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1. Proofs
1.1. Optimal bit allocation and relevant proofs

To prove Lemmas | and 2, we start with solving the op-
timization problem in (7) in the general setting.

Consider the following model for energy consumption of
a scalar quantizer

E(R) = ) 2*7%, 1)
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where v > (0 is some parameter corresponding to the par-
ticular quantization system.
Similarly, we model the distortion of such a quantizer as
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where o > 0 is also a parameter of the system. We will also
assume that o > .

For a given energy budget E, the optimal bit allocation is
the solution to the following convex optimization problem:

min D(R)
subjectto E(R) < E 3)
R; > 0,Vi.

Lemma 1. The optimal bit allocation is
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where n* is chosen such that
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Proof. The solution of the optimization problem is given
using the common “reverse water-filling” approach. Con-
sider the Lagrangian

L(R. A7) = D(R) - A"R + n(E(R) — E). (6)
From the KKT conditions we get
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We can get rid of A} since they are slack variables

R;>0, ER)=E, X >0, ©
R; (n*’yZz'YR’ — U?&Q‘QO‘Ri) =0, (10)
n* > 0_2'2%272Ri(a+'y). (11)

Thus, if n* < af% then R; > 0 from (11), and from (10)
we have that (11) is an equality. If n* > af% weget R; =0
and so we have (4). (5) follows directly from the constraint
E(R)=FE. O

Note that when n* < 7712% we get that R; > 0 for all 1.
The following is a simple corollary.

Lemma 2. If E > g—j(n + 1) then the distortion of the
i-th element is
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and the total distortion of the quantizer is
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1.2. Proof of Lemmas 1 and 2

Lemma 1 follows directly from (4) when all o; are equal
and v = 0.5.

Lemma 2 follows directly from Lemma 2 by choosing
v = 0.5.

1.3. Proof of Corollary 1

Using Theorem 1, it is enough to show
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which is true for & > 0.5and m > k + 1.

1.4. Proof of Corollary 2

In order to show
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we first note that when F > 10n, <
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which is true when m > 2k and o > 0.85.

1.5. Proof of Corollary 3

We start with providing a lower bound for
mmseandom (E).  As stated, we’re interested in the
function
F(z,z)
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where function F'(z, z) is defined in [4] as

F(x,z) = (\/x(l—&—\/g)z+1—\/x(1—\/2)2+1>2,
(20)
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in our case. We first note that for z > 0, %G(w, z) > 0,
hence we can assume that z = 1 and so
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with z = 7 = n/m and
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On the other hand we note that under the conditions of
Lemma 2 we can use the integral bound to get

Ddirect(E) < c1(n+ 1) 5 E~7, (23)
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Since in our model v = 0.5 we plug it into the above and
get
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Note that for n > 10 and o« > 0.85 there’s a constant
co < 1.01 such that the above holds when
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and the result follows immediately.
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2. ADC distortion

In this section we show simulation results to motivate
our ADC distortion model

D(R) = co?27 2R, (31)

We show empirically that for o ~ 0.85, this function
approximates optimal (according to [2]) uniform quantiza-
tion of Gaussian and Laplacian signals in the bit rate range
0 — 15, which covers most ADC implementations [3].
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Figure 1. SNR of fixed rate uniform quantization of a Gaussian
with unit variance, where the support of the quantizer was chosen
according to [2], compared with our distortion model (2’2°“R) and
the distortion model used in [1].

In Fig. 1 we plot our distortion model, the model c2~2%
used by Goyal et al. in [1], and simulation results were the
samples were quantized uniformly with supports (i.e. left
and right quantizer bounds) calculated according to [2].

Note that no choice of constant ¢ in the distortion model
2728 would correctly model the simulation results, since
the slopes of the model and the simulation SNR are differ-
ent. We believe our model approximates the simulations
closely enough in the bit rate range of interest.
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