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Abstract— We study compressive sensing methods for target
localization in MIMO radar. While much attention has been
given to compressive sensing of signal measurements in the time
domain, this work focuses on the spatial domain. We propose
a framework in which the target localization with distributed,
active sensors is formulated as a nonconvex optimization. By
leveraging a sparse representation, we devise a branch-and-
bound type algorithm that provides a global solution to the
nonconvex localization problem. It is shown that this method
can achieve high resolution target localization with a highly un-
dersampled MIMO radar with transmit/receive elements placed
at random. A lower bound is developed on the number of
transmit/receive elements required to ensure accurate target
localization with high probability.

I. INTRODUCTION

Basic functions of a radar are detection, estimation, and
tracking of targets. In multiple input multiple output (MIMO)
radar [1], targets are probed with multiple, simultaneous
waveforms. Returns from the targets are jointly processed
relying on multiple receive antennas and the properties of the
transmitted waveforms. Depending on the mode of operation
and system architecture, MIMO radars have been shown to
boost target detection, enhance spatial resolution, and improve
interference suppression. MIMO radars achieve these advant-
ages by exploiting a larger number of degrees of freedom than
“conventional” radar and possibly the target’s spatial diversity.
In this work, we focus on the application of MIMO radar to
the estimation of direction-of-arrival (DOA).

It is well known in array processing that resolution improves
with the array aperture. A non-ambiguous uniform linear array
(ULA) must have its elements spaced at intervals no larger
than 2. For a MIMO radar, unambiguous direction finding
of targets is possible for 2-spaced receive elements and
2-spaced transmit elements (a virtual filled array), where
 is the number of receive elements [2]. Thus for both
passive and active direction finding, the number of sensors
increases linearly with the array aperture, therefore with the
required resolution. To benefit from the advantages, but avoid
the costs, of a large aperture, various ways were proposed to
thin the number of elements of a phased array. With random
arrays, a relatively low number of elements are randomly
placed across a large aperture. Studies of random arrays
have shown that the probability of a sidelobe competing with
the mainlobe decreases with the number of array elements.

Moreover, a threshold phenomena has been demonstrated:
below a threshold number of sensors, the probability of a peak
sidelobe is high, while above the threshold, the probability of
a peak sidelobe is very low [3]. More recently, the concept of
random array has been extended to MIMO radar [4] employing
the beamforming estimator and assuming only 1 target is
present. Under this scenario, it is shown that in a  tx and
 rx MIMO radar. system, it is possible to obtain the same
sidelobe performance as a system with 1 transmitter and 

receive elements, delivering savings for  +   .
The 2-spaced array and the MIMO virtual filled array

perform spatial sampling at Nyquist rate, while the random
array and the MIMO random array sample the space at sub-
Nyquist rates. Recovering targets from undersampled array
data, links random arrays to the compressed sensing (CS)
paradigm. In CS, one seeks to recover a -sparse vector x of
length ,  ¿  from  non-adaptive, linear observations
of the form of y = Ax, where the  ×  matrix A,
with  ¿ , is commonly referred to as dictionary, and
its columns are called atoms.. The unknown vector x carries
information on the location and strength of the  targets.
The idea is to recast the inverse problem (i.e., determining the
target location from sensors observations) in an optimization
framework, where the (known) columns of A are the steering
vectors from a grid of possible targets locations. While the
system y = Ax is highly underdetermined, finding conditions
that guarantee correct recovery when the unknown vector
x is sparse, has been a main topic of research and one
of the underpinnings of CS theory. In this regard, linear
independence of subset of columns of the matrix A play a
key role: while each column of the matrix for a filled ULA
has Vandermonde structure (ensuring any  set of columns
being linearly independent), intuitively, the chance of having
dependent columns of A increases as the number of sensors is
thinned and the Vandermonde structure abandoned. Exploring
relations between the number of rows and columns of A and
the number of targets is a main topic of this paper.

In the MIMO radar application, of great interest are solu-
tions that require the least amount of sensors to guarantee
correct recovery of the unknown targets. One way to achieve
this goal is to globally solve the non-convex combinator-
ial 0-norm problem (i.e., min kxk0 subject to y = Ax).
Unfortunately, in general, its solution comes at the cost of



an exponential complexity exhaustive search [5]. Two main
suboptimal approaches can be found in the literature: greedy
algorithms, such as Orthogonal Least Squares (OLS) [6], and
relaxing the 0-norm to an 1-norm, resulting in a convex
problem [7]. Moreover, it has been recently shown that the
non-convex problem where the 0-norm is replaced with a
proper concave sparsity enforcing  (|x|), can recover x with
fewer measurements then needed by relaxing the 0-norm to
the convex 1-norm [8]. This motivates the design of high
performance algorithms that can perform well with a low
number of transmit and receive elements.

Recent work on CS includes applications to radar, with the
focus on time sampling [9], [10], [11], [15] and to MIMO radar
[?]. In this paper, we are interested mainly in spatial CS using
a random array geometry, as opposed to the ULA [12] and
virtual ULA [13] geometries. Links between CS and random
arrays are explored in [14] for the passive DOA problem.
Concerning random arrays for MIMO radar, in [16], a CS
algorithm known as the Dantzig selector, is used to extract
angle and Doppler information with randomly located sensors.
The authors show that the correlation between columns of
the matrix A decreases with the number of sensors, and, by
applying standard CS results, they obtain a lower bound on
the number of sensors needed for correct recovery. However,
this bound increases linearly with the mutual coherence of A,
precluding high resolution with a small number of elements.

The work presented in this paper goes beyond the scope of
the reviewed literature, and makes the following contributions:

1) Develop a global, branch-and-bound (BB) algorithm for
the sparse recovery problem that extend the OLS idea.

2) Derive an explicit lower bound on  for OLS al-
gorithm’s correct recovery, and show that it is proportional
to the number of targets  and logarithmically proportional
to the array aperture. This provides specific insight into links
between random arrays and CS algorithms, and demonstrates
that a high resolution can be obtained with a relatively low
number of randomly placed sensors.

The following notations are used. The boldface denotes
matrices (uppercase) and vectors (lowercase); (·)∗ denotes
the complex conjugate operator, (·) denotes the transpose
operator, (·) is the complex conjugate-transpose operator,
and (·)† is the pseudo-inverse. The symbol “⊗” denotes the
Kronecker product. Finally, given a set  of indices, ||
denotes its cardinality, A is the sub-matrix obtained by
considering only the columns indexed in , and we define
the projection matrix Π⊥A

, I−AA
†
 .

II. PROBLEM FORMULATION

We model a MIMO radar system where  sensors collect
the signals transmitted by  transmitters and returned from
 stationary targets. We assume that transmitters and receiv-
ers each form a (possibly overlapping) linear array of total
aperture  and , respectively: the -th transmitter is at
position  on the -axis, while -th receiver is at position
 (with  ∈ [0  ] ∀ and  ∈ [0 ] ∀). Targets are
assumed in the far-field, meaning that a target’s aspect angle

 is constant across the array. The purpose of the system is
to determine the DOA angles to the targets. The × matrix
representing the sampled received signal is

Y =
X

=1
b () c

 ()S+N (1)

where  is the -th target’s response, the  × 1 vector
b () =

1√
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accounts for the angular response between the -th tar-
get and each receiver sensor, the  × 1 vector c () =
1√


£
exp

¡
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
1
¢
     exp

¡
2 sin 



¢¤

accounts
for the angular response between the -th target and each
transmitter, and the  ×  matrix S contains the  samples
of the  signals transmitted by the MIMO radar. We assume
the  transmitted signals to be orthogonal (e.g., waveforms
coded by an orthogonal code). Finally, the  ×  matrix N
models the noise (assumed temporally and spatially white).

By vectorizing the outputs of all the receivers’ matched
filters (i.e., y , 


(S∗ ⊗ I) vec [Y]), we obtain

y = Ã (θ) x̃+ n (2)

where y is  × 1, x̃ = [1      ]
 ,

Ã (θ) = [c (1)⊗ b (1)      c ()⊗ b ()] and
n , 


(S∗ ⊗ I) vec [N]. To embed the DOA estimation

into a sparse localization framework, we discretize the
possible targets’ locations θ, obtaining a grid of  points©

ª

(with  À ). Defining the  ×  matrix
A = [a (1)     a ()] where a () , c () ⊗ b (), the
localization problem is expressed in the CS framework:

y = Ax+ n (3)

where the unknown ×1 vector x contains the targets location
and gains. Zero elements of x correspond to grid points
without a target. The problem (3) is sparse in the sense that the
support of x should have only  ¿  elements. Moreover,
we are interested in solutions that require a relatively small
number of transmitters and receivers. Lower bounds on the
number of array elements are discussed in the next section.

III. LOWER BOUNDS ON THE NUMBER OF SENSORS

The problem (3) is the sparse recovery of target directions
and gains from a single measurement vector (SMV) of sub-
Nyquist spatial samples. In this section, we establish a lower
bound on the number of random elements of a MIMO radar
system. The bound is customized to the OLS algorithm, and it
guarantees correct recovery with high probability. Throughout
this section, we make the simplifying assumptions that targets
are located on grid points, and measurements are noiseless.
Using standard CS arguments,  ≥ 2 is a necessary and
sufficient condition for the global solution to the non-convex
0 problem to recover the original  DOAs. Unfortunately,
solving the 0 problem requires an exhaustive search over all
-sparse vectors, at the cost of exponential complexity.

A suboptimal approach to reduce complexity is by greedy
search strategies, of which the OLS algorithm is one example.
The algorithm works by computing location and gain, one



target at a time. For example, given a target found at angle
1, the observations vector y is projected onto the null-
space of the steering vector a (1) via the projection matrix
Π⊥a(1). Similarly, the columns of the matrix A are projected
onto the null-space of a (1) and then renormalized. The
method proceeds to estimate iteratively each of the remaining
targets with the new residual and the new dictionary. For the
estimation of the first target to be successful, it is required that

max ∈
¯̄
ya

¡

¢¯̄

max∈
¯̄
ya

¡

¢¯̄  1 (4)

where  ,  = 1      are the directions associated
with the grid, and θ = {}=1 is the set of tar-
get locations. The numerator max ∈

¯̄
ya

¡

¢¯̄

is the
maximum response of the array beamformed at  for
grid points without targets. In phased array parlance, this
is the peak sidelobe. Noting that the noiseless snapshot
across the array is given by y =

P
=1 a (), cor-

rect estimation of the first target is guaranteed if the
peak sidelobe  max

³
||−

¯̄̄P
 6= a

 ()a ()
¯̄̄´
≤

max∈
¯̄
ya

¡

¢¯̄

.

The theory of MIMO radar with randomly positioned ele-
ments in the presence of a single target was developed in
[4]. The basic idea is to model the locations of the array
elements as random, entailing that sidelobes

¯̄
a (1)a

¡

¢¯̄

associated with a target at 1 and an array beamformed at
, with  6= 1, are also random variables. It is shown
that for a sufficiently large number of array elements  , a
sidelobe a (1)a

¡

¢

has a complex Gaussian distribution.
Sidelobes are, in effect, correlated values of a (1)a

¡

¢

viewed as a function of . It can be shown that for a MIMO
array, the number of independent sidelobes is approximately
 = 2 ( + ) , i.e., the number of sidelobes is pro-
portional to the array effective aperture (sum of the transmit
and receive apertures). The 3dB beamwidth of the MIMO
array is approximately  ( + ) rad. Since, (4) relates
to  targets, the random array MIMO radar theory for a
single target in [4] needs to be extended to multiple targets.
We are asking: what are the number of transmit and receive
elements required to control the peak sidelobe values when 

targets are present, i.e., characterize the statistical properties
of max ∈

¯̄̄P
=1 a

 ()a
¡

¢¯̄̄

parameterized by 

and  . Following the approach in [4], it can be shown that¯̄̄P
=1 a

 ()a
¡

¢¯̄̄

, for  ∈ θ, is Rayleigh distributed

with variance
³P

=1 ||2
´
 . From this, the statistics of

max ∈
¯̄̄P

=1 a
 ()a

¡

¢¯̄̄

can be determined. Turn-
ing now to the denominator of (4), if targets at  and  are
separated by at least one beamwidth (i.e., min 6= | −  | ≥
 ( + ) rad),

¯̄̄P
 6= a

 ()a ()
¯̄̄

is Rayleigh

distributed with variance
³P

 6= | |2
´
 , such that

max

³
||−

¯̄̄P
 6= a

 () a ()
¯̄̄´
≈ max ||. Fi-

nally, letting || = 1 ∀ and following a line similar to

[4], it can be shown that the number of MIMO radar elements
required to guarantee that the peak sidelobe condition (4) is
met with probability greater than 1−  is

 ≥  ln



(5)

Condition (4) (and consequently (5)) refers to the first step
of the OLS algorithm. Given a correct decision at that step
(say 1), the OLS algorithm projects the received vector and
the dictionary on the null-space of the steering vector a (1).
The new received vector is

P
=2 a (). New sidelobes¯̄̄P

=2 a
 ()a

¡

¢¯̄̄

, for  6= {}=2, are Rayleigh

distributed with a lower variance
³P

=2 ||2
´
 than

for the earlier case of  targets. Intuitively, we have re-
moved the interference to the other targets from the first
estimated target. Thus, as long as the new denominator
max∈

¯̄̄P
=2 a

 () a
¡

¢¯̄̄ ≈ max∈{2} ||,

the correct recovery of the next target imposes a looser bound,
i.e.,  ≥ ( − 1) ln 


, guaranteed by (5). In the next

section we detail the proposed algorithm enhancing the OLS
algorithm by employing global methods.

IV. PROBLEM SOLUTION

In this section, we detail the proposed algorithm, called
truncated BB, to address the sparse noisy recovery (3). In par-
ticular, assuming  is known, it follows a global optimization
approach to solve

min
x
ky −Axk22 s.t. kxk0 ≤  (6)

The algorithm builds a binary tree where each node is de-
scribed by a support  and a set ̄ of vacant indices, and
the tree eventually incorporates all the feasible sets of indices
(|| ≤ ). The algorithm iteratively explores the tree’s leaf
nodes (i.e., which have not been split already), until the
termination criterion is met. It then returns the support of
the minimal norm ky −Axk22 solution found so far, which
correspond to the estimated targets’ locations. Since, the first
 steps of the proposed algorithm results equivalent to the
OLS algorithm, the bound of Sec. III holds for the proposed
algorithm as well. The pseudocode of the algorithm is outlined
in the following table.

Computational Complexity

Given the  ×  matrix A, the complexity of the
algorithm is closely related to that of OLS, which re-
quires O () multiplications [17]. The truncated BB
algorithm with maximum iterations  has complex-
ity O ( []), which should be compared with
the exponential complexity exhaustive search which re-
quires O ¡2

¢
multiplications. By properly selecting

 we can efficiently trade between complexity and
performances, as investigated in the next section.

V. NUMERICAL RESULTS

In this section, we present numerical results that demon-
strate the potential of global methods for the target localization



Algorithm 1 - Truncated BB
Input: y, A,  and 

Output: Support ∗ of solution to (6)
1: Tag root node with  = ∅ and ̄ = {1     }
2: Set  = 0
3: while   

4: Among leaf nodes with ||   and max.
¯̄
 ∪ ̄

¯̄
select one having max. residual norm

°°Π⊥A
y
°°
2

5: Find a  ∈ argmax∈̄
kyΠ⊥Aak2Π⊥Aa2

6: Tag a child node with 1 =  ∪  and ̄1 = ̄ \ 
7: Tag the other with 2 =  and ̄2 = ̄ \ 
8: Set  =  + 1

9: end
10: Return ∗ ∈ argmin

°°Π⊥A
y
°°
2

problem. We assume that the receiver knows the number of
targets . The target complex response is selected to have
modulo 1 and random phase, uncorrelated between the tar-
gets. The MIMO radar transmits orthogonal spread spectrum
waveforms of length  = 10. The waveforms were chosen as
the first  rows of the  ×  Fourier matrix. Equal length
apertures were assumed for the transmit and receive arrays,
 =  = 50. To ensure the aperture length, elements
are placed at locations 0 and 50 of both the transmit and
receive arrays. The locations of the remaining sensors are
drawn uniformly at random. We implement target localization
using the truncated BB, and several CS techniques: OLS,
OMP [18], CSRecSP [19], AIHT [20] and JLZA [21]. In
addition, we compare the random array configuration with a
MIMO radar geometry which result in a “virtual ULA”: the
receive elements are 2-spaced, while the transmit elements
are 2-spaced. In the figures, two setting are considered:
one (labeled “ULA”) with the same number of tx/rx sensors
of the random array, but smaller aperture, and one (labeled
“Nyquist ULA”) with the same virtual array aperture of the
random array, but many more sensors (5 tx and 21 rx). For
both the “virtual ULA” cases, we include results obtained with
the grid-free ESPRIT algorithm [22], where spatial smoothing
[23] is employed in order to obtain a covariance matrix of
rank . In each figure, we perform 10000 Monte Carlo
realizations varying the target’s responses ( = exp (−)
with  ∼ U (0 2) ∀), the noise (vec (N) ∼ CN ¡

0 2I
¢

with 2 = 10−3) and the random array sensors’ position.
Moreover, since targets’ locations are fixed, we linearly spaced
grid-points between −80◦ +  and 80◦ + , where  ∼
U (−80 80) is randomized throughout the Monte Carlo
realizations. The choice of  is related to the random array
resolution (' 06◦): we place 4 grid-points per lobe, i.e.,
 = 4 · 16006 ' 1001. The same grid is used for all
the recovery methods. As a measure of estimation accuracy,
for each realization, we collect the largest modulo of the tar-
gets’ estimation error, i.e.,

°°°θ̂ − θ°°°
∞
, max

¯̄̄
̂ − 

¯̄̄
. We

then plot the complementary cumulative distribution function
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Fig. 1. CCDFs of the truncated BB algorithm with different termination
criteria.

(CCDF), defined as  () , Pr ( ≥ ) = 1−  (), where
 is the cumulative distribution function. The function  is the
probability of having an error greater then the abscissa, such
that a good technique shifts the CCDF towards the bottom-left
of the figure. This choice highlights both the resolution and
the probability of ambiguities (sidelobes) of each technique.

Fig. 1 plots the CCDFs of the recovery error for various
levels of truncation of the BB algorithm (100, 500, 1000, 1500
iterations), and compares it with the performance of several
CS techniques. The system settings are  =  = 5 and
 = 4 targets at θ = [−75◦−25◦ 25◦ 75◦]. It can be
seen how with only 100 iterations we obtain considerable
better performance then with the conventional CS methods.
Moreover, limiting the iterations to 1000, the error drops to
almost 5%, and it continues to diminish as the iterations are
increased to 1500.

Fig. 2, plots the CCDFs for the random array and the ULA
for various algorithms: truncated BB, OLS, as well as ESPRIT
in the two ULA setting. The system settings are  =  = 5,
 = 2 targets at θ = [−25◦ 25◦], and the BB algorithm
is terminated after 1000 iterations. It is observed that OLS
and ESPRIT perform poorly in the ULA scenario. This is
explained by the smaller aperture of the ULA (10) compared
to that of the random array (50). The BB algorithm achieves
high performance for both array geometries: it considerably
improves the performance of the ULA case, while, in the
random array scenario, by exploiting the system’s higher
resolution, it further improves performance maintaining the
probability of a localization error larger than 01◦ lower than
10−4. Moreover, the truncated BB is only slightly worse then
the ESPRIT in the Nyquist ULA system, enforcing the spatial
CS paradigm.

Finally, in Fig. 3, we investigate performance as a function
of the number of transmit/receive elements of the MIMO radar.
It is observed that the localization error decreases with the
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Fig. 2. CCDFs for random array and ULA with the truncated BB, OLS,
JLZA, and ESPRIT algorithms.
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Fig. 3. CCDFs for the truncated BB algorithm parametrized by the number
of transmit/receive elements.

increase of the  product. According to (5), for  = 2

targets, a dictionary of  = 1001 atoms, and a probability of
error smaller than of 10−3, the number of elements required
should meet  ≥ 2 · ln ¡ 2


[ + ] 10

−3¢ ≈ 24.
This relation is corroborated by the figure, where with fewer
elements the error increases (e.g., the localization error has
probability of 10−1 with  = 10), whereas the probability
of error decreases with a larger number of elements (e.g., the
localization error has probability 10−4 with  = 25).

VI. CONCLUSIONS

We address the source localization problem in MIMO radar
by using a sparse representation framework. We develop a
global method algorithm for the sparse recovery problem and

we derive an explicit lower bound on the number of random
array elements needed to achieve a target probability of correct
DOA estimation. The lower bound provides specific insight
into links between random arrays and CS algorithms, and
demonstrates that a high resolution can be obtained with a
relatively low number of randomly placed sensors.
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