrary (unstructured) , the RIP con-
dition of Theorem 1 is weaker than the standard RIP require-
ment for recovering -sparse vectors. This suggests that we can
improve the performance of MMV methods by converting the
problem into a general block sparsity problem, and then sam-
pling with an arbitrary unstructured matrix rather than the
choice . The tradeoff introduced is increased
computational complexity since each measurement is based on
all input vectors. The theoretical conditions will now be looser,
since block-RIP is weaker than standard RIP. Furthermore, in
practice, this approach often improves the performance over
separable MMV measurement techniques as we illustrate in the
following example.

In the example, we compare the performance of several MMV
algorithms for recovering in the model , with our
method based on block sparsity in which the measurements
are obtained via where and is a dense
matrix. Choosing as a block diagonal matrix with blocks
equal to results in the standard MMV measurement model.
The effective matrices have the same size in the case in which
it is block diagonal and when it is dense. To compare the perfor-
mance of (26) with a dense to that of (63) with a block diag-
onal , we compute the empirical recovery rate of the methods
in the same way performed in [20]. The matrices and are
drawn randomly from a Gaussian ensemble. In our example, we
choose , , where is the number of rows
in . The matrix is generated randomly by first selecting the

nonzero rows uniformly at random, and then drawing the el-
ements in these rows from a normal distribution. The empirical
recovery rates using the methods of (63) for different choices
of and , ReMBO [20] and our algorithm (26) with dense
are depicted in Fig. 3. When the index is omitted it is equal to

. Evidently, our algorithm performs better than most popular
optimization techniques for MMV systems. We stress that the
performance advantage is due to the joint measurement process
rather than a new recovery algorithm.

VII. RANDOM MATRICES

Theorems 1 and 2 establish that a sufficiently small block RIP
constant ensures exact recovery of the coefficient vector
. We now prove that random matrices are likely to satisfy this

requirement. Specifically, we show that the probability that
exceeds a certain threshold decays exponentially in the length
of . Our approach relies on results of [13], [28] developed for
standard RIP, however, exploiting the block structure of leads
to a much faster decay rate.

Proposition 3: Suppose is an matrix from the
Gaussian ensemble, namely . Let be the
smallest value satisfying the block RIP (21) over

, assuming for some integer . Then,
for every the block RIP constant obeys (for
large enough, and fixed )

(67)

Here, the ratio is fixed,

and is the entropy function
defined for .

The assumption that simplifies the calculations in the
proof. Following the proof, we shortly address the more diffi-
cult case in which the blocks have varying lengths. We note that
Proposition 3 reduces to the result of [13] when . How-
ever, since is independent of , it follows that for
and fixed problem dimensions , , , block-RIP constants are
smaller than the standard RIP constant. The second exponent in
the right-hand side of (67) is responsible for this behavior.

Proof of Proposition 3: Let and define

(68)

where , , are the largest and the smallest
singular values of , respectively. We use , to de-
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note a column subset of consisting of blocks of length .
For brevity, we omit subscripts and denote . The in-
equalities in the definition of block-RIP (21) imply that

(69)

(70)

Since is the smallest number satisfying these inequalities we
have that . Therefore

(71)

(72)

Noting that implies we conclude
that

(73)

We now bound each term in the right-hand side of (73) using
a result of Davidson and Szarek [45] regarding the concentra-
tion of the extreme singular values of a Gaussian matrix. It was
proved in [45] that an matrix with satisfies

(74)

(75)

Applying a union bound leads to

(76)

(77)

(78)

Using the well-known bound on the binomial coefficient (for
sufficiently large )

(79)

we conclude that

(80)

To utilize this result in (73) we rearrange

(81)

(82)

(83)

Fig. 4. The upper bound on � as a function of the sparsity ratio �, for three
sampling rates ��� , and three block structures � � �� �� ��. The horizontal
threshold is fixed on � �

�
�� � representing the threshold for equivalence

derived in Theorem 1.

and obtain that

(84)

Using (80) leads to

(85)

(86)

(87)

Similar arguments are used to bound the second term in (73),
completing the proof.

The proof of Proposition 3 can be adapted to the case in which
are not equal. In this case, the notation , is replaced

by and has the following meaning: indicates a
column subset of consisting of blocks from . Since con-
tains variable-length blocks, is not constant and depends on
the particular column subset. Consequently, in order to apply the
union bounds in (76) we need to consider the worst case scenario
corresponding to the maximal block length in . Proposition 3
thus holds for . However, it is clear that the re-
sulting probability bound will not be as stringent as in the case
of equal , especially when the ratio is
large.

Proposition 3 holds as is for matrices from the Bernoulli
ensemble, namely, with equal probability. In fact,
the proposition is true for any ensemble for which the concen-
tration of extreme singular values holds.

The following corollary emphasizes the asymptotic behavior
of block-RIP constants per given number of samples.

Corollary 3: Consider the setting of Proposition 3, and define

. Then

(88)
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Fig. 5. The standard and block-RIP constants � for three different dimensions �, � . Each graph represent an average over 10 instances of random matrix���.
Each instance of ��� is scaled by a factor such that (18) is satisfied with � � � � �.

Proof: Let . The result then follows by
replacing (81)–(83) with

(89)

which leads to .

To evaluate the asymptotic behavior of block-RIP we note
that for every the right-hand side of (88) goes to zero
when . Consequently, for fixed

(90)

with overwhelming probability. In Fig. 4, we compute for
several problem dimensions and compare it with standard RIP
which is obtained when . Evidently, as the nonzero entries
are forced to block structure, a wider range of sparsity ratios
satisfy the condition of Theorem 1.

Although Fig. 4 shows advantage for block-RIP, the absolute
sparsity ratios predicted by the theory are pessimistic as also
noted in [13], [28] in the case of . To offer a more opti-
mistic viewpoint, the RIP and block-RIP constants were com-
puted brute-force for several instances of from the Gaussian
ensemble. Fig. 5 plots the results and qualitatively affirms that
block-RIP constants are more “likely” to be smaller than their
standard RIP counterparts, even when the dimensions , are
relatively small.

An important question is how many samples are needed
roughly in order to guarantee stable recovery. This question is
addressed in the following proposition, which quotes a result
from [46] based on the proofs of [47]; we rephrase the result to
match our notation.

Proposition 4 ([46, Theorem 3.3]]): Consider the setting of
Proposition 3, namely, a random Gaussian matrix of size

and block sparse signals over ,
where for some integer . Let and
be constant numbers. If

(91)

where , then satisfies the block-RIP (21) with re-
stricted isometry constant , with probability at least

.

As observed in [46], the first term in (91) has the dominant
impact on the required number of measurements in an asymp-
totic sense. This term quantifies the amount of measurements
that are needed to code the exact subspace in which the sparse
signal resides. Specifically, for block sparse signals

(92)

Thus, for a given fraction of nonzeros , roughly
measurements are needed. For

comparison, to satisfy the standard RIP a larger number
is required. Block sparsity reduces the total number

of subspaces and therefore requires times less measurements
to code the signal subspace. The second term in (91) has a
smaller contribution to the number of measurements. This term
is proportional to , which is the number of nonzero values.
Since the number of nonzeros is the same regardless of the spar-
sity structure, this term is not reduced in the block setting.

Note that Corollary 4 puts the emphasis on the required
problem dimensions to satisfy a given RIP level. In contrast,
Proposition 3 provides a tail bound on the expected isometry
constant for given problem dimensions.

VIII. CONCLUSION

In this paper, we studied the problem of recovering an un-
known signal in an arbitrary Hilbert space , from a given
set of linear samples. The signal is known to lie in a union
of subspaces, so that where each of the subspaces is
a sum of subspaces chosen from an ensemble of pos-
sibilities. While previous treatments of this model considered
invertibility conditions, here we provide concrete recovery al-
gorithms for a signal over a structured union.

We began by showing that recovering can be reduced to a
sparsity problem in which the goal is to recover a block-sparse
vector from measurements where the nonzero values
in are grouped into blocks. The measurement matrix is equal
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to where is the sampling operator and is a set trans-
formation corresponding to a basis for the sum of all . To de-
termine , we suggested a mixed convex optimization pro-
gram that takes on the form of an SOCP. Relying on the notion
of block-RIP, we developed sufficient conditions under which

can be perfectly recovered using the proposed algorithm. We
also proved that under the same conditions, the unknown can
be stably approximated in the presence of noise. Furthermore, if

is not exactly block-sparse, then its best block-sparse approxi-
mation can be approached using the proposed method. We then
showed that when is chosen at random, the recovery condi-
tions are satisfied with high probability.

Specializing the results to MMV systems, we proposed a new
method for sampling in MMV problems. In this approach, each
measurement vector depends on all the unknown vectors. As we
showed, this can lead to better recovery rate. Furthermore, we
established equivalence results for a class of MMV algorithms
based on RIP.

Throughout the paper, we assumed a finite union of subspaces
as well as finite dimension of the underlying spaces. An inter-
esting future direction to explore is the extension of the ideas
developed herein to the more challenging problem of recovering

in a possibly infinite union of subspaces, which are not neces-
sarily finite-dimensional. Recovery methods for sparse signals
in infinite dimensions have been addressed in some of our pre-
vious work [16]–[20]. In particular, we have shown that a signal
lying in a union of shift-invariant subspaces can be recovered
efficiently from certain sets of sampling functions. A first step
in the direction of treating infinite unions of infinite subspaces
is the example studied in [21] in which we treat an infinite union
resulting from unknown time delays. In our future work, we in-
tend to combine these results with those in the current paper
in order to develop a more general theory for recovery from a
union of subspaces.

A recent preprint [48] that was posted online after the sub-
mission of this paper proposes a new framework called model-
based compressive sensing (MCS). The MCS approach assumes
a vector signal model in which only certain predefined sparsity
patterns may appear. In general, obtaining efficient recovery al-
gorithms in such scenarios is difficult, unless further structure
is imposed on the sparsity patterns. Therefore, the authors con-
sider two types of sparse vectors: block sparsity as treated here,
and a wavelet tree model. For these settings, they propose gener-
alizations of several known greedy algorithms. The union model
developed in this paper is broader than the block-sparse setting
treated in [48] in the sense that it allows to model linear depen-
dencies between the nonzero values rather than only between
their locations, by appropriate choice of subspaces in (6), (7).
In addition, we aim at optimization-based recovery algorithms
(26), (47) which require selecting the objective in order to pro-
mote the model properties.

ACKNOWLEDGMENT

The authors would like to thank Volken Cevher for fruitful
discussions regarding the MCS framework.

REFERENCES

[1] C. E. Shannon, “Communications in the presence of noise,” Proc. IRE,
vol. 37, no. 1, pp. 10–21, Jan. 1949.

[2] A. J. Jerri, “The Shannon sampling theorem—Its various extensions
and applications: A tutorial review,” Proc. IEEE, vol. 65, no. 11, pp.
1565–1596, Nov. 1977.

[3] H. Nyquist, “Certain topics in telegraph transmission theory,” Elec.
Eng. Trans., vol. 47, pp. 617–644, Jan. 1928.

[4] M. Unser, “Sampling—50 years after Shannon,” IProc. EEE , vol. 88,
no. 4, pp. 569–587, Apr. 2000.

[5] P. P. Vaidyanathan, “Generalizations of the sampling theorem: Seven
decades after Nyquist,” IEEE Trans. Circuit Syst. I, vol. 48, no. 9, pp.
1094–1109, Sep. 2001.

[6] Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling: Nonlin-
earities, smoothness and sparsity,” IEEE Signal Process. Mag., vol. 26,
no. 3, pp. 48–68, May 2009.

[7] Y. C. Eldar and T. G. Dvorkind, “A minimum squared-error framework
for generalized sampling,” IEEE Trans. Signal Process., vol. 54, pp.
2155–2167, Jun. 2006.

[8] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289–1306, Apr. 2006.

[9] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles:
Exact signal reconstruction from highly incomplete frequency informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[10] J. Mosher, P. Lewis, and R. Leahy, “Coherence and MUSIC in biomag-
netic source localization,” in Biomagnetism: Fundamental Research
and Clinical Applications: Proceedings of the 9th International Con-
ference on Biomagnetism, Proc. 9th Int. Conf. Biomagnetism. Ams-
terdam, The Netherlands: IOS Press, 1995, pp. 330–330.

[11] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Scientific Comput., vol. 20, pp. 33–61, 1999.

[12] S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency
dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp.
3397–3415, Dec. 1993.

[13] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans.
Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec. 2005.

[14] E. J. Candès, J. Romberg, and T. Tao, “Stable signal recovery from in-
complete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, no. 8, pp. 1207–1223, Mar. 2006.

[15] E. Candès, “The restricted isometry property and its implications
for compressed sensing,” C. R. Acad. Sci. Paris, Ser. I, vol. 346, pp.
589–592, 2008.

[16] M. Mishali and Y. C. Eldar, “Blind multiband signal reconstruction:
Compressed sensing for analog signals,” IEEE Trans. Signal Process.,
vol. 57, no. 3, pp. 993–1009, Mar. 2009.

[17] M. Mishali and Y. C. Eldar, “From theory to practice: Sub-Nyquist
sampling of sparse wideband analog signals,” IEEE Sel. Topics Signal
Process., submitted for publication.

[18] Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant
spaces,” IEEE Trans. Signal Process., vol. 57, no. 8, pp. 2988–2997,
Aug. 2009.

[19] Y. C. Eldar, “Uncertainty relations for shift-invariant analog signals,”
IEEE Trans. Inf. Theory, to be published.

[20] M. Mishali and Y. C. Eldar, “Reduce and boost: Recovering arbitrary
sets of jointly sparse vectors,” IEEE Trans. Signal Process., vol. 56, no.
10, pp. 4692–4702, Oct. 2008.

[21] K. Gedalyahu and Y. C. Eldar, “Low rate sampling schemes for time
delay estimation,” IEEE Trans. Signal Process., submitted for publica-
tion.

[22] M. V. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite
rate of innovation,” IEEE Trans. Signal Process., vol. 50, no. 6, pp.
1417–1428, Jun. 2002.

[23] P. Dragotti, M. Vetterli, and T. Blu, “Sampling moments and recon-
structing signals of finite rate of innovation: Shannon meets strang-fix,”
IEEE Trans. Signal Process., vol. 55, no. 5, pp. 1741–1757, May 2007.

[24] Y. M. Lu and M. N. Do, “A theory for sampling signals from a union of
subspaces,” IEEE Trans. Signal Process., vol. 56, no. 6, pp. 2334–2345,
Jun. 2008.

[25] T. Blumensath and M. E. Davies, “Sampling theorems for signals
from the union of finite-dimensional linear subspaces,” IEEE Trans.
Inf. Theory, to be published.



5316 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 11, NOVEMBER 2009

[26] M. Stojnic, F. Parvaresh, and B. Hassibi, “On the Reconstruction of
Block-Sparse Signals With an Optimal Number of Measurements,”
2008, arxiv 0804.0041.

[27] F. Parvaresh, H. Vikalo, S. Misra, and B. Hassibi, “Recovering sparse
signals using sparse measurement matrices in compressed DNA mi-
croarrays,” IEEE J. Selected Topics in Signal Process., , vol. 2, no. 3,
pp. 275–285, Jun. 2008.

[28] E. Candès and T. Tao, “Near optimal signal recovery from random pro-
jections: Universal encoding strategies?,” IEEE Trans. Inf. Theory, vol.
52, no. 12, pp. 5406–5425, Dec. 2006.

[29] S. F. Cotter, B. D. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse so-
lutions to linear inverse problems with multiple measurement vectors,”
IEEE Trans. Signal Process., vol. 53, no. 6, pp. 2477–2488, Jul. 2005.

[30] J. Chen and X. Huo, “Theoretical results on sparse representations of
multiple-measurement vectors,” IEEE Trans. Signal Process., vol. 54,
no. 12, pp. 4634–4643, Dec. 2006.

[31] J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part
I: Greedy pursuit,” Signal Process. (Special Issue on Sparse Approxi-
mations in Signal and Image Processing), vol. 86, pp. 572–588, Apr.
2006.

[32] J. A. Tropp, “Algorithms for simultaneous sparse approximation. Part
II: Convex relaxation,” Signal Process. (Special Issue on Sparse Ap-
proximations in Signal and Image Processing), vol. 86, pp. 589–602,
Apr. 2006.

[33] S. G. Mallat, “A theory of multiresolution signal decomposition: The
wavelet representation,” IEEE Trans. Pattern Anal. Machine Intell.,
vol. 11, pp. 674–693, 1989.

[34] I. Djokovic and P. P. Vaidyanathan, “Generalized sampling theorems
in multiresolution subspaces,” IEEE Trans. Signal Process., vol. 45, no.
3, pp. 583–599, Mar. 1997.

[35] Y. C. Eldar and T. Werther, “General framework for consistent sam-
pling in Hilbert spaces,” Int. J. Wavelets, Multiresolution, and Informa-
tion Processing, vol. 3, no. 3, pp. 347–359, Sep. 2005.

[36] O. Christensen and Y. C. Eldar, “Oblique dual frames and shift-in-
variant spaces,” Appl. Comput. Harmonic Anal., vol. 17, no. 1, 2004.

[37] Y. C. Eldar, “Sampling and reconstruction in arbitrary spaces and
oblique dual frame vectors,” J. Fourier Anal. Appl., vol. 1, no. 9, pp.
77–96, Jan. 2003.

[38] Y. C. Eldar, “Sampling without input constraints: Consistent recon-
struction in arbitrary spaces,” in Sampling, Wavelets and Tomography,
A. I. Zayed and J. J. Benedetto, Eds. Boston, MA: Birkhäuser, 2004,
pp. 33–60.

[39] Y. C. Eldar and O. Christansen, “Characterization of oblique dual
frame pairs,” J. Appl. Signal Process., vol. 2006, no. 7, pp. 1–11, 2006.

[40] T. G. Dvorkind, Y. C. Eldar, and E. Matusiak, “Nonlinear and non-ideal
sampling: Theory and methods,” IEEE Trans. Signal Process., vol. 56,
no. 12, pp. 5874–5890, Dec. 2008.

[41] T. Michaeli and Y. C. Eldar, “Optimization Techniques in Modern
Sampling Theory,” in Convex Optimization in Signal Processing and
Communications, Y. C. Eldar and D. Palomar, Eds. Cambridge,
U.K.: Cambridge Univ. Press, 2009.

[42] Y. C. Eldar, P. Kuppinger, and H. Bölcskei, “Compressed sensing for
block-sparse signals: Uncertainty relations and efficient recovery,”
IEEE Trans. Signal Process., submitted for publication.

[43] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal recon-
struction perspective for source localization with sensor arrays,” IEEE
Trans. Signal Process., vol. 53, no. 8, pp. 3010–3022, Aug. 2005.

[44] Y. C. Eldar and H. Rauhut, “Average case analysis of multichannel
sparse recovery using convex relaxation,” IEEE Trans. Inf. Theory., to
be published.

[45] S. J. Szarek, “Condition numbers of random matrices,” J. Complexity,
vol. 7, no. 2, pp. 131–149, 1991.

[46] T. Blumensath and M. E. Davies, “Iterative hard thresholding for com-
pressed sensing,” Appl. Computat. Harmonic Anal., vol. 27, no. 3, pp.
265–274, 2009.

[47] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof
of the restricted isometry property for random matrices,” Construct.
Approx., vol. 28, no. 3, pp. 253–263, 2008.

[48] R. Baraniuk, V. Cevher, M. Duarte, and C. Hegde, “Model-Based Com-
pressive Sensing,” 2008, preprint.

Yonina C. Eldar (S’98–M’02–SM’07) received the B.Sc. degree in physics
in 1995 and the B.Sc. degree in electrical engineering in 1996 both from Tel-
Aviv University (TAU), Tel-Aviv, Israel, and the Ph.D. degree in electrical en-
gineering and computer science in 2001 from the Massachusetts Institute of
Technology (MIT), Cambridge.

From January 2002 to July 2002, she was a Postdoctoral Fellow at the Dig-
ital Signal Processing Group at MIT. She is currently an Associate Professor
in the Department of Electrical Engineering at the Technion–Israel Institute of
Technology, Haifa, Israel. She is also a Research Affiliate with the Research
Laboratory of Electronics at MIT. Her research interests are in the general areas
of signal processing, statistical signal processing, and computational biology.

Dr. Eldar was in the program for outstanding students at TAU from 1992
to 1996. In 1998, she held the Rosenblith Fellowship for study in Electrical
Engineering at MIT, and in 2000, she held an IBM Research Fellowship.
From 2002 to 2005, she was a Horev Fellow of the Leaders in Science and
Technology program at the Technion and an Alon Fellow. In 2004, she was
awarded the Wolf Foundation Krill Prize for Excellence in Scientific Research,
in 2005 the Andre and Bella Meyer Lectureship, in 2007 the Henry Taub Prize
for Excellence in Research, and in 2008 the Hershel Rich Innovation Award,
the Award for Women with Distinguished Contributions, and the Muriel &
David Jacknow Award for Excellence in Teaching. She is a member of the
IEEE Signal Processing Theory and Methods technical committee and the Bio
Imaging Signal Processing technical committee, an Associate Editor for the
IEEE TRANSACTIONS ON SIGNAL PROCESSING, the EURASIP Journal of Signal
Processing, and the SIAM Journal on Matrix Analysis and Applications, and
on the Editorial Board of Foundations and Trends in Signal Processing.

Moshe Mishali (S’07) received the B.Sc. degree in electrical engineering
(summa cum laude) from the TechnionIsrael Institute of Technology, Haifa,
Israel, in 2000, where he is currently pursuing the Ph.D. degree in electrical
engineering.

From 1996 to 2000, he was a member of the Technion Program for Excep-
tionally Gifted Students. Since 2006, he has been a Research Assistant and
Project Supervisor with the Signal and Image Processing Lab, Electrical En-
gineering Department, Technion. His research interests include theoretical as-
pects of signal processing, compressed sensing, sampling theory, and informa-
tion theory.

Mr. Mishali received the Hershel Rich Innovation Award in 2008.


