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ABSTRACT

Sampling theorems for signals that lie in a union of subspaces have

been receiving growing interest. A recent model that describes ana-

log signals over a union is that of a union of shift-invariant (SI) sub-

spaces. Until now, sampling and recovery algorithms have been de-

veloped only for a finite union of SI subspaces. Here we extend this

paradigm to a special case of an infinite union, in which the SI sub-

spaces are generated by pulses with unknown delays, taken from a

continuous interval. We develop a unified approach to time delay re-

covery of the pulses, from low rate samples of the signal taken at the

lowest possible rate. In particular, we derive sufficient conditions on

the pulses and the sampling filters in order to ensure perfect recovery

of the signal. We then show that by properly manipulating the low-

rate samples, the time delays can be recovered using the well-known

ESPRIT algorithm.

Index Terms— sampling, union of subspaces, time delay esti-

mation.

1. INTRODUCTION

One of the traditional assumptions underlying analog-to-digital con-

version is that in order to perfectly reconstruct an analog signal from

its samples, it must be sampled at the Nyquist rate, i.e. twice its

highest frequency. This assumption is required when the only prior

knowledge on the signal, is that it is bandlimited. Other priors on the

signal structure can lead to more efficient sampling schemes [1].

Recently, there has been growing interest in sampling theorems

for signals that lie in a union of subspaces. In [2, 3] necessary and

sufficient conditions are derived for a sampling operator to be invert-

ible in such a signal model. However, no concrete sampling meth-

ods and recovery algorithms were developed, that allow perfect re-

covery of the signal from its samples. Various papers treated this

signal model on finite-dimensional subspaces. The work in [4, 5]

considered the case in which the signal lies in a finite union of fi-

nite dimensional spaces. Conditions for unique and stable recovery

of the signal from its samples were derived, and efficient recovery

algorithms were proposed. Another example is the recent work on

signals with finite rate of innovation (FRI) [6, 7]. In that context, effi-

cient schemes were derived for sampling streams of weighted pulses,

in which the time delays and amplitudes of each pulse are unknown.

To treat analog signals with infinitely many degrees of freedom,

a signal model comprising a union of shift-invariant (SI) subspaces
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was proposed in [8]. Under this model, each signal lies in a SI sub-

space spanned by K generating functions with shifts of T , chosen

out of a finite set of possible generators. The sampling scheme pro-

posed in [8] is based on passing the signal though a bank of filters

whose outputs are sampled at a rate of 1/T . Using compressed sens-

ing (CS) [9] tools, it is shown that by proper design of the filters, the

proposed sampling scheme can achieve a sampling rate of 2K/T
without knowing the active generators.

In this paper we extend the signal model proposed in [8] to the

case of an infinite union of SI subspaces. Similarly, we assume that

each signal lies in a SI subspace spanned by K generating func-

tions. However, in our setup, each generating function is defined

using a parametric function which depends on a parameter, taken

from a continuous interval. Therefore, there are an infinite number

of possible generating functions to choose from.

We focus on the case in which the unknown parameters are a

set of delays, i.e each generating function is a pulse with unknown

delay. For this case we develop an efficient sampling scheme that

can perfectly recover such a signal from its samples at the minimal

possible rate. To this end we use a sampling scheme similar to [8],

based on parallel sampling channels. We derive sufficient conditions

on the generating functions and the choice of sampling filters which

guarantee unique recovery of the signal’s parameters. In particular,

at least 2K sampling channels are required in order to ensure unique

recovery. By appropriate manipulation of the sampling sequences,

we formulate our problem within the framework of direction of ar-

rival (DOA) [10] and rely on the ESPRIT algorithm [10], developed

in that context, in order to recover the unknown delays.

Although conventional CS tools are not used here, we still con-

sider this work as a part of the CS framework, in which a sparsity

prior is exploited in order to compress the signal in the sampling

stage, i.e reduce the sampling rate. The sparsity in our model is

expressed by the fact that only K generators are active, out of the

possible infinite number of generators.

This paper is organized as follows. In Section 2, we present the

union of SI subspace model and the special case of unknown delays.

A general sampling scheme is proposed in Section 3. Section 4 pro-

vides sufficient conditions ensuring a unique recovery. The relation

with FRI sampling is discussed in Section 5. Numerical experiments

are presented in Section 6.

2. PROBLEM FORMULATION

A signal class that plays an important role in sampling theory are

signals in SI spaces. In [8] the standard SI model is extended to a

union of SI subspaces. A signal in such a union can be written as



x (t) =
∑

|k|=K

∑

n∈Z

ak [n] gk (t − nT ) , (1)

where ak [n] are arbitrary sequences in ℓ2 and gk (t) ∈ L2 are

known functions. The notation |k| = K denotes a sum over at most

K elements, where the assumption in [8] is that there are N possible

generators gk(t), 1 ≤ k ≤ N . Therefore, each signal x (t) lies in

a SI subspace spanned by K generators gk(t) selected from the set

of N possibilities. Since we do not know in advance which K are

chosen, the class of signals of the form (1) constitute a union of
(

N

K

)

SI subspaces.

Our goal is to extend the results of [8] to an infinite union of SI

subspaces. To this end, we consider signals of the form

x (t) =
K

∑

k=1

∑

n∈Z

ak [n] g (t − nT, θk) , (2)

where g (t, θ) ∈ L2 is a parametric function and {θk}
K

k=1 are a set of

parameters taken from some continuous interval Θ. In the model (2)

there are an infinite number of possible generators as the parameter

θ varies in the continuous interval Θ. Therefore, (2) describes an

infinite union of SI subspaces.

In this paper we consider a special case of (2) where each gen-

erating function is a pulse with unknown time delay. More precisely

we deal with signals of the form

x (t) =

K
∑

k=1

∑

n∈Z

ak [n] g (t − tk − nT ) , (3)

where τ = {tk}
K

k=1 is a set of K distinct unknown time delays in

the continuous interval [0, T ) and g (t) ∈ L2 is a known function.

This signal model can describe, for example, a transmission of

a pulse g (t) at a constant rate of 1/T through a time-variant multi-

path channel, where tk and ak [n] represent the time delay and time-

variant gain coefficient of the kth path respectively.

Our goal is to develop an efficient sampling scheme for signals

of the form (3), allowing perfect reconstruction of the signal from its

samples, when sampling at the lowest possible rate. Since x (t) is

defined by the set of delays τ and sequences ak [n], our problem is

equivalent to recovering these parameters from the samples.

3. SAMPLING SCHEME

To sample x (t) we propose a sampling scheme comprised of p par-

allel channels. In each channel x (t) is pre-filtered using the filter

s∗ℓ (−t) and sampled uniformly at times t = nT to produce the

sampling sequence cℓ [n], as depicted in the left-hand side of Fig. 1.

We assume that p ≥ K; exact conditions on the number of sampling

channels p will be given in the next section.

It was shown in [11] that the discrete-time Fourier transform

(DTFT) of the ℓth sampling sequence can be expressed as

Cℓ

(

ejωT
)

=
K

∑

k=1

Ak

(

ejωT
)

e−jωtk
1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

·

G

(

ω −
2π

T
m

)

ej 2π

T
mtk , (4)

where Ak

(

ejωT
)

denotes the DTFT of the sequence ak [n], G (ω)
and Sℓ (ω) denotes the Fourier transforms of g (t) and sℓ (t) respec-

tively.

Denoting by c
(

ejωT
)

the length-p column vector whose ℓth el-

ement is Cℓ

(

ejωT
)

and by a
(

ejωT
)

the length-K column vector

whose kth element is Ak

(

ejωT
)

, we can write (4) in matrix form as

c

(

ejωT
)

= M

(

ejωT , τ
)

b

(

ejωT
)

, (5)

where M
(

ejωT , τ
)

is a p × K matrix with ℓkth element

Mℓk

(

ejωT , τ
)

=

1

T

∑

m∈Z

S∗
ℓ

(

ω −
2π

T
m

)

G

(

ω −
2π

T
m

)

ej 2π

T
mtk , (6)

and

b

(

ejωT
)

=D

(

ejωT , τ
)

a

(

ejωT
)

, (7)

with D
(

ejωT , τ
)

denoting a diagonal matrix with kth diagonal ele-

ment e−jωtk .

To proceed, we focus our attention on sampling filters Sℓ(ω)
with finite support in the frequency domain, contained in the range

F =

[

2π

T
γ,

2π

T
(p + γ)

]

, (8)

where γ ∈ Z is an index which determines the working fre-

quency band F . This choice should be such that it matches the

frequency occupation of g (t). Under this choice of filters, the

matrix M
(

ejωT , τ
)

can be expressed as

M

(

ejωT , τ
)

= W

(

ejωT
)

N (τ ) (9)

where W
(

ejωT
)

is a p× p matrix whose ℓmth element is given by

Wℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

·

G

(

ω +
2π

T
(m − 1 + γ)

)

(10)

and N (τ ) is a p × K with mkth element

Nmk (τ ) = e−j 2π

T
(m−1+γ)tk . (11)

If W
(

ejωT
)

is stably invertible, then we can define the modi-

fied measurement vector d
(

ejωT
)

as

d

(

ejωT
)

= W
−1

(

ejωT
)

c

(

ejωT
)

. (12)

From (5) and (9), this vector satisfies

d

(

ejωT
)

= N (τ )b
(

ejωT
)

. (13)

Since N (τ ) is independent of ω, using the linearity of the DTFT,

we can express (13) in the time domain as

d [n] = N (τ )b [n] , n ∈ Z. (14)

The elements of the vectors d [n] and b [n] are the discrete time

sequences, obtained from the inverse DTFT of the elements of the

vectors b
(

ejωT
)

and d
(

ejωT
)

respectively.

Equation (14) describes an infinite set of measurement vectors,

each obtained by the same measurement matrix N (τ ), which de-

pends on the unknown delays τ . This problem is reminiscent of the



s
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1
(−t)

...
x (t)
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s
∗
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Fig. 1. Sampling and reconstruction scheme

type of problems that arise in DOA estimation. One efficient algo-

rithm for parameter estimation, which was originally developed in

that context, is the ESPRIT [10] method. This technique can be used

in our setting to recover the unknown delays τ . Therefore, our ap-

proach is to first recover τ from the measurements using ESPRIT.

After τ is known, the vector a
(

ejωT
)

can be found using the fol-

lowing linear filtering relation

a

(

ejωT
)

= D
−1

(

ejωT , τ
)

N
† (τ )d

(

ejωT
)

. (15)

The resulting sampling scheme is depicted in Fig. 1.

Our last step, therefore, is to derive conditions on the filters

s∗ℓ (−t) and the function g (t) in order that the matrix W
(

ejωT
)

is stably invertible. To this end, we can decompose W
(

ejωT
)

as

W

(

ejωT
)

= S

(

ejωT
)

G

(

ejωT
)

(16)

where S
(

ejωT
)

is a p × p matrix with ℓmth element

Sℓm

(

ejωT
)

=
1

T
S∗

ℓ

(

ω +
2π

T
(m − 1 + γ)

)

(17)

and G
(

ejωT
)

is a p×p diagonal matrix with mth diagonal element

Gmm

(

ejωT
)

= G

(

ω +
2π

T
(m − 1 + γ)

)

. (18)

Each of these matrices should be stably invertible, leading to the

following conditions:

Condition 1 the function g (t) needs to satisfy

0 < a ≤ |G (ω)| ≤ b < ∞ a.e ω ∈ F . (19)

Condition 2 The filters s∗ℓ (−t) should be chosen in such a way that

they form a stably invertible matrix S
(

ejωT
)

.

Examples for choices of filters that satisfy condition (2) are given in

[11]. These examples include a bank of complex bandpass filters and

sampling channels with different time delays (interleaved sampling).

4. SUFFICIENT CONDITIONS FOR PERFECT RECOVERY

We now derive sufficient conditions for a unique solution to the set

of infinite equations (14).

We begin by introducing some notation. Let d [Λ] be the

measurement set containing all measurement vectors d [Λ] =
{d [n] , n ∈ Z} and let b [Λ] = {b [n] , n ∈ Z} be the unknown

vector set. We can then rewrite (14) as

d [Λ] = N (τ )b [Λ] . (20)

The following proposition provides sufficient conditions for a unique

solution to (20). For a proof see [11].

Proposition 1 If
(

τ̄ , b̄ [Λ] 6= 0
)

is a solution to (20) and

p > 2K − dim
(

span
(

b̄ [Λ]
))

(21)

then
(

τ̄ , b̄ [Λ]
)

is the unique solution of (20).

The notation span
(

b̄ [Λ]
)

is used for the subspace of minimal di-

mension containing b̄ [Λ].
Proposition 1 suggests that a unique solution to (14) is guar-

anteed, under proper selection of the number of sampling channels

p. This parameter, in turn, determines the average sampling rate,

given by p/T . Condition (21) depends on dim (span (b [Λ])), which

is generally not known in advance. In order to satisfy the unique-

ness condition (21) for every signal of the form (3), we must have

p > 2K − 1 or a minimal sampling rate of 2K/T . Using the results

of [2] it can be shown that this is the theoretical minimum sampling

rate required for signals of the form (3).

Our method can achieve the minimum sampling rate suggested

by Proposition 1. When p ≥ 2K the unknown delays are recovered

from the measurement vectors using the ESPRIT method. When

dim (span (b [Λ])) < K an additional stage, based on the smoothing

technique proposed in [12], has to be performed first. For further

details see [11].

5. RELATION TO FRI SAMPLING

An interesting class of signals that has been treated recently in the

sampling literature are FRI signals [6, 7]. Such signals have a finite

number of degrees of freedom per unit time, referred to as the rate

of innovation. A general form of an FRI signal is given by [6]

x (t) =
∑

n∈Z

cnφ (t − tn) , (22)

where φ (t) is a known function, tn are unknown time shifts and cn

are unknown weights. Our signal model (3) can be seen as a special

case of (22), where additional shift invariant structure is imposed, so

that in each period T the time delays are constant.

Sampling and reconstruction of infinite length FRI signals was

treated in [7]. The method in [7] is based on the use of specific

sampling kernels and the function φ (t) is limited to diracs, differ-

entiated diracs, or compact support pulses. The reconstruction al-

gorithm proposed in [7] is local, namely it recovers the signal’s pa-

rameters in each time interval separately. Naive use of this approach

in our context has two main disadvantages. First, in our method

the unknown delays are recovered from all the samples of the sig-

nal x (t). A local algorithm is less robust to noise and does not take

the shared information into account. In addition, in terms of com-

putational complexity, in our method all the samples are collected to

form a finite size correlation matrix, and then the ESPRIT algorithm

is applied once. Using the local algorithm requires applying the an-

nihilating filter method, used for FRI recovery, on each time interval

over again.

A final disadvantage of the FRI approach is the higher sampling

rate required. The theorem for unique recovery of streams of diracs

in [7] requires that in each interval of size 2KLTs there are at most

K diracs, where L is the support of the sampling kernel and Ts is the

sampling period. Since in each interval of size T we have K diracs,

the minimal sampling rate is 2KL/T , which is a factor of L larger

than the rate achieved by our scheme. For example, when B-spline

kernel is used, it requires L ≥ 2K.
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6. NUMERICAL EXPERIMENTS

In the setup of our simulation we chose g(t) = δ(t). The sampling

scheme is composed of a bank of complex bandpass filters, each one

of them covering a different frequency band.

We first consider the case where there are K = 2 Diracs per pe-

riod of T = 1, as illustrated in Fig. 2(a). In Fig. 2(b), we show the

output of the first sampling channel. This example demonstrates the

need for the sampling filters when sampling short-length pulses at a

low sampling rate. The sampling kernels have the effect of smooth-

ing the short pulses. Consequently, even when the sampling rate is

low, the samples contain information about the signal. If we were to

sample the signal in Fig. 2(a) directly at a low rate, then we would

often obtain only zero samples. In contrast, if we were to sample the

signal in Fig. 2(a) directly at a low rate, then we would often obtain

only zero samples which contain no information about the signal.

In the next simulation we consider the example described in Sec-

tion 2 of a time-varying multipath channel. We chose a channel with

K = 4 paths. The channel’s time-varying gain coefficients ak [n]
are modeled as colored random processes with decreasing energies.

For the estimation 100 pulses were used and the samples were cor-

rupted by complex-valued Gaussian white noise with an SNR of

20dB. The number of sampling channels is p = 5, corresponding to

K + 1. Although we have seen that 2K sampling channels are re-

quired for perfect recovery of every signal of the form (3), for some

signals, satisfying dim (span (b [Λ])) = K, lowering the number of

channels is possible.

In Fig. 3(a) the original and estimated time delays and averaged

energy of the gain coefficients are shown. In Fig. 3(b), we plot the

magnitude of the original and estimated gains of the first path versus

time. From Figs. 3(a) and (b) it is evident that our method can

provide a good estimate of the channel’s parameters, even when the

samples are noisy, when sampling at the lowest possible rate.

7. CONCLUSION

In this paper we proposed a model for analog signals that lie in a in-

finite union of SI subspaces. We focused on a time delay estimation

problem that can be seen as a special case of this model. We showed

that a sampling rate of 2K/T is sufficient to guarantee perfect re-

covery of a signal composed of K delayed pulses per period T , and

proposed a recovery algorithm.

While previous works on unions of subspaces have focused

mainly on finite unions or finite dimensional subspaces, the problem

we treated here can be seen as a first example of a systematic sam-

pling theory for analog signals defined over an infinite union of SI
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Fig. 3. Channel estimation with p = 5 and SNR=20dB. (a) delays

recovery. (b) Estimated first path time-varying gain coefficient.

subspaces.
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