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Abstract—We explore several reduced-dimension multiuser
detection (RD-MUD) structures that significantly decreasethe
number of required correlation branches at the receiver front-
end, while still achieving performance similar to that of the con-
ventional matched-filter (MF) bank. RD-MUD exploits the fact
that the number of active users is typically small relative to the
total number of users in the system and relies on ideas of analog
compressed sensing to reduce the number of correlators. We
first develop a general framework for both linear and nonlinear
RD-MUD detectors. We then present theoretical performance
analysis for two specific detectors: the linear reduced-dimension
decorrelating (RDD) detector, which combines subspace projec-
tion and thresholding to determine active users and sign detection
for data recovery, and the nonlinear reduced-dimension decision-
feedback (RDDF) detector, which combines decision-feedback
orthogonal matching pursuit for active user detection and sign
detection for data recovery. The theoretical performance results
for both detectors are validated via numerical simulations.

I. I NTRODUCTION

Multiuser detection (MUD) [1] is a classical problem in
multiuser communications, where a number of users commu-
nicate simultaneously with a given receiver by modulating
information symbols onto their unique signature waveforms.
The received signal consists of a noisy version of the su-
perposition of the transmitted waveforms, and the receiver
has to detect the symbols of all users simultaneously. While
there has been a large body of work developed for the
multiuser detection problem, it is not yet widely implemented
in practice, largely due to its complexity and high-precision
A/D requirement. The complexity of MUD arises both in the
analog circuitry for decorrelation as well the digital signal
processing for data detection of each user. We characterize
the decorrelation complexity by the number of correlators used
and the data detection complexity by the complexity-per-bit
[1].

The conventional MUD detection structure consists of a
matched-filter (MF) bank front-end followed by a linear or
nonlinear digital detector. The MF-bank front-end is a set
of correlators, each correlating the received signal with the
signature waveform of a different user. Hence the conventional
MUD requires the number of correlators to be equal to the
number of users. To recover user data from the MF-bank
output, various digital detectors have been developed. The
optimal MUD is the maximum likelihood sequence estimator
(MLSE) [1], which minimizes the probability of error for
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symbol detection, but its complexity-per-bit is exponential
in the number of users when the signature waveforms are
nonorthogonal. The nonlinear decision feedback (DF) de-
tector [1] is a good compromise between complexity and
performance among all nonlinear and linear MUD techniques
[1]. This technique detects users iteratively and subtracts
the strongest user in each iteration. Both the MLSE and
the DF detectors are nonlinear methods. Linear detection
requires lower complexity but with a commensurate reduction
in performance. This technique applies a linear transform to
the receiver front-end output and then detects each symbol
separately. Linear MUD techniques include the single-user
detector, the decorrelating detector and the minimum mean-
square-error (MMSE) detector [1]. When the user signature
waveforms are correlated, the performance of the single-user
detector degrades, while the decorrelating detector [1] elim-
inates the user interference by projecting the received signal
onto the subspace of the signature waveform of each user. The
decorrelating detector optimizes the near-far resistanceamong
linear detectors [1], although it also amplifies noise. Both
linear and nonlinear MUDs have sufficiently high complexity
to preclude their wide adoption in deployed systems. One
reason is that they both require the number of correlators at
the receiver front-end to be equal to the number of users in
the system.

In an earlier work [2], we introduced the structure of a
low complexity reduced-dimension multiuser detection (RD-
MUD). The RD-MUD exploits the fact that the number of
active usersK is typically much smaller than the total number
of usersN at any given time. Our RD-MUD has a front-end
that correlates the received signal withM correlating signals,
with M much smaller thanN . The correlating signals are
formed as linear combinations of the signature waveforms via
a (possibly complex) coefficient matrixA. Our choice ofA
will be shown to be crucial for performance. The output of
the RD-MUD front-end can thus be viewed as a projection
of the MF-bank output onto a lower dimensionaldetection
subspace.

After first developing structures for general linear and
nonlinear RD-MUDs, we will develop performance analysis
bounds for two of these structures: the reduced-dimension
decorrelating (RDD) detector, a linear detector that combines
subspace projection and thresholding to determine active users
with a sign detector for data recovery [3], and the reduced-
dimension decision-feedback (RDDF), a nonlinear detector
that combines decision-feedback orthogonal matching pursuit
(DF-OMP) [4] for active user detection with the sign detector
for data recovery in an iterative manner. We present theoretical
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probability-of-error performance guarantees for these two
detectors in terms of the coherence of the matrixA, in a non-
asymptotic regime with a fixed number of users and active
users. Our RD-MUD detectors consists of two stages: active
user detection and data detection of active users. The first
stage is closely related to [5]. However, our problem differs
in that the probability-of-error must consider errors in both
stages. We derive conditions under which the probability-
of-error is dominated by errors in the first stage. We do
not consider optimizing signature waveforms and hence our
results will be parameterized by the crosscorrelation properties
of the given signature waveforms.

The rest of the paper is organized as follows. SectionII
and SectionIII present the model and the RD-MUD front-
end, respectively. SectionIV introduces the digital detectors
we propose for RD-MUD. SectionV contains the theoretical
performance guarantees. SectionVI contains numerical exam-
ples, and finally SectionVII concludes the paper.

II. SYSTEM MODEL

Consider a multiuser system withN users. Each user
is assigned a unique signature waveform from a setS =
{sn(·) : [0, T ] → R, 1 ≤ n ≤ N}, which are assumed given
and known, and posess certain properties discussed in more
detail below. Each user modulates its signature waveform to
transmit its symbols. The symbols carry information. The
duration of the signature waveformsT is referred to as
the symbol time. Define theinner product (or crosscorre-
lation) between two real analog signalsx(t) and y(t) as
〈x(t), y(t)〉 , T−1

∫ T

0
x(t)y(t)dt. The crosscorrelations of

the signature waveforms are characterized by the Gram matrix
G, defined as

[G]nl , 〈sn(t), sl(t)〉, 1 ≤ n ≤ N, 1 ≤ l ≤ N. (1)

For convenience, we assume thatsn(t) has unit energy:
‖sn(t)‖2 , 〈sn(t), sn(t)〉 = 1 for all n so that[G]nn = 1.
We also assume that the signature waveforms are linearly
independent. HenceG is invertible. We consider the syn-
chronous MUD model that uses Binary Phase Shift Keying
(BPSK) modulation [1]. There areK active users with index
setn ∈ I. The complement setIc contains indices of all non-
active users. The symbol of the usern is bn ∈ {1,−1}, for
n ∈ I. Define a gain factorrn for each user which captures
the transmitting power and channel gain. We assumern is real
and known to the receiver. The nonactive users can be viewed
as transmitting with zero power, or equivalently transmitting
zeros: bn = 0, for n ∈ Ic. The received signaly(t) is a
superposition of the transmitted signals from the active users,
plus white Gaussian noisew(t) with zero-mean and variance
σ2:

y(t) =

N
∑

n=1

rnbnsn(t) + w(t), t ∈ [0, T ], (2)

with bn ∈ {1,−1}, n ∈ I, andbn = 0, n ∈ Ic. The goal of
multiuser detection (MUD) is to detect the set of active users
I and their transmitted symbols{bn : n ∈ I}. In practice the
number of active usersK is typically much smaller than the
total number of usersN , which is a form ofuser sparsity.

Therefore, the received signaly(t) consists of only a few
transmissions from active users. As we show, this user sparsity
enables us to reduce the number of correlators at the front-
end and still be able to achieve performance similar to that of
a conventional MUD using a bank of MFs. To simplify the
detection algorithm, we assume thatK is known. The problem
of estimatingK can be treated separately [6].
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Fig. 1: Front-end of RD-MUD.

III. RD-MUD F RONT-END

The RD-MUD front-end, illustrated in Fig.1, correlates
the received signaly(t) with a set of correlating signals
hm(t), m = 1, · · ·M , whereM is typically much smaller
than N . This is in contrast to the conventional matched
filter (MF) bank, which correlates the received signal with
the full set of N signature waveforms [1]. The front-end
output is processed by either a linear or nonlinear detector
to detect active users and their symbols, as shown in Fig.
2 for both linear and nonlinear detectors. The design of the
correlating signalshm(t) is the key for RD-MUD to reduce
the number of correlators. To construct these signals, we rely
on biorthogonal waveforms [5]. The biorthogonal signals with
respect to{sn(t)} are defined as a linear combination of
all signature waveforms using a weighting coefficient matrix
G−1: ŝn(t) =

∑N
l=1[G

−1]nlsl(t), 1 ≤ n ≤ N , where
[X]nm denotes the element of a matrixX at its nth row
and themth column. Also denote by[x]n the nth entry of
a vectorx. The biorthogonal signals have the property that
〈sn(t), ŝm(t)〉 = δn,m, for all n, m. The delta functionδn,m
is equal to one whenn = m, and is equal to zero otherwise.
The correlating signalshm(t) are linear combinations of the
biorthogonal waveforms with (possibly complex) weighting
coefficientsamn that we choose:

hm(t) =
N
∑

n=1

amnŝn(t), 1 ≤ m ≤ M. (3)

Define a coefficient matrixA ∈ RM×N with [A]mn , amn

and denote thenth column ofA as an , [a1n, · · · , aMn]
⊤,

n = 1, · · · , N . The notationX⊤ denotes the transpose of
a vector or matrix. We normalize the columns ofA so that
‖an‖2 ,

∑M
m=1 a

∗
nmanm = 1, wherex∗ is the conjugate of a

scalarx. The design of the correlating signals is equivalent to
the design of the coefficient matrixA for a given{sn(t)}. We
will use coherenceas a measure of the quality ofA, which is
defined as [5]:

µ , max
n6=l

∣

∣aHn al
∣

∣ . (4)

As we will show later, it is desirable that the columns ofA
have small correlation such thatµ is small. The output of



themth correlator is given byym = 〈hm(t), y(t)〉. Denoting
y = [y1, · · · , yM ]⊤, we can derive the output of the RD-MUD
front-end as (detailed derivations can be found in [2]):

y = ARb + w, (5)

where w is a Gaussian random vector with zero mean and
covarianceσ2AG−1AH , R is a diagonal matrix withrnn
on the diagonal, andb , [b1, · · · , bN ]⊤. The notationXH

denotes the conjugate transpose of a matrixX. The vectory
can be viewed as a linear projection of the MF-bank front-end
output onto a lower dimensional subspace which we call the
detection subspace. Since there are at mostK active users,b
has at mostK non-zero entries. The idea of RD-MUD is that
when the original signal vectorb is sparse, with proper choice
of the matrixA, the detection performance forb based ony of
(5) in the detection subspace can be similar to the performance
based on the output of the MF-bank front-end.
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Fig. 2: The diagram of (upper) linear detector, and (lower)
nonlinear detector.

IV. RD-MUD D ETECTORS

We now discuss how to recoverb from the RD-MUD front-
end outputy of (5) using digital detectors. The model for the
output (5) of the RD-MUD front-end has a similar form to
the observation model in the compressed sensing literature
[7][5], except that the noise in the RD-MUD front-end output
is colored due to match filtering at the front-end. Hence, to
recoverb, we can adopt the ideas developed in the context
of compressed sensing, and combine them with techniques of
MF-bank detection.

The linear detector for RD-MUD first recovers active users
Î using support recovery techniques from compressed sensing
(e.g., [7]). Given an index setI, XI denotes the submatrix
formed by the columns of a matrixX indexed byI, andxI
denotes the subvector formed by the entries indexed byI.
Based on the recovered index set of active usersÎ, we can
write the RD-MUD front-end output model (5) as

y = AÎRÎbÎ + w. (6)

Once the active users are detected, their symbolsbÎ can be
detected from (6). This is done by applying a linear transform
to the front-end output and detecting symbols separately. The
nonlinear detector for RD-MUD detects active users and their
symbols jointly (and/or iteratively).

We will focus on recovery based on two algorithms: (1)
the reduced-dimension decorrelating (RDD) detector, a linear
detector that uses subspace projection along with thresh-
olding [3] to determine active users and sign detection for

data recovery; (2) the reduced-dimension decision feedback
(RDDF) detector, a nonlinear detector that combines decision-
feedback orthogonal matching pursuit (DF-OMP) for active
user detection and sign detection for data recovery. DF-OMP
differs from the conventional OMP [4] in that in each iteration,
the binary-valued detected symbols, rather than the real-valued
estimates, are subtracted from the received signal to form the
residual used by the next iteration. The residual consists of the
remaining undetected active users. By subtracting interference
from the strongest active user we make it easier to detect the
remaining active users.

A. Reduced-dimension decorrelating (RDD) detector

The RDD detector works as follows. As per (5), the front-
end of the RD-MUD projects the received signaly(t) onto
the detection subspace as a vectory. By considering the RD-
MUD front-end output when the input signal issn(t), we can
show that the columnan of A corresponds to thenth signature
waveform vector in the detection subspace. Considering the
detection method of the conventional MUD, a natural strategy
for RD-MUD is to match the received signal vectory and the
nth signature waveform vector in the detection subspace by
computing their inner product, which is given byaHn y, n =
1, · · · , N . To detect active users, we can rank the magnitudes
of these inner products and detect the index of theK largest
as active users:

Î = {n : if |ℜ[aHn y]|
is among theK largest of|ℜ[aHn y]|, n = 1, · · · , N},

(7)

whereℜ[x] denotes the real part of a numberx. To detect
their symbols, we use sign detection:

b̂n =

{

sgn
(

rnℜ[aHn y]
)

, n ∈ Î;
0, n /∈ Î. (8)

wheresgn(x) denotes the sign of a numberx. In detecting
active users (7) and their symbols (8), we take real parts of
the inner products because the imaginary part ofaHn y contains
only noise and interference. The complexity-per-bit for data
detection of the RDD detector is proportional toM . Since
M ≤ N in RD-MUD, the complexity for data detection of the
RDD detector is on the same order as that of the conventional
linear MUD detector. But the RDD detector requires much
lower decorrelation complexity than the conventional linear
detector.

B. Reduced-dimension decision feedback (RDDF) detector

The RDDF detector detects active users and symbols it-
eratively. It starts with an empty set as the initial estimate
for the set of active user̂I0, zeros as the estimated symbol
vectorb(0) = 0, and the front-end output as the residual vector
v(0) = y. Subsequently, in each iterationk = 1, · · · ,K, the
algorithm selects the columnan that is most highly correlated
with the residualv(k−1) as the detected active user in thekth
iteration, with the active user index:

nk = argmax
n

∣

∣

∣
ℜ[aHn v(k−1)]

∣

∣

∣
. (9)

This index is then added to the active user setÎ(k) = Î(k−1)∪
{nk}. The symbol for usernk is detected with other detected



symbols staying the same:

b(k)n =

{

sgn(ℜ[rnk
aHnk

v(k−1)]), n = nk;

b
(k−1)
n , n 6= nk.

(10)

Then the residual vector is updated through

v(k) = y − ARb(k). (11)

The iteration repeatsK times (we show in [8] that with high
probability DF-OMP never detects the same active user twice),
and finally the active user set is given byÎ = Î(K) with the
symbol vector̂bn = b

(K)
n , n = 1, · · · , N . The complexity-

per-bit of the RDDF detector is proportional toMK. Since
M ≤ N , this implies that the complexity for data detection
of the RDDF detector is on the same order as that of the
conventional DF detector. But the RDDF detector requires
much lower decorrelation complexity than the conventional
DF detector.

C. Reduced-Dimension MMSE (RD-MMSE) Detector

Similar to the MMSE detector of the conventional MUD, a
linear detector based on the MMSE criterion can be derived
for the reduced-dimension model (6) (see [8] for derivations).
The RD-MMSE detector detects the set of active usersÎ first
by a support recovery method and then detects symbols as:

b̂n =

{

sgn([RÎAH
Î
(AÎR2

Î
AH

Î
+ σ2AG−1AH)−1y]n), n ∈ Î;
0, n /∈ Î.

(12)

D. Maximum likelihood detector

The optimal detector that minimizes the probability-of-
error for the RD-MUD output is the nonlinear maximum
likelihood detector. The maximum likelihood detector finds
the active users and symbols by minimizing the likelihood
function, or equivalently, minimizing the quadratic function
‖(AG−1AH)−1/2(y − ARb)‖2. This is also equivalent to
solving the following integer optimization problem

max
bn∈{−1,0,1}

2yH(AG−1AH)−1ARb

− bHRAH(AG−1AH)−1ARb,
(13)

wherebn = 0 corresponds to thenth user being inactive.

E. Choice ofA

The coefficient matrixA is our design parameter. In Section
IV-A and SectionIV-B we have shown that both the RDD and
RDDF detectors are based on the inner products between the
projected received signal vector and the columns ofA. Hence,
intuitively, for the RDD and RDDF detectors to work well,
the inner products between columns ofA, or its coherence
defined in (4) should be small. In the following we consider
the random partial discrete Fourier transform (DFT) matrix,
whose coherence is small and it is formed by randomly
selecting rows of a DFT matrixF: [F]nm = ei

2π

N
nm and

normalizing the columns of the sub-matrix, wherei =
√
−1.

V. PERFORMANCE OFRD-MUD

In the following, we present conditions under which the
RDD and RDDF detectors can successfully recover active

users and their symbols. The conditions depend onA through
its coherence and are parameterized by the crosscorrelations
of the signature waveform through the properties of the matrix
G. Our performance measure is the probability-of-error, which
is defined as the chance of the event that the set of active users
is detected incorrectly,or any of their symbols are detected
incorrectly:

Pe = P (Î 6= I) + P ({Î = I} ∩ {b̂ 6= b}). (14)

We will show that the second term of (14) is dominated by the
first term. The noise plays two roles in thePe of (14). First, the
noise can be sufficiently large relative to the weakest signal
such that a nonactive user is determined as active; second,
the noise can be sufficiently large such that the transmitted
symbol plus noise is detected in an incorrect decision region
and hence decoded in error. The first error term in (14) is
related to the probability-of-error for support recovery (see,
e.g. [9]). There are two major differences in our results on
this aspect of RD-MUD performance relative to those previous
works. First, although noise in the analog signal model (2) is
white, matched filtering at the RD-MUD front-end introduces
colored noise in (5). Second, we take into account the second
term in (14), which has not been considered in previous work.

Define the largest and smallest channel gains as

|rmax| ,
N

max
n=1

|rn|, |rmin| ,
N
min
n=1

|rn|. (15)

Our main result is the following theorem:

Theorem 1. Let b ∈ RN×1 be an unknown deterministic
symbol,bn ∈ {−1, 1}, n ∈ I, and bn = 0, n ∈ Ic, n =
1, · · · , N . Assume that the number of active usersK is known.
Given the RD-MUD front-end outputy = ARb + w, where
A ∈ C

M×N andG ∈ R
N×N are known, andw is a Gaussian

random vector with zero mean and covarianceσ2AG−1AH , if
the columns ofA are linearly independent and the coherence
of A (4) satisfies the following condition:

|rmin| − (2K − 1)µ|rmax| ≥ 2τ, (16)

for some constantα > 0, and N−(1+α)[π(1 +
α) logN ]−1/2 ≤ 1, where

τ , σ
√

2(1 + α) logN ·
√

λmax(G
−1) ·

√

max
n

(

aHn AAHan

)

,

(17)
then the probability-of-error (14) for the RDD detector is
upper bounded as:

Pe ≤ N−α[π(1 + α) logN ]−1/2. (18)

If the columns ofA are linearly independent and the coherence
of A (4) satisfies a weaker condition:

|rmin| − (2K − 1)µ|rmin| ≥ 2τ, (19)

for some constantα > 0, and N−(1+α)[π(1 +
α) logN ]−1/2 ≤ 1, then the probability-of-error (14) for the
RDDF detector is upper bounded by the right hand side of
(18).

The proof for Theorem1 is given in [8]. The key idea of the
proof is to find a uniform bound for the tail probability of the



correlator output noise. Note in Theorem1 that the condition
of having small probability-of-error for the RDDF detectoris
weaker than for the RDD detector. Based on the coherence of
the random partial DFT matrix, we can prove the following
corollary to Theorem1 (see [8] for more details):

Corollary 1. Consider the setting of Theorem1, where A
is a random partial DFT matrixA. Suppose the number of
correlators satisfies the following lower bound for the RDD
detector

M ≥ 4

[

(2K − 1)|rmax|
|rmin| − 2τ

]2

(2 logN + c), (20)

or satisfies the following smaller lower bound for the RDDF
detector

M ≥ 4

[

(2K − 1)|rmin|
|rmin| − 2τ

]2

(2 logN + c), (21)

for some constantsc > 0 and α > 0, and |rmin| > 2τ for τ
defined in (17), then the probability-of-errorPe of the RDD
detector or the RDDF detector is bounded by

1− (1−N−α[π(1 + α) logN ]−1/2)(1 − 2e−c), (22)

for some constantα > 0.

This corollary says that to attain a small probability-of-
error, the number of correlators needed by the RDD and
RDDF detectors is on the order oflogN , which is much
smaller than that required by the conventional MUD using
the MF-bank, which is on the order ofN .

VI. N UMERICAL EXAMPLES

As an illustration of the performance of RD-MUD, we
present an numerical example using the RDD detector. The
results are obtained from105 Monte Carlo trials. For each
trial, we generate a Gaussian random noise vectorw as well
as a random partial DFT matrix forA, and form the signal
vector according to (5). To simplify, we assume that the gains
for all the users are the same:|rmin| = |rmax| = 1. Assume
the signature waveforms are orthogonal (G = I ). In this case,
the noise in (5) is white. We define the signal-to-noise-ratio
(SNR) as|rmin|2/σ2 = 1/σ2. We also assumeN = 100 and
K = 2. Fig. 3 showsPe versusM for the RDD detector as
SNR increases. The counterpart of RD-MUD with the RDD
detector in the conventional MUD setting is the decorrelating
detector (when no subspace projection happens, i.e., if we
let A = I in (5)). For each SNR, asM increases, thePe

of the RDD detector approximates that of the conventional
decorrelating detector. Also with higher SNR, thePe of the
RDD detector decreases faster with increasingM . When SNR
is sufficiently high, the number of correlators required by the
RDD detector to achieve a smallPe is much fewer thanN .

VII. C ONCLUSIONS

We have developed families of digital detectors for
the reduced-dimension multiuser detection (RD-MUD), and
proved performance guarantees for two specific detectors:
the reduced-dimension decorrelating (RDD) detector and the
reduced-dimension decision feedback (RDDF) detector. This
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Fig. 3: Performance of the RDD detector,Pe versusM for
different SNRs, when the signature waveforms are orthogonal,
i.e., G = I . The dashed lines showPe for the conventional
decorrelating detectors at the corresponding SNR. When SNR
is greater than 15 dB, (withN = 100 correlators) the
probability-of-error of the decorrelating detector is less than
10−4.

method reduces the number of correlators at the front-end ofa
MUD receiver by exploiting the fact that the number of active
users is typically much smaller than the total number of users
in the system. Motivated by the idea of analog compressed
sensing, the RD-MUD front-end projects the received signal
onto a lower dimensional detection subspace by correlating
with a set of correlating signals. We proved that when the
random partial DFT matrix is used to construct correlating
signals for RD-MUD, the number of correlators is on the
order of log of the number of users in the system, which
is much smaller than that required by the conventional MUD.
Numerical examples validated our theoretical results.
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