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Abstract—The sensing matrix of a compressive system impacts the
stability of the associated sparse recovery problem. In this paper, we
study the sensing matrix of the modulated wideband converter, a recently
proposed system for sub-Nyquist sampling of analog sparse signals.
Attempting to quantify the conditioning of the converter sensing matrix
with existing approaches leads to unreasonable rate requirements, due
to the relatively small size of this matrix. We propose a new conditioning
criterion, named the expected restricted isometry property, and derive
theoretical guarantees for the converter to satisfy this property. We then
show that applying these conditions to popular binary sequences, such
as maximal codes or Gold codes, leads to practical rate requirements.

Index Terms—Compressed sensing, expected restricted isometry prop-
erty, modulated wideband converter, multiband sampling.

I. INTRODUCTION

Signal dimensions in today’s applications are growing faster than
technology capabilities. The Nyquist rate of analog wideband signals,
for example, already exceeds the conversion rate of existing devices.
The modulated wideband converter (MWC) is a recent sub-Nyquist
sampling system which exploits frequency sparsity to reduce the
conversion rate [1]. Figure 1 depicts a block diagram of the converter,
which is further described in Section II. The key idea underlying the
MWC is that if the signal is periodically-modulated prior to sampling,
then the sampling rate can be substantially reduced with respect to the
Nyquist rate. The MWC consists of simple mixers and lowpass filters
which are easy to implement. Reconstruction of the analog input from
the MWC samples is nonlinear when the frequency support of the
signal is unknown; a concrete recovery algorithm is detailed in [1].

In this paper, we study the conditioning of the MWC sampling
operator, or equivalently the ability to recover the input in a stable
manner. Mathematically, the main nonlinear step boils down to
solving for the sparsest solution of a linear underdetermined linear
system – a well-studied subject within the compressed sensing
(CS) literature. The stability of sparse recovery is dictated by the
conditioning of the sensing matrix, which in the MWC configuration
depends on the parameters of the system, such as the number of
channels and the choice of mixing waveforms. In Section III, we
apply known CS results in order to quantify the required number of
sampling channels that ensure stability. Unfortunately, these results
lead to an unreasonable system size. The relatively small sensing
matrix of the MWC is responsible for this behavior, since theoretical
constants that are often ignored in large-scale problems have nonel-
igible contribution otherwise.

Going from theory to practice, in Section IV, we aim at practical
conditioning guarantees for the MWC, namely for a small number of
channels, as the empirical evidence in [1] demonstrates. To achieve
this goal, we first introduce a new stability criterion, termed the
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Fig. 1: The modulated wideband converter consists of m parallel
channels, which mix the input by periodic waveforms. The mixed
signal is then lowpass filtered and sampled at a low rate.

expected restricted isometry property (ExRIP), which quantifies the
stability of a given (deterministic) sensing operator when applied to
random sparse signals. The ExRIP extends on two related definitions:
the RIP [2] which assumes no randomness and in general cannot
be computed in polynomial-time, and the statistical-RIP [3]. The
latter uses a partial random model in which the sensing matrix
is deterministic while the nonzero locations are random, and it is
limited to matrices with stringent structure, which the MWC, for
example, does not posses. The ExRIP relaxes the requirements on
the sensing operator by considering a fully random signal model.
Our main contribution is in proving that the MWC has the ExRIP
when wisely selecting periodic mixing waveforms. Specifically, we
show that popular binary sequences, such as maximal codes or Gold
codes [4], are adequate candidates that yield reasonable requirements
on the system size.

II. THE MODULATED WIDEBAND CONVERTER

In this section, we begin by describing the sensing mechanism of
the MWC. We then formulate our recovery problem and discuss the
role of conditioning.

A. Sensing

The MWC consists of an analog front-end with m channels. In the
ith channel, the input signal x(t) is multiplied by a periodic waveform
pi(t), lowpass filtered, and then sampled at rate 1/T . In this paper,
we study a simplified version of the converter, as depicted in Fig. 1,
in which the sampling interval T equals the period of the waveforms
pi(t). In addition, pi(t) are chosen as sign alternation waveforms,
such that each period T consists of M intervals of length T/M each,
and pi(t) = ±1 on each such interval. This basic configuration is
sufficient for studying the fundamental theoretical trade-off between
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rate and stability; other configurations with practical advantages are
detailed in [1].

The MWC was studied in [1] mainly for multiband analog signals.
The support of a multiband signal x(t) resides within N frequency
intervals, or bands, such that the width of each band does not exceed
B Hz. The band positions are arbitrary and in particular unknown in
advance. For example, in communication N represents the number
of concurrent transmissions and B is specified by the transmission
techniques in use. We note that sub-Nyquist sampling is one of the
appealing properties of the MWC, though it can also be used for
conventional Nyquist sampling with the proper number of channels.

The MWC sensing relies on the following key observation. The
mixing operation scrambles the spectrum of x(t) such that the
baseband frequencies that reside below the filter cutoff 1/2T , contain
a mixture of the spectral contents from the entire Nyquist range. The
periodicity of each waveform pi(t) ensures that the mixture has a
specific nature – aliases at 1/T frequency spacing. Whilst aliasing is
often considered as an undesired effect, here it is deliberately utilized
to shift various frequency regions to baseband, simultaneously. In the
basic configuration, we choose the rate 1/T = B and the length M
of the sign patterns pi(t) is set to the compression ratio, namely the
integer that is closest to the quotient of the Nyquist rate by 1/T .

B. Reconstruction

The recovery of x(t) from the digital sequences y1[n], . . . , ym[n]
consists of two steps which both exploit the sparse nature of the multi-
band spectrum. First, the spectral support is determined, and then the
signal is recovered from the samples by a closed-form expression. The
support recovery involves a series of digital computations, which are
grouped together under the Continuous-to-Finite (CTF) block [1], [5].
As the name hints, the CTF allows to treat the resulting continuous
recovery problem efficiently, by inferring the support from a small-
size finite program. In the noiseless scenario, once the support is
found by the CTF block, the input signal x(t) is perfectly recovered.
When noise is present, it may impact both the digital support recovery
and the actual continuous reconstruction. We refer the reader to [1],
[5] for a detailed discussion on the recovery process.

One of the elements of the CTF, which is our main focus here,
is solving an underdetermined linear system for the sparsest solution
matrix; also known as multiple measurement vectors (MMV) problem
in the CS literature. The CTF block generates the MMV system

V = AU, (1)

where V is an m × r matrix that is computed from the given
sequences y1[n], . . . , ym[n], with r > 0 some positive integer. The
goal is to find an M × r matrix U with as few nonzero rows as
possible. The nonzero rows in the sparsest U indicate the unknown
support of x(t) [1]. The matrix A represents the sensing operator

A = SFD, (2)

where S is an m × M matrix, whose ith row contains the sign
pattern of the ith waveform pi(t). In the basic configuration F is
the M -square DFT matrix (up to a column permutation). The matrix
D is diagonal and accounts for the decay of the Fourier transform
of pi(t) at high frequencies. The decay has to be compensated by
analog means but this subject is beyond the current scope. For our
purposes D can be ignored, since the nonzero location set supp(u) =
supp(Du) for any vector u. Therefore, from this point on we focus
on the sensing part SF of the matrix A.

A large body of CS literature studies sparse recovery problems,
such as (2), with either r ≥ 1. It is well-known that finding the

sparsest U is NP-hard in general. Fortunately, there are many sub-
optimal polynomial-time algorithms that yield the exact solution
under different conditions on the sensing matrix. Typical recovery
conditions of CS algorithms require the number m of rows to be pro-
portional to the cardinality K of the nonzeros support. A logarithmic
dependency on the number M of columns is also necessary for stable
recovery [6]. In our setting, these conditions translate to a requirement
on the number of parallel channels in the MWC. Obviously, we would
like to have theoretical recovery guarantees with a reasonable number
of channels, since those are implemented in hardware.

The simulations in [1] show 97% accurate support recovery rate
on extensive sets of band locations. In the simulations, 3 concurrent
transmissions, each of width B = 50 MHz, were generated with
additive noise, where a Nyquist rate of 10 GHz defined the wideband
input range. The MWC system used m = 40 channels with M = 195
length sign-patterns and rate 1/T ≈ B, which implies 80% rate
saving with respect to the Nyquist rate. In this setting, there are 12
nonzero rows at most in U but due to the conjugate symmetry of
the Fourier transform, it amounts to sparse recovery with K = 6
nonzeros. These numbers will serve us as a gold standard. As
mentioned earlier, in practice the number of channels m can be
substantially reduced when using other configurations of the MWC.

In the next section, we study existing conditions from the CS
literature and show that they require a prohibitively large number
of channels. Then, in Section IV we show how a wise selection of
the sign patterns in pi(t) leads to conditioning guarantees with a
small number of channels.

III. APPLYING KNOWN RECOVERY GUARANTEES

In what follows, Φ denotes an arbitrary matrix of size m ×M
with m < M , and u is an unknown K-sparse vector, with no more
than K nonzeros. The goal is to ensure that the recovery of u from
the underdetermined measurement v = Φu is well-conditioned. We
study the scenario (1) with r = 1 but comment that for r > 1, which
is the typical MMV dimensions that the CTF generates, slightly better
results can be obtained. In addition, we relate all conditions to the
convex recovery method

min
u
‖u‖1 s.t. ‖v −Au‖22 ≤ ε. (3)

Program (3) is known as basis pursuit (BP) for ε = 0. BP denoising
refers to the case ε > 0. The quadratic constraint is sometimes
regularized and merged into the objective.

A. Coherence-based Guarantees

The coherence of a matrix Φ is defined as

µ = max
i 6=j

|〈Φi,Φj〉|
‖Φi‖ ‖Φj‖

, (4)

where the subscript Φi denotes the ith column. The coherence µ can
be efficiently computed for any given matrix. A well known CS result
[7, Th. 7] is that if K ≤ 0.5(1 + 1/µ), then any K-sparse vector u
is perfectly recovered by BP.

Another result by Tropp [8, App. IV-A] shows that if K ≤ 1/3µ,
and the measurement Φu is contaminated by Gaussian white noise
with covariance σ2I, then the support of u can be recovered with
high probability using the BP denoising program.

Candès and Plan [9, Th. 1.2] considered the noisy model in
which the support supp(u) is drawn uniformly at random among
all possible choices, and the nonzero values have amplitudes |ui| >
(6 +

√
2)σ
√

2 logM and random signs. Under the conditions µ <
c/ logM and K ≤ cM/‖Φ‖2 logM , the BP denoising is proved to
recover the support with high probability.
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In Table I, we numerically evaluate the recovery guarantees based
on these bounds. The “best-case” column indicates the smallest
dimensions m,M of S, such that the theoretical requirements are
satisfied for the given K. For example, for K = 2 the bound of [7]
is satisfied with S of dimensions 300 × 2000 at least. We selected
comparable dimensions for S and slightly adjusted K where required.
The best matrix S, in the sense of lowest µ(SF), was chosen out of
100 realizations with ±1 entries that were drawn independently with
equal probability. We could not verify the exact value of the constant
c from the statement or the proof of [9]. For coherence results the
probability p = 1 in the table means no randomness in both Φ and
u. The MWC column assumes M = 195,K = 12 and the value
of m that is required to satisfy the relevant bounds is displayed. As
before, the instance S which gives the lowest value for m is used.

As the table shows, in small-scale problems the coherence-based
guarantees require an unreasonable number of channels, leading to a
sampling rate that exceeds Nyquist by orders of magnitude. Evidently,
the constants can be very significant.

We next examine conditioning guarantees that measure the corre-
lation between large subsets of columns, rather than pairs as in (4).
Obviously, these conditions can better predict the conditioning of Φ
on sparse vectors, but as it turns out they are harder to compute for
a given matrix.

B. RIP Guarantees

Candès et. al. [2] introduced the restricted isometry property (RIP)
as a standard tool for analyzing sensing matrices. A matrix Φ is said
to have the RIP with isometry constant δK , if 0 ≤ δK < 1 is the
smallest number such that

(1− δK)‖u‖2 ≤ ‖Au‖2 ≤ (1 + δK)‖u‖2 (5)

holds for all K-sparse vectors u [2]. The RIP quantifies how well
Φ preserves the norm of sparse vectors. If δ2K < 1 then every
K-sparse vector u is uniquely determined by Φu. Furthermore, if
δ2K <

√
2 − 1 then BP recovers u exactly [10]. In the presence

of noise, the same condition ensures that BP denoising recovers the
signal up to a small bounded error [10].

The main drawback of RIP conditions is that the isometry con-
stant δ2K cannot be computed in polynomial time for an arbitrary
deterministic matrix. The common workaround is to consider random
matrix ensembles, e.g. when the entries of Φ are drawn from the
Gaussian, or the Bernoulli distributions. A relevant result appears in
[6] based on [11]:

Theorem 1: Let Φ be an m × M matrix generated by drawing
entries from an appropriately scaled sub-Gaussian distribution. If

m ≥ 2

cδK

(
ln(2L) +K ln

(
12

δK

)
+ t

)
, (6)

where L =
(

M
K

)
and c is a distribution-dependent constant, then,

with probability at least p = 1− e−t, Φ has the RIP.
In our setting, if S is random with equali-likely ±1 entries, and (6)

is satisfied, then it has the RIP. The constant c = 7/18 in this setting
[11]. Since F is a unitary matrix, the compounded sensing matrix
SF has the same RIP constant as S [11]. In Table I we calculate
the typical setting in which the bound (6) is satisfied for δ2K =√

2− 1 and p = 0.97. As before, the theoretical requirements seem
pessimistic.

Besides the requirement for a large number of sampling channels,
there is a delicate logical issue in the above inference. Theorem 1
predicts the RIP property of a random matrix. In practice, the entries
of S are fixed to the specific sign patterns that are realized in

the system. Notice also the different meaning of the probability; in
Theorem 1 it refers to instances of S, while in empirical simulations
the recovery rate refers to signal realizations with fixed S.

A recent approach in CS considers deterministic matrices by
switching the role of randomness from the sensing operator to
the signal model. This framework conforms with the conventional
Bayesian approach in signal processing, and naturally fits simulation
methodology. In the next section we quote results of this kind.

C. Statistical-RIP Guarantees

Calderbank et. al. [3] proposed the Statistical RIP (StRIP) as an
alternative tool for quantifying sensing matrices. A matrix Φ has the
StRIP(K, δK , p) if (5) is satisfied with probability at least p for a K-
sparse vectors u, whose support is uniformly drawn from all possible
choices (the nonzero values are arbitrary). Calculating the StRIP for
an arbitrary matrix Φ is not easier than RIP computations. However,
structured matrices can greatly simplify the calculations. In [3] the
authors consider matrices, whose columns form a closed-group under
element-wise multiplication. In addition, it is assumed that the rows
of Φ are orthogonal and each sums to zero. Under these hypothesis
they prove that the StRIP is satisfied with

K − 1

M − 1
< δK < 1 p ≥ 1−

2K
m

+ 2K+7
M−3(

δK − K−1
M−1

)2 . (7)

This result is however not useful for the MWC, since the columns
of SF do not form the required group, and this property is essential
for the arguments in [3]. Even when ignoring this issue, the required
dimensions m,M are high. In the MWC setting m = 150 channels
give probability p = 0 in (7).

More recently, Gan et. al. [12] studied StRIP guarantees for Φ
with unit-norm columns and zero-sum rows. They showed that the
StRIP is satisfied with

1

M − 1
< δK p ≥ 1− 2 exp

−
(
δK − 1

M−1

)2

16µ2K

 , (8)

where as before µ is the coherence of Φ. See Table I for evaluation
of this result.

Tropp [13, Th. 12] also provides guarantees on the conditioning
of a deterministic matrix. We bring this result using StRIP terminol-
ogy. A matrix Φ with unit-norm columns satisfies the StRIP with
probability at least p = 1− (K/2)−t, for some t ≥ 1, if√

144µ2Kt log(K/2 + 1) +
2K

M
‖Φ‖2 ≤ e−1/4δK . (9)

Additional conditions are used to bound the probability that BP
recovers u exactly [13, Th. 14]. Observe the table for the applicability
of this bound. Note that both [12], [13] require Φ to have unit-norm
columns. Therefore we applied them on Φ = SF/

√
mM which

approximately satisfies this requirement.
The attempt to derive practical recovery guarantees for the MWC,

which are based on existing results for general structured Φ, is
perhaps sentenced to fail; It does not take into account the specific
structure of the sensing matrix SF. The next section capitalizes on
this structure in order to reduce the requirements on the number of
sampling channels.

IV. CONDITIONING OF THE MWC

A. The ExRIP

We begin with defining a StRIP-like property, which accounts for
randomness in the nonzero values.
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TABLE I: Recovery guarantees for the MWC

“Best-case” setting MWC Setting
Conditioning measure m M K p (see text) Support Values Noise Remarks/Issues

C
oh

er
en

ce Donoho-Elad [7] 300 2000 2 1 m ≥ 4230 D D -
Tropp [8] 300 2000 1 1 m ≥ 9540 D D +
Candès-Plan [9] n/a n/a R Random signs + unspecified constant

R
IP Blumensath+ [6], [11] 700 5000 3 0.95 m ≥ 950 D D - random S

St
R

IP

Calderbank+ [3] 700 5000 3 0.93 m = 150, p = 0 R D - columns form a group
Gan+ [12] 500 3000 1 0 n/a R D - unit-norm columns
Tropp [13] 1000 2000 3 0.01 n/a R D - unit-norm columns

E
xR

IP This paper 80 511 12 0.94 m ≥ 40 R R - Φ = SF, theory
Simulations [1] 40 195 12 0.96 m ≥ 40 R R + Φ = SF, simulations

D=deterministic, R=random, +/-=with/without noise, n/a=not applicable

Definition 1: A matrix Φ has the expected restricted isometry
property (ExRIP), if (5) holds with probability at least p for K-
sparse random vectors u whose support is uniformly distributed and
whose nonzeros are i.i.d random variables.
The ExRIP involves several constants: the sparsity level K, the isom-
etry constant δK , the probability p, and finally the distribution from
which the nonzeros are drawn. Both ExRIP and StRIP assume random
support. However, the ExRIP adds another layer of randomness in the
nonzero values. On the one hand, the ExRIP is mathematically weaker
since worst-case signal values that are unlikely to encounter are
averaged out. On the other hand, since the random support assumption
anyway excludes worst-case scenarios it makes sense to consider
random values as well. Moreover, random signal values conform
with the conventional Bayesian framework. Another advantage of
the ExRIP is in simplifying complicated expressions that otherwise
require Φ to have a stringent structure as in [3]. Compare between
the StRIP [3] and the ExRIP [14] proofs for instance. Besides
these reasons, applying the StRIP results in high system dimensions,
whereas as Table I shows the ExRIP is the only measure that leads
to a reasonable number of channels.

Our goal is to prove that the sensing matrix SF has the ExRIP
with high probability, for the MWC dimensions. To achieve this goal,
we characterize the quality of a given set of sign patterns as follows.
The correlation of the rows is captured by

α(S) =
1

(mM)2

m∑
i,k=1

(ST
i Sk)2, (10)

where the subscripts indicate the relevant rows of S. Note that α(S)
resembles the coherence µ with two distinguishing properties: the
coherence is computed over the columns of SF, while α(S) involves
the rows of S only. In addition, µ involves maximization while α(S)
computes sums of squares. Another quality of interest is the total
power of all auto- and cross-correlation functions, as measured by

β(S) =
1

m2M3

m∑
i,k=1

‖Si � Sk‖2. (11)

Here Si � Sk stands for cyclic convolution. We will also need

γ(S) =
1

(mM)2

m∑
i,k=1

(ST
i S−k )2, (12)

where for any vector a−[n] = a[−n], n = 0, . . . ,M − 1 under the
convention that the indices are module M .

The quality measures are bounded below and above by:
1

m
≤ α(S) ≤ 1

1

M
≈ 2m− 1

2mM − 1
≤ β(S),γ(S) ≤ 1. (13)

Orthogonal rows achieve the lowest α(S) [14]. The lower bound on
β(S),γ(S) stems from Welch [15]. On the other extreme, identical
rows give α(S) = 1 and if in addition all the entries of S are equal
then also β(S) = γ(S) = 1. Clearly, identical sign patterns are
not adequate for the MWC since the channels produce the same
measurements. Intuitively, the mixing patterns pi(t) should differ
from each other as much as possible in order to provide additional
information on the signal. For these reasons, the best quality is
attained when α(S),β(S),γ(S) are low. Notice again the analogous
requirement for low coherence in standard CS.

The following theorem is our main contribution. It relates the
quantities α(S),β(S),γ(S) to the probability of satisfying the
ExRIP.

Theorem 2: Let Φ = SF/
√
mM be the scaled sensing matrix of

the MWC. If the nonzeros are drawn from a symmetric distribution,
then Φ has the ExRIP with probability at least

p = 1− (1− CK)ρM (1 + α(S)− 2β(S))

δ2K
(14)

− (BK − CK)ρM (γ(S)− β(S)) + CKMβ(S)− 1

δ2K

where CK = E{
∑K

i=1 |ui|4/‖u‖4}, BK = E{|
∑K

i=1 u
2
i |2/‖u‖4}

are distribution-dependent constants, ui are the K random variables
representing the nonzeros of u, and ρM = M/(M − 1).

The symmetric distribution in the theorem refers to symmetry
of the probability density function around the origin. For example,
Gaussian, uniform and Bernoulli distributions satisfy this condition.
Note that BK = 1 whenever the nonzeros are real-valued. It can also
be verified that CK = 3K/(2K+K2) when ui are standard normal
variables. Explicit formulas for other distributions exist, but we find it
more convenient to sample the distribution and approximate BK , CK

by averaging. We note that the bound (14) may be negative when the
ExRIP is not satisfied.

Theorem 2 is proved by calculating the second and the forth
moments of Z = ‖Φu‖/‖u‖, a somewhat tedious procedure. Point
out that the

√
mM scaling in Theorem 2 stems from the default

scaling 1± δK in (5). We refer to [14] for the complete proof.
To realize the advantage of Theorem 2, we now evaluate the ExRIP

for several choices of sign patterns. Not surprisingly, popular binary
sequences that are used in communication channels appear adequate
due to their low correlation-energy.
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TABLE II: ExRIP guarantees for different sign patterns

Dimensions Quality ×100 ExRIP prob. p

Family m M 2K α(S) β(S) γ(S) Normal Uniform

Maximal 80 511 24 1.438 0.196 0.408 0.932 0.931
Gold 80 511 24 1.255 0.198 0.199 0.939 0.939
Hadamard 80 512 24 1.250 1.094 1.238 0.000 0.000
Random1 80 511 24 1.439 0.198 0.202 0.927 0.927
Kasami 16 255 12 6.667 0.392 0.294 0.689 0.675
Random2 40 195 24 3.025 0.526 0.537 0.856 0.858

B. Choosing the Sign Patterns

The literature describes several families of binary sequences with
proven correlation guarantees. The Maximal, Gold [4], Kasami [16],
and Hadamard codes are families of sequences with different bounds
on the self and the mutual correlations. The first three families require
M = 2n−1 with different limitations on the possible order n and on
the number of sequences within the code. The M -square Hadamard
matrix provides up to M = 2n sequences.

In Table II we calculate the probability p of satisfying the ExRIP
for these codes using (14). Refer to [14] for the exact details of
constructing the sequences. As before, δ2K =

√
2 − 1 is used.

Empirically, we noticed that random instances of S perform well as
demonstrated in the table. This is reasoned by the cumulative nature
of the measures α(S),β(S),γ(S), which forgive local peaks and
averages the total power of the correlation functions. Combining the
fact that random instances are not limited to pre-specified lengths
together with the ability to compute α(S),β(S),γ(S) efficiently
allows for a wise selection of the patterns. The probabilities in
Table II are computed for complex variables ui, for which both
the real and the imaginary parts are either normal or uniform on
[−0.5, 0.5]. Complex-valued MMVs result naturally in the MWC
system [1].

Since Gold codes do not exist for M = 255 we used M = 511
for comparison. Maximal, Gold and even random sequences all seem
adequate. In contrast, Hadamard sequences yield a poor probability
estimate since their cross-correlation functions have many peaks, as
implied by β(S),γ(S), which are one order of magnitude above
the other codes. The small set of Kasami sequences, which offers
only 16 patterns, is considered optimal in communication, since their
auto- and cross-correlations achieve the Welch bound [15]. In our
quality measures Kasami sequences achieve poor scores since the
aggregated energy is high due to many peaks (at the Welch bound
level). In contrast, maximal and Gold sequences have a few high
local peaks but their average energy is low.

In the technical report [14], we show that (14) can be well
approximated by

p ≈ 1− 1

mδ2K
, (15)

for the Maximal and Gold codes, and for complex-valued signals.
Fig. 2 plots the probability of satisfying ExRIP, as predicted by The-
orem 2, for increasing number of sampling channels and (complex-
valued) normally distributed nonzeros. We added the approximated
bound (15) for comparison. Evidently, the conditioning of the MWC
has two dominant factors: the number of sampling channels m and
the required conditioning level δK .

To conclude we comment that Theorem 2 proves that the MWC has
the ExRIP. Relating the conditioning probability to success recovery
by basis pursuit requires additional steps as carried out in [13] or as
proposed in [3].
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Fig. 2: The probability of satisfying the ExRIP depends mainly on
the number of sampling channels. The black solid curve shows that
the approximated bound (15) coincides with the theoretical curve of
the Random2 sequence family, whose dimensions match the MWC
setting of [1].
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