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1. Proofs

1.1. Optimal bit allocation and relevant proofs

To prove Lemmas 1 and 2, we start with solving the op-
timization problem in (7) in the general setting.

Consider the following model for energy consumption of
a scalar quantizer

EpRq “
n
ÿ

i“1

22γRi , (1)

where γ ą 0 is some parameter corresponding to the par-
ticular quantization system.

Similarly, we model the distortion of such a quantizer as

DpRq “
n
ÿ

i“1

DipRiq “
n
ÿ

i“1

σi2
´2αRi , (2)

where α ą 0 is also a parameter of the system. We will also
assume that α ą γ.

For a given energy budgetE, the optimal bit allocation is
the solution to the following convex optimization problem:

min
Ri

DpRq

subject to EpRq ď E

Ri ě 0,@i.

(3)

Lemma 1. The optimal bit allocation is

Ri “

#

1
2pα`γq log2

´

σ2
i

η˚
α
γ

¯

if η˚ ă σ2
i
α
γ

0 if η˚ ě σ2
i
α
γ

, (4)

where η˚ is chosen such that

n
ÿ

i“1

max

˜

1,

ˆ

σ2
i

η˚
α

γ

˙

γ
α`γ

¸

“ E. (5)

Proof. The solution of the optimization problem is given
using the common ”reverse water-filling” approach. Con-
sider the Lagrangian

LpR,λ, ηq “ DpRq ´ λTR` ηpEpRq ´ Eq. (6)

From the KKT conditions we get

Ri ě 0, EpRq “ E, λ˚i ě 0, λ˚i Ri “ 0, (7)

´ σ2
i 2α2

´2αRi ´ λ˚i ` η
˚2γ22γRi “ 0. (8)

We can get rid of λ˚i since they are slack variables

Ri ě 0, EpRq “ E, λ˚i ě 0, (9)

Ri
`

η˚γ22γRi ´ σ2
i α2

´2αRi
˘

“ 0, (10)

η˚ ě σ2
i

α

γ
2´2Ripα`γq. (11)

Thus, if η˚ ă σ2
i
α
γ then Ri ą 0 from (11), and from (10)

we have that (11) is an equality. If η˚ ě σ2
i
α
γ we getRi “ 0

and so we have (4). (5) follows directly from the constraint
EpRq “ E.

Note that when η˚ ă 1
n2

α
γ we get that Ri ą 0 for all i.

The following is a simple corollary.

Lemma 2. If E ą
α`γ
α´γ pn ` 1q then the distortion of the

i-th element is

Di “ σ
2γ
α`γ

i

˜

n
ÿ

j“1

σ
2γ
α`γ

j

¸
α
γ

E´
α
γ , (12)

and the total distortion of the quantizer is

DdirectpEq “

˜

n
ÿ

i“1

σ
2γ
α`γ

i

¸

α`γ
γ

E´
α
γ . (13)
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1.2. Proof of Lemmas 1 and 2

Lemma 1 follows directly from (4) when all σi are equal
and γ “ 0.5.

Lemma 2 follows directly from Lemma 2 by choosing
γ “ 0.5.

1.3. Proof of Corollary 1

Using Theorem 1, it is enough to show

k

ˆ

E

k

˙´2α

ă
km

m´ k ´ 1

k

m

ˆ

E

m

˙´2α

ðñ (14)

k2α ă
k

m´ k ´ 1
m2α, (15)

which is true for α ą 0.5 and m ą k ` 1.

1.4. Proof of Corollary 2

In order to show

k

ˆ

E ´ 2n

k

˙´2α

ă
k2

m´ k ´ 1

ˆ

E

m

˙´2α

, (16)

we first note that when E ą 10n,
`

E´2n
k

˘´2α
ă

`

0.8Ek
˘´2α

, so it’s enough to show

ˆ

0.8
E

k

˙´2α

ă
k

m

ˆ

E

m

˙´2α

ă
k

m´ k ´ 1

ˆ

E

m

˙´2α

(17)

1 ă
´m

k

¯2α´1

0.82α, (18)

which is true when m ą 2k and α ě 0.85.

1.5. Proof of Corollary 3

We start with providing a lower bound for
mmserandompEq. As stated, we’re interested in the
function

Gpx, zq “ 1´
F px, zq

4xz
, (19)

where function F px, zq is defined in [4] as

F px, zq “

ˆ

b

xp1`
?
zq2 ` 1´

b

xp1´
?
zq2 ` 1

˙2

,

(20)
with z “ β´1 “ n{m and

x “ pnσwq
´2 “

1

m

1
ř

σ2
i

ˆ

E

m

˙2α

(21)

in our case. We first note that for z ą 0, B
BzGpx, zq ą 0,

hence we can assume that z “ 1 and so

Gpx, zq “ 1´
4x` 2´ 2

?
4x` 1

4x
. (22)

On the other hand we note that under the conditions of
Lemma 2 we can use the integral bound to get

DdirectpEq ă c1pn` 1q
α´γ
γ E´

α
γ , (23)

where c1 “
´

α`γ
α´γ

¯

α`γ
γ

. Thus, it is enough to show

c1pn` 1q
α´γ
γ E´

α
γ ă

1

n

ˆ

1´
4x` 2´ 2

?
4x` 1

4x

˙

.

(24)

Since in our model γ “ 0.5 we plug it into the above and
get

4c1
ř

σ2
i

pn` 1q2α´1

m2α
` 2 ă 2

?
4x` 1 (25)

ˆ

4c1
ř

σ2
i

pn` 1q2α´1

m2α

˙2

` 4

ˆ

4c1
ř

σ2
i

pn` 1q2α´1

m2α

˙

` 4

ă 16x` 4 (26)
ˆ

c1
ř

σ2
i

pn` 1q2α´1

m2α

˙2

`

ˆ

c1
ř

σ2
i

pn` 1q2α´1

m2α

˙

ă
1

m

1
ř

σ2
i

ˆ

E

m

˙2α

(27)

c21
ř

σ2
i

m´2α`1pn` 1q4α´2 ` c1mpn` 1q2α´1

ă E2α (28)

c21β
´2α`1

ř

σ2
i

n´2α`1pn` 1q4α´2 ` c1βnpn` 1q2α´1

ă E2α. (29)

Note that for n ą 10 and α ě 0.85 there’s a constant
c2 ă 1.01 such that the above holds when

E ą

ˆ

c2c
2
1β
´2α`1

pn` 1q
ř

σ2
i

` c1β

˙

1
2α

pn` 1q, (30)

and the result follows immediately.

2. ADC distortion
In this section we show simulation results to motivate

our ADC distortion model

DpRq “ cσ22´2αR. (31)

We show empirically that for α « 0.85, this function
approximates optimal (according to [2]) uniform quantiza-
tion of Gaussian and Laplacian signals in the bit rate range
0´ 15, which covers most ADC implementations [3].
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Figure 1. SNR of fixed rate uniform quantization of a Gaussian
with unit variance, where the support of the quantizer was chosen
according to [2], compared with our distortion model (2´2αR) and
the distortion model used in [1].

In Fig. 1 we plot our distortion model, the model c2´2R

used by Goyal et al. in [1], and simulation results were the
samples were quantized uniformly with supports (i.e. left
and right quantizer bounds) calculated according to [2].

Note that no choice of constant c in the distortion model
c2´2R would correctly model the simulation results, since
the slopes of the model and the simulation SNR are differ-
ent. We believe our model approximates the simulations
closely enough in the bit rate range of interest.
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