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Abstract—We explore several reduced-dimension multiuser symbol detection, but its complexity-per-bit is exponahti
detection (RD-MUD) structures that significantly decreasethe in the number of users when the signature waveforms are

number of required correlation branches at the receiver frot- - 5 hqrthogonal. The nonlinear decision feedback (DF) de-
end, while still achieving performance similar to that of the con-

ventional matched-filter (MF) bank. RD-MUD exploits the fact tector [I] is a good Compr(_)mlse betvyeen compIeXIty.and
that the number of active users is typically small relative b the Performance among all nonlinear and linear MUD techniques
total number of users in the system and relies on ideas of anag [1]. This technique detects users iteratively and subtracts

compressed sensing to reduce the number of correlators. We the strongest user in each iteration. Both the MLSE and
first develop a general framework for both linear and nonlinear the DF detectors are nonlinear methods. Linear detection

RD-MUD detectors. We then present theoretical performance . I lexity but with t ducti
analysis for two specific detectors: the linear reduced-diransion requires lower complexity but with a commensurate reduactio

decorrelating (RDD) detector, which combines subspace pjec- N performance. This technique applies a linear transfarm t
tion and thresholding to determine active users and sign dection the receiver front-end output and then detects each symbol

for data recovery, and the nonlinear reduced-dimension desion-  separately. Linear MUD techniques include the single-user
feedback (RDDF) detector, which combines decision-feedbl  yatactor, the decorrelating detector and the minimum mean-

orthogonal matching pursuit for active user detection and gn .
detection for data recovery. The theoretical performance esults square-error (MMSE) detectori]; When the user signature

for both detectors are validated via numerical simulations waveforms are correlated, the performance of the singte-us
detector degrades, while the decorrelating detectpelim-
|. INTRODUCTION inates the user interference by projecting the receivedasig

Multiuser detection (MUD) {] is a classical problem in onto the subspace of the signature waveform of each user. The

multiuser communications, where a number of users comnfifcorrelating detector optimizes the near-far resistanveng
nicate simultaneously with a given receiver by modulatingn€ar detectors], although it also amplifies noise. Both
information symbols onto their unique signature waveforménear and nonlinear MUDs have sufficiently high complexity
The received signal consists of a noisy version of the st@ preclude their wide adoption in deployed systems. One
perposition of the transmitted waveforms, and the receivé§ason is that they both require the number of correlators at
has to detect the symbols of all users simultaneously. Whifee receiver front-end to be equal to the number of users in
there has been a large body of work developed for tiige system.
multiuser detection problem, it is not yet widely implemeait I an earlier work {], we introduced the structure of a
in practice, largely due to its complexity and high-premisi low complexity reduced-dimension multiuser detection {RD
A/D requirement. The complexity of MUD arises both in thdMUD). The RD-MUD exploits the fact that the number of
analog circuitry for decorrelation as well the digital sign active users< is typically much smaller than the total number
processing for data detection of each user. We charactel@fdisersN at any given time. Our RD-MUD has a front-end
the decorrelation complexity by the number of correlataecu that correlates the received signal with correlating signals,
and the data detection complexity by the complexity-per-p¥ith A much smaller thanV. The correlating signals are
[1]. formed as linear combinations of the signature waveforras vi
The conventional MUD detection structure consists of @& (Possibly complex) coefficient matrik. Our choice ofA
matched-filter (MF) bank front-end followed by a linear otill be shown to be crucial for performance. The output of
nonlinear digital detector. The MF-bank front-end is a séf¢ RD-MUD front-end can thus be viewed as a projection
of correlators, each correlating the received signal witk tOf the MF-bank output onto a lower dimensiordgtection
signature waveform of a different user. Hence the convaatio Subspace
MUD requires the number of correlators to be equal to the After first developing structures for general linear and
number of users. To recover user data from the MF-baRRnlinear RD-MUDs, we will develop performance analysis
output, various digital detectors have been developed. TR@unds for two of these structures: the reduced-dimension
optimal MUD is the maximum likelihood sequence estimatdtecorrelating (RDD) detector, a linear detector that coredi

(MLSE) [1], which minimizes the probability of error for Subspace projection and thresholding to determine actigesu
with a sign detector for data recovery][ and the reduced-
This work is partially supported by the Interconnect Focusni@r of dimension decision-feedback (RDDF), a nonlinear detector
the Semiconductor Research Corporation, BSF Transfaren&tience Grant that combines decision-feedback orthogonal matchingqjlurs
2010505, and a Stanford General Yao-Wu Wang Graduate FlpwSub- DE-OMP) 1 f . d . ith the si d
mitted to IEEE International Conference on Communicati¢i@C) 2012. ( - ) [ ] or active user detection with the sign detector

Copyright IEEE. for data recovery in an iterative manner. We present thizatet
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probability-of-error performance guarantees for thes® tiTherefore, the received signal¢) consists of only a few

detectors in terms of the coherence of the mafrj)n a non- transmissions from active users. As we show, this user ispars

asymptotic regime with a fixed number of users and actiemables us to reduce the number of correlators at the front-

users. Our RD-MUD detectors consists of two stages: actigad and still be able to achieve performance similar to that o

user detection and data detection of active users. The fiastonventional MUD using a bank of MFs. To simplify the

stage is closely related t&][ However, our problem differs detection algorithm, we assume thatis known. The problem

in that the probability-of-error must consider errors inttho of estimating/K” can be treated separatels].[

stages. We derive conditions under which the probability-

of-error is dominated by errors in the first stage. We do

not consider optimizing signature waveforms and hence our

results will be parameterized by the crosscorrelation @rigs

of the given signature waveforms. y(®)
The rest of the paper is organized as follows. Sectlon

and Sectionlll present the model and the RD-MUD front-

end, respectively. Sectiotv introduces the digital detectors

we propose for RD-MUD. Sectiol contains the theoretical

performance guarantees. Sectidincontains numerical exam- Fig. 1: Front-end of RD-MUD.

ples, and finally SectioWIl concludes the paper. . RD-MUD FRONT-END

Il. SYSTEM MODEL The RD-MUD front-end, illustrated in Figl, correlates
Consider a multiuser system withV users. Each userthe received signal(t) with a set of correlating signals
is assigned a unique signature waveform from a&et  h,,(t), m = 1,--- M, where M is typically much smaller
{sn(-) : [0,T] = R,1 < n < N}, which are assumed giventhan N. This is in contrast to the conventional matched
and known, and posess certain properties discussed in miiiter (MF) bank, which correlates the received signal with
detail below. Each user modulates its signature waveformtiee full set of N signature waveformsi]. The front-end
transmit its symbols. The symbols carry information. Theutput is processed by either a linear or nonlinear detector
duration of the signature wavefornmig is referred to as to detect active users and their symbols, as shown in Fig.
the symbol time. Define thénner product (or crosscorre- 2 for both linear and nonlinear detectors. The design of the
lation) between two real analog signalgt) and y(t) as correlating signalsi,, (t) is the key for RD-MUD to reduce
(x(t),y(t)) & 771 fOTx(t)y(t)dt. The crosscorrelations of the number of correlators. To construct these signals, e re
the signature waveforms are characterized by the Gramxmawi biorthogonal waveforms]. The biorthogonal signals with
G, defined as respect to{s,(t)} are defined as a linear combination of
all signature waveforms using a weighting coefficient nxatri
[G]nl £ <Sn(t)7sl(t)>7 1<n< N7 1< l < N. (1) G_ljgén(t) _ Zl]il[e_l]nls(t)! 1 gg ng < N, where
For convenience, we assume that(t) has unit energy: [X]n.» denotes the element of a matrk at its nth row
ll5n()]|2 £ (sn(t), sn(t)) = 1 for all n so that[G],, = 1. and themth column. Also denote byx],, the nth entry of
We also assume that the signature waveforms are lineadlyectorx. The biorthogonal signals have the property that
independent. Henc& is invertible. We consider the syn-(sn(t), 3m(t)) = 6n,m, for all n, m. The delta functiord,,
chronous MUD model that uses Binary Phase Shift Keyirig equal to one when = m, and is equal to zero otherwise.
(BPSK) modulation []. There arek active users with index The correlating signalé,, (¢) are linear combinations of the
setn € Z. The complement séf contains indices of all non- biorthogonal waveforms with (possibly complex) weighting
active users. The symbol of the useris b, € {1,—1}, for coefficientsa,,, that we choose:
n € Z. Define a gain factor,, for each user which captures N
the transmitting power and channel gain. We assujis real hn(t) = Z Amndn(t), 1<m< M. 3)
and known to the receiver. The nonactive users can be viewed n=1
as transmitting with zero power, or equivalently transimitt
zeros:b, = 0, for n € Z¢. The received signaj(t) is a

Define a coefficient matribd € RM*N with [Al,, £ amn

. . . . and denote theith column ofA asa, = T
superposition of the transmitted signals from the activersis @ : T & = [ain, - arn]
. . . . . n = 1,---,N. The notationX' denotes the transpose of
plus white Gaussian noige(t) with zero-mean and variance : .
9. a vector or matrix. We normalize the columns Afso that
o . [ENRED D @,mnm = 1, wherez* is the conjugate of a
scalarxz. The design of the correlating signals is equivalent to
y(t) = Z Tnbnsn(t) +w(?), t€[0,7], (2) " the design of the coefficient matrix for a given{s,(t)}. We
n=1

will use coherenceas a measure of the quality &f which is
with b, € {1,~1}, n € Z, andb,, = 0, n € Z¢. The goal of defined as:
multiuser detection (MUD) is to detect the set of active sser 1= max \afa¢| . (4)
7 and their transmitted symbols,, : n € Z}. In practice the n#l
number of active userk is typically much smaller than the As we will show later, it is desirable that the columnsAof
total number of usersv, which is a form ofuser sparsity have small correlation such that is small. The output of



the mth correlator is given by, = (h,,(t),y(t)). Denoting data recovery; (2) the reduced-dimension decision feddbac

y=[y1,--- ,yum| ", we can derive the output of the RD-MUD(RDDF) detector, a nonlinear detector that combines deeisi
front-end as (detailed derivations can be found}):[ feedback orthogonal matching pursuit (DF-OMP) for active
user detection and sign detection for data recovery. DF-OMP
y = ARb + w, (5)

differs from the conventional OMP!] in that in each iteration,
wherew is a Gaussian random vector with zero mean arbie binary-valued detected symbols, rather than the ralakd
covariances2AG 'AY, R is a diagonal matrix withr,,, €stimates, are subtracted from the received signal to fbem t
on the diagonal, ant £ [by,--- ,by]". The notationX*  residual used by the next iteration. The residual consfstseo
denotes the conjugate transpose of a maXrixThe vectory remaining undetected active users. By subtracting intenfee

can be viewed as a linear projection of the MF-bank front-edg@m the strongest active user we make it easier to detect the
output onto a lower dimensional subspace which we call tiiémaining active users.

detection subspac&ince there are at mosf active usersb
has at mosf< non-zero entries. The idea of RD-MUD is tha
when the original signal vectdris sparse, with proper choice "€ RDD detector works as follows. As pe)the front-
of the matrixA, the detection performance fbrbased ory of ~€nd of the RD-MUD projects the received signak) onto

(5) in the detection subspace can be similar to the performarifg detection subspace as a vegtoBy considering the RD-
based on the output of the MF-bank front-end. MUD front-end output when the input signal is(¢), we can
show that the columa,, of A corresponds to theth signature

waveform vector in the detection subspace. Considering the
) Active User detection method of the conventional MUD, a natural styateg
Front-end Linear Support J\ Symbol for RD-MUD is t tch th ived si | d th
Output Transform kL tpph_ [} Detection or RD- is to match the received signal vectoand the
etection nth signature waveform vector in the detection subspace by
computing their inner product, which is given 'y, n =

tA. Reduced-dimension decorrelating (RDD) detector

1,---, N. To detect active users, we can rank the magnitudes
Joint (and/or of these inner products and detect the index of ihéargest
Front-end iterative) Active as active users:
Output User and Symbol N ’
Detection IT={n: fif |§R[a§y]| %

Fig. 2: The diagram of (upper) linear detector, and (lower) is among thek largest of|R[ally]|, n =1,--- N},

nonlinear detector. where R[x] denotes the real part of a numher To detect

IV. RD-MUD DETECTORS their symbols, we use sign detection:
We now discuss how to recovberfrom the RD-MUD front- B - sgn(rn%[anHy]) , ne j; 8
end outputy of (5) using digital detectors. The model for the n 0, n¢l. (®)

output 6) of the RD-MUD front-end has a similar form to i )
the observation model in the compressed sensing literatfBere sgn(z) denotes the sign of a number In detecting

[7][5], except that the noise in the RD-MUD front-end outpuctivé users) and their symbolsg), we take real parts of

is colored due to match filtering at the front-end. Hence, € inner products because the imaginary pag;6f contains

recoverb, we can adopt the ideas developed in the conteXf!y noise and interference. The complexity-per-bit foteda

of compressed sensing, and combine them with techniquegfection of the RDD detector is proportional id. Since

ME-bank detection. M < N in RD-MUD, the complexity for data detection of the
The linear detector for RD-MUD first recovers active usef@PD detector is on the same order as that of the conventional

7 using support recovery techniques from compressed sensfi§ar MUD detector. But the RDD detector requires much
(e.g., []). Given an index sef, X7 denotes the submatrix lower decorrelation complexity than the conventional dine

formed by the columns of a matriX indexed byZ, andx; detector.
denotes the subvector formed by the entries indexed by B, Reduced-dimension decision feedback (RDDF) detector

qued on the recovered index set of active uggrae can The RDDF detector detects active users and symbols it-
write the RD-MUD front-end output modeb) as . . o .
eratively. It starts with an empty set as the initial estenat
y =A;R;bs +w. (6) for the set of active usef’, zeros as the estimated symbol

o h . q 4. thei bol b vectorb®) = 0, and the front-end output as the residual vector
nce the active users are detected, their symbglsan be (o) _ y. Subsequently, in each iteratidn= 1,-- - , K, the

detected from@). This is done by a_pplying a linear tranSfOrn‘%\lgorithm selects the columa, that is most highly correlated
to the front-end output and detecting symbols separatélg. T

. _ with the residual(*—1) as the detected active user in thid
nonllnear. d_etector for R.D—ML_JD detects active users andth?t'eration, with the active user index:
symbols jointly (and/or iteratively).

We will focus on recovery based on two algorithms: (1) ng = argmax‘%[afv(’“‘l)]’. 9)
the reduced-dimension decorrelating (RDD) detector, ealin "
detector that uses subspace projection along with thredtis index is then added to the active user&ét = Z7(:-1y

olding [3] to determine active users and sign detection fdm}. The symbol for usen, is detected with other detected



symbols staying the same: users and their symbols. The conditions dependdhrough
its coherence and are parameterized by the crosscorredatio

H \,(k-1 — .
bk = { Sgn(%[r’}ﬁ%v( M. n=mn; (10) of the signature waveform through the properties of the imatr
bn” n# ny. G. Our performance measure is the probability-of-errorglhi
Then the residual vector is updated through is defined as the chance of the event that the set of active user
(k) _ (k) is detected incorrectlypr any of their symbols are detected
VY =y —ARDb. (1) incorrectly:
The iteration repeat&’ times (we show in{] that with high P.=P@+#T)+P{Z=1)n{b#b}). (14)

probability DF-OMP never detects the same active user jwice
and finally the active user set is given By= Z() with the We will show that the second term df4) is dominated by the
symbol vectorb, = ASAR— 1,---,N. The complexity- firstterm. The noise plays two roles in tie of (14). First, the
per-bit of the RDDF detector is proportional fd K. Since nhoise can be sufficiently large relative to the weakest signa
M < N, this implies that the complexity for data detectiosuch that a nonactive user is determined as active; second,
of the RDDF detector is on the same order as that of tHae noise can be sufficiently large such that the transmitted
conventional DF detector. But the RDDF detector requirémbol plus noise is detected in an incorrect decision regio
much lower decorrelation complexity than the conventionand hence decoded in error. The first error term Ii) (is
DF detector. related to the probability-of-error for support recovesgg,
e.g. P]). There are two major differences in our results on
C. Reduced-Dimension MMSE (RD-MMSE) Detector this aspect of RD-MUD performance relative to those presiou
Similar to the MMSE detector of the conventional MUD, avorks. First, although noise in the analog signal moaglig
linear detector based on the MMSE criterion can be deriv&dite, matched filtering at the RD-MUD front-end introduces
for the reduced-dimension modéi) ((see P] for derivations). colored noise ing). Second, we take into account the second
The RD-MMSE detector detects the set of active ugdefisst term in (L4), which has not been considered in previous work.
by a support recovery method and then detects symbols as: Define the largest and smallest channel gains as

_ { sgn([RzAY (A;RZAL + 02AGT'AT)"Yy],), nel;

0, n ¢ 7.
(12)  Our main result is the following theorem:

N N
[7max| £ max [7nl,  |7minl £ min |7 . (15)
n=1 n=1

D. Maximum likelihood detector Theorem 1. Let b € RY¥*! pbe an unknown deterministic

The optimal detector that minimizes the probability-ofSymbolb, € {=1,1}, n € Z, andb, = 0, n € 7% n =
error for the RD-MUD output is the nonlinear maximumt: -~ » V. Assume that the number of active us&rss known.
likelinood detector. The maximum likelihood detector find$iven the RD-MUD front-end outpyt = ARb + w, where

. L. . . MxN NXxXN H H
the active users and symbols by minimizing the likelihooft € C* " andG € R™*™ are known, andv is a (:’flufls'?m
function, or equivalently, minimizing the quadratic fuioet random vector with zero mean and covariancAG A", if

H(AGflAH)fl/Q(y — ARD)|[2. This is also equivalent to the columns oA are linearly independent and the coherence

solving the following integer optimization problem of A (4) satisfies the following condition:
max 2yH(AG*1AH)*1ARb [Tmin| — (2K — 1) p|rmax| > 27, (16)
b,e{—1,0,1} (13)

for some constanta > 0, and N-U+9[r(1 +
a)log N]~/2 < 1, where

72021+ a)log N-\/Amax(G1) - \/max (aZAATa,),

E. Choice ofA (17)

The coefficient matrixA is our design parameter. In Sectionthen the probability-of-error 14) for the RDD detector is
IV-A and SectioriV-B we have shown that both the RDD and,pper bounded as:

RDDF detectors are based on the inner products between the

projected received signal vector and the columna ofience, P < N™%[r(1+a)log N]~/2. (18)
intuitively, for the RDD and RDDF detectors to work well,if he columns o are linearly independent and the coherence
the inner products between columns Af or its coherence 45 o (4) satisfies a weaker condition:

defined in &) should be small. In the following we consider

the random partial discrete Fourier transform (DFT) matrix [Tmin| — (2K — 1)p|rmin| > 27, (19)
whose coherence is small and it is formed by random]%r some constanta > 0, and N-(+e) r(1 +

i NE - i nm
selectllr?g. rog‘s of Ia DFT mﬁm%'b“:]"’?. - (;lfv \/a_r11d a)log N]~1/2 < 1, then the probability-of-error {4) for the
hormalizing the columns of the sub-matrix, Where: v—1. - pbpF detector is upper bounded by the right hand side of
V. PERFORMANCE OFRD-MUD (18).

In the following, we present conditions under which the The proof for Theorem is given in B]. The key idea of the
RDD and RDDF detectors can successfully recover actipeoof is to find a uniform bound for the tail probability of the

—bRAY (AG'AT)~1ARD,

whereb,, = 0 corresponds to theth user being inactive.




correlator output noise. Note in Theoréhat the condition

of having small probability-of-error for the RDDF detecier
weaker than for the RDD detector. Based on the coherence of
the random partial DFT matrix, we can prove the following
corollary to Theorenl (see B] for more details):

Corollary 1. Consider the setting of Theorefiy where A ] -
is a random partial DFT matrixA. Suppose the number of * ; R
correlators satisfies the following lower bound for the RDD . \\ \Iiﬂﬁiigﬂg
detector e ©
2K — 1)|rmax| 12 Fig. 3: Performance of the RDD detectd?, versusM for
M >4 {M——QT] (2log N +¢), (20) different SNRs, when the signature waveforms are orthdgona
i i.e., G = |. The dashed lines show, for the conventional
or satisfies the following smaller lower bound for the RDD'(:jecorreIating detectors at the corresponding SNR. When SNR
detector is greater than 15 dB, (withV = 100 correlators) the
) " . ;
M4 {(2{: - |1)|T2m7_ln|:| (2log N + ¢, 1) EJ(r)(iltiéblhty of-error of the decorrelating detector isdeban

for some constants > 0 and « > 0, and |rmin| > 27 for 7
defined in 17), then the probability-of-errorP, of the RDD

detector or the RDDF detector is bounded by method reduces the number of correlators at the front-ead of
1—(1—N"°[x(1 +a)log N]‘l/Q)(l — 979, (22) MUD r.eceiv_er by exploiting the fact that the number of active
users is typically much smaller than the total number of siser

for some constant > 0. in the system. Motivated by the idea of analog compressed

This corollary says that to attain a small probability-of§en3ing’ the RD-MUD front-end projects the received signal

error, the number of correlators needed by the RDD alq&lto a lower dimensional detection subspace by correlating
RDDF detectors is on the order afg N, which is much with a set of correlating signals. We proved that when the

smaller than that required by the conventional MUD USin?ndom partial DFT matrix is used to construct correlating
ignals for RD-MUD, the number of correlators is on the

the MF-bank, which is on the order o¥. ) _
order of log of the number of users in the system, which

VI. NUMERICAL EXAMPLES is much smaller than that required by the conventional MUD.
As an illustration of the performance of RD-MUD weNumerical examples validated our theoretical results.
present an numerical example using the RDD detector. The REFERENCES
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VII. CONCLUSIONS

We have developed families of digital detectors for
the reduced-dimension multiuser detection (RD-MUD), and
proved performance guarantees for two specific detectors:
the reduced-dimension decorrelating (RDD) detector aed th
reduced-dimension decision feedback (RDDF) detectors Thi
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