
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

Tolerant compressed sensing with
partially coherent sensing matrices

Tobias  Birnbaum, Yonina C. Eldar, Deanna  Needell

Tobias  Birnbaum, Yonina C. Eldar, Deanna  Needell, "Tolerant compressed
sensing with partially coherent sensing matrices," Proc. SPIE 10394,
Wavelets and Sparsity XVII, 1039416 (24 August 2017); doi:
10.1117/12.2271594

Event: SPIE Optical Engineering + Applications, 2017, San Diego, California,
United States

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/21/2019  Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Tolerant Compressed Sensing With Partially Coherent
Sensing Matrices

Tobias Birnbaum†, Yonina C. Eldar‡, Deanna Needell§

ABSTRACT

Most of compressed sensing (CS) theory to date is focused on incoherent sensing, that is, columns from the
sensing matrix are highly uncorrelated. However, sensing systems with naturally occurring correlations arise
in many applications, such as signal detection, motion detection and radar. Moreover, in these applications it
is often not necessary to know the support of the signal exactly, but instead small errors in the support and
signal are tolerable. Despite the abundance of work utilizing incoherent sensing matrices, for this type of tolerant
recovery we suggest that coherence is actually bene�cial . We promote the use of coherent sampling when tolerant
support recovery is acceptable, and demonstrate its advantages empirically. In addition, we provide a �rst step
towards theoretical analysis by considering a speci�c reconstruction method for selected signal classes.

Keywords: coherence, coherent sensing, compressed sensing, d-coherence, d-tolerant recovery, orthogonal
matching pursuit (OMP), redundant sensing matrix, signal detection.

1. INTRODUCTION

Compressed sensing (CS) deals with sampling and recovery of sparse signals.1�3 By using the sparsity structure,
recovery is possible from far fewer measurements than the signal length. Initial results (e.g.4,5) showed that it
is possible to approximate the NP-hard `0 minimization with optimization problems that have only polynomial
complexity, such as `1 minimization or orthogonal matching pursuit (OMP).6

Although most classical results are in terms of `2 or exact support error, we focus here on the notion of
d-tolerant recovery, motivated by applications such as geophysics and radar.3,7 By d-tolerant recovery, we mean
signal (or support) recovery in which one tolerates errors in signal spike locations of up to d indices. In other
words, the position of every non-zero in the reconstructed support can di�er up to d indices from the original
support. In these applications just mentioned, for example, since the scene is typically discretized along a �ne
grid, one often does not need precise target/event location but rather can tolerate a small amount of spatial
error.

We demonstrate that we can increase noise robustness by using d-tolerant recovery and special types of
partially coherent matrices. This is in contrast to the majority of results in CS where incoherent sensing matrices
are highly desirable - e.g.1,2, 5, 8�10 The use of partially coherent sensing matrices provides a new avenue to
pursue for applications where such matrices arise naturally and/or where small errors are acceptable. Typical
applications are reconstructions of multi-band signals,11 unions of subspaces,12 signal/image processing such as
super-resolution13 or face recognition algorithms.15
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Contribution. Our goal is to introduce the notion of d-tolerant recovery and demonstrate that partially
coherent matrices are bene�cial in this context. We view our main contribution as two-fold: (i) we demonstrate
that if an application requires the use of coherent sampling, then d-tolerant recovery is still possible, and moreover
(ii) that if the desired outcome is actually a tolerant recovery, then one actually should use coherent sampling.
To our best knowledge, these phenomena have not been adequately observed, explored or studied, except for
preliminary work in the thesis of Bar-Ilan,29 which is the motivation of our work here. We demonstrate these ideas
through empirical results and also establish a foundation for theoretical guarantees under speci�c (non-optimal)
assumptions.

Organization. The structure of the paper is as follows: In Section 2 we motivate d-tolerant recovery
and point out links to related work. Section 3 provides a problem formulation and de�nitions necessary to
capture d-tolerant theory. We present numerical simulation results comparing incoherent and partially coherent
sensing matrices in Section 4. In Section 5 we provide initial analytical justi�cation for our observations under
the assumption of su�ciently spread signal support using a variant of OMP.6 The work is concluded with a
summary and outlook in Section 6.

Notation. For a positive integer N we write [N ] to denote the set {1, 2, . . . , N}. The norms ‖·‖p , p ∈ [1,∞]
refer to the vector norms in `p or the induced matrix norms. The number of non-zeros of a vector is denoted
as |·|0. Lower case Greek letters name the columns of the respective matrix. The Nth order Fourier matrix
is denoted as FN . An S-sparse signal x ∈ CN has exactly S non-zeros. The reconstruction of x from linear
measurements y ∈ CM is termed x̃ ∈ CN . We set Σ := supp (x), Γ := supp (x̃) and always have 0 < S ≤M � N .

2. MOTIVATION

2.1 d-tolerant recovery

We consider a d-tolerant recovery of an unknown signal x from measurements y given by the linear sensing model

y = Φx+ e, (1)

with sensing matrix Φ ∈ CM×N and measurement noise e ∈ CM . We assume that the vector x is S-sparse,
namely, |x|0 = S. We postpone until Section 3 a formal de�nition of this tolerance, but informally we mean
recovery which tolerates errors in the support set of up to d indices. This aligns with applications in which
the signal spikes refer to e.g. spatial locations, and one tolerates identi�ed locations within d units of actual
locations. Speci�cally, we seek a d-tolerant recovery of x with 0 < d, 0 < S ≤ M � N . For simplicity and to
preserve the clarity of illustration we focus on d-tolerant recovery for the well known example of Fourier sensing
matrices, although extensions to other settings are straightforward. Below, we construct several sensing matrices
and investigate their performance in d-tolerant recovery.

Before proposing our coherent sampling approach and showing our results, we �rst mention some simple
alternatives to tolerant recovery, along with their models. We will use these models for testing purposes in later
sections. Note that d-tolerant recovery aims to recover spike locations up to a spatial tolerance of d indices. A
related but simpler viewpoint would group the coe�cients of the signal into bins, each of size d, and hope to
identify which bins contain spikes. Therefore, the most basic model for tolerant recovery would be to use an
appropriate subsampled sensing matrix. This can be done in several ways, which we outline here. In all cases
we aim for a measurement vector y ∈ CM . To be concrete, to downsample a vector x ∈ CN to one in CM , we
apply a downsampling matrix whose rows consist of single blocks of N/M 1s (and the rest zero). To upsample
we simply pad the signal with zeros such that each entry of a downsampled block is mapped to the center of
that block. We refer to these operations by D and U , respectively. We denote by e a noise vector of appropriate
dimension.

• Subsampling on coarse grid: Consider an dN/de × dN/de DFT matrix FN/d. Create the subsampled
matrix obtained from FN/d by subsampling M rows (as in any fashion described above). Reconstruct a
vector x of length dN/de using a classical CS reconstruction method.

For naive comparisons, we also consider two other scenarios.
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• Downsample then sense (DS): In this case we consider �rst downsampling the signal x ∈ CN to obtain
a signal xM ∈ CM . Then we measure y = FMxM + e. To reconstruct, we simply apply F−1

M to the
measurements y and then upsample the result to obtain a reconstruction of x, x̂ = U(F−1

M y).

• Sense then downsample (SD): Here we �rst apply FN to the signal x ∈ CN and then downsample the
result to obtain y = D(FNx) + e. To reconstrsuct we �rst upsample the measurements and then apply the
inverse: x̂ = F−1

N (Uy).

We will see later that in most cases, when tolerant recovery is the goal, coherent sampling with our approach
outperforms these simple methods. Of course, in other cases, the application may necessitate the need for
coherent sampling, in which case our results show that tolerant recovery is still possible. Before formulating the
details of tolerant recovery, we �rst review some related work.

2.2 Related work

Partially coherent sensing matrices have been studied previously in CS. However, existing work has focused on
exact support recovery despite coherence within the sensing matrix. Here, instead, we show that coherence is
actually a resource when we allow for d-tolerant recovery.

The literature on OMP related methods using partially coherent sensing matrices can be summarized as
follows. In16 multiple extensions to existing algorithms were formulated. The authors proved and showed
numerically that by introducing a band-exclusion method they were able to recover signals in a speci�c sense.
Each non-zero of the original signal has a counterpart in the reconstruction, which is however allowed to be
located anywhere. Thus the "tolerance" would be d = N − 1. Further, a condition related to the ERC6 is
required, and the signals are assumed to have support which is spread enough so that coherent columns do not
appear in the support indices. The work17 also considers spread signals, seeking accurate signal recovery and
attempting to overcome coherence in the sampling matrix.

In,18 useful concepts such as the distinction between block coherence and sub coherence were developed and
applied to the recovery of block-sparse signals using the block OMP (BOMP) algorithm. Correlations were
allowed across blocks, but each block itself must be incoherent. The results were re�ned in a generic manner
yielding a block RIP in.20 The work in22 extended this framework to noiseless recovery from partially coherent
sensing matrices with a static prede�ned column-block structure, using a block RIP as a necessary requirement.
This was done still with the focus on accurate recovery of block sparse signals when the block structure is known
a priori.

Along a di�erent line of work,21 shows that mild coherence in the sensing matrix can be allowed when the
signal is modeled as random. In this case, accurate recovery is still possible when the coherence scales like
1/ log(N). Here again, in this setting the goal is exact recovery and the coherence is something that needs to be
overcome, not something that aids in recovery.

Some results on exact recovery with dictionary sparsity models (y = ΦDx) were derived in.23,25 The proposed
D-RIP condition was de�ned for the `1-analysis problem. This condition allows for coherence within the dictio-
nary, D, but only Dx is the target of the reconstruction; the sensing matrix Φ is still required to be incoherent.
The same is true for the `1-synthesis problem which was treated in24 via ε-OMP. The presented theoretical
results are based on the ε-coherence between the sensing matrix Φ and the partially coherent dictionary D. A
recent surge of work has studied the area of dictionary sparsity models,13,25�28 all still requiring incoherence of
the sensing matrix.

Related to these results but fundamentally di�erent, is the super-resolution problem. In this problem, one only
has information about a signal in its low frequency band, and wishes to obtain a higher resolution reconstruction
from that data. This can be modeled as a CS problem where the sensing matrix is highly coherent and the signal
has a spread out support. Recent work on this problem has shown that several optimization based or greedy
methods are successful in accurately recovering these types of signals.13,14,19 Although later we will also consider
spread signals, these works are fundamentally di�erent than ours since their goal is exact reconstruction that
overcomes the coherent sensing, whereas we are promoting the advantages of coherence sampling when tolerant
detection is the goal.
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To our best knowledge, the �rst observation that coherence in the sensing matrix is not only tolerated but
even bene�cial for tolerant recovery appeared in the thesis of Bar-Ilan.29

3. PROBLEM FORMULATION AND DEFINITIONS

In general, a d-tolerant recovery will be called successful if every non-zero of the S-sparse signal x has a non-zero
within the recovery x̃ that is not further than d indices apart. The success can be measured by the (relative)
d-tolerant support recovery error. We de�ne the d-closure of a column index i as

closd ({i}) := {max {i− d, 1} , . . . ,min {i+ d,N}} . (2)

The (relative) d-tolerant support recovery error measure is de�ned as

ρd (x̃, x) :=

∑
i∈Σ 1

{(∑
j∈closd(Γ) δi,j

)
> 0
}

S
, (3)

with the indicator function 1, S := |x|0, the Kronecker delta δi,j , d-closure of the set Γ, closd (Γ) :=
⋃

i∈Γ closd ({i}),
and other notation de�ned in the notation section above.

For block sparse signals, which have their non-zeros cumulated in blocks, this usually means that multiple
non-zeros are combined to form a single representative for at most (2d+ 1) non-zeros of a block.

The maximal number of non-zeros that can be resolved in a d-tolerant recovery within a signal of length N
is given as:

Smax =

⌊
N − 1

2d+ 1

⌋
+ 1 . (4)

This is clear from assuming the most advantageous distribution of non-zeros/disjoint d-closures. This distribution
has a non-zero in the �rst and the Nth element whereas the other non-zeros are equally spaced with distance
2d+ 1.

3.1 d-coherence

We base a �rst analysis of d-tolerant recovery on the notion of coherence. This measure is computationally
tractable and a proxy for other measures such as the restricted isometry/orthogonality property.30 Furthermore,
as opposed to the latter, matrices with a speci�c coherence structure can be easily crafted.

The linear sensing model, (1), connects the allowed discrepancy in the indices of the recovered non-zeros to
the correlation of matrix columns with respect to their index distance.

The correlation of any two columns φi, φj of a matrix Φ can be expressed as:

µ(i, j) := µ(φi, φj) =

∣∣〈φi, φj〉2∣∣
‖φi‖2 ‖φj‖2

. (5)

The overall maximum correlation of matrix columns is captured by the coherence of a matrix.

Definition 1. The coherence of a matrix Φ is de�ned as

µ(Φ) := max
i 6=j

µ(φi, φj) . (6)

The Welch bound, µ(Φ) ≥ µWelch(Φ) :=
√

N−M
M(N−1) , is the lowest possible coherence for a `2-column normal-

ized matrix Φ ∈ CM×N , see Theorem 5.7 in.2 For the Fourier matrix µWelch is obtained through row selection
from a cyclic di�erence set.31 If µ(Φ) is close to the Welch bound, we call Φ incoherent.

To analyze d-tolerant recovery, we extend the notion of coherence to be made dependent on the column index
distance.
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Figure 1. The advantageous fast decrease of column correlations, µ(i, i + d), of the �rst and (1+d)th column for Ψ
(dashed, black) and Ξ (dash-dotted, orange) highlights the suitability of those matrices for d-tolerant recovery which is
based on µd (solid, gray; envelope). The matrices are de�ned in Section III and were instantiated with M = 24, N = 128.
The coherence µ(Ψ) (dotted, red) and Welch bound µ(Ψ) (solid blue) are given as references towards classical CS and the
least coherence possible for a matrix of these dimensions. Symmetric boundary conditions apply for omitted columns.

Definition 2. De�ne the set of d-spread coe�cients (with wrapping) as

Γd := {(i, j) ∈ [N ]2 : |i− j| > d, |i− j −N | > d, |i− j +N | > d}.

Then the d-coherence of a matrix Φ is de�ned as

µd(Φ) := max
(i,j)∈Γd

µ(φi, φj) . (7)

If µd(Φ) is close to the Welch bound¶ for a certain d, we call Φ d-incoherent.

For d = 0 the de�nition of µd(Φ) coincides with that of the coherence. As d increases µd(Φ) decreases
monotonically. Indeed, suppose f < d. Then

µd(Φ) = max
(i,j)∈Γd

µ(φi, φj) < max
(i,j)∈Γf

µ(φi, φj) = µf (Φ),

where the inequality holds because every d separated set is also f separated, i.e. |Γd| < |Γf | with cardinality |·|.
With d-coherence we can ensure that large column correlations are con�ned to column indices in the d-closure

of the reference column. This leads to two key aspects for any successful d-tolerant recovery:

1. A large d′-coherence for all d′ < d increases noise stability by increasing the number of "distorted copies"
of any reference column.

2. A minimal d̃-coherence for all d̃ > d ensures reconstruction of any support elements of mutually disjoint
d-closures.

To provide explicit examples, we consider two matrices, Ξ and Ψ, de�ned as follows. Let Ψ ∈ CM×N be the
sensing matrix that equals FN restricted to the �rst M rows, and let Ξ ∈ CM×N be the sensing matrix that
equals FM in�ated by (2d + 1); in other words, every column of FM is copied 2d times to form a consecutive
block of (2d + 1) columns in Ξ. In Fig. 1 direct column correlations µ(1, 1 + f) of the �rst with the (1 + f)th

¶Of course, by e�ectively removing columns from the calculation of coherence, we expect the Welch bound to be slightly
weaker. Since we typically consider d to be much smaller than the other parameters, we leave it as-is for simplicity.
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column are shown for Ψ (dashed, black) and Ξ (dash-dotted, orange). Note, only half of the range is shown, as
the other half is mirrored. Since both Ψ and Ξ are directly derived from the Fourier matrix, they inherit the
invariance property of the column correlations with shifting reference index j,

∀j ∈ [N ] : ∀f ∈ N0 such that µ(1, 1 + f) = µ(j, j + f) . (8)

Thus the shown correlation pattern is exemplary for any column index. For Ξ this is only true for every (2d+1)th
column.

If Ξ is constructed with a �xed (2d+1) = 3 in�ation, we observe 3 columns with µ(1, 1+f) = 1. Those are the
�rst column and its copies. For all columns further away µ(1, 1+f) = 0 due to the orthogonality of the columns in
FM . Since it is at least for every (2d+1) = nth column µ(n, n+d) = µd(Ξ) for this matrix construction, we have
maximal d > d′-coherence and minimal d < d̃-incoherence. To incorporate noise robustness, large d′-coherences
that are still unequal to 1 are preferable. The greater the deviation from 1, the larger the noise tolerance. This
statement is however limited. Allowing for too much noise compensation would allow a d-tolerant reconstruction
to completely fail. Experimentally it was found that for OMP a d-coherence larger than 0.75 is bene�cial.

Due to row restrictions from FN as one continuous block in the case of Ψ, we see that large column correlations
are possible that are not equal to 1. Since the coherence µ(Ψ) (dotted, red) is large, from the perspective of
conventional CS theory this matrix seems not to be suited for reconstruction. Matrices used in CS are usually
required to have a coherence that is close to the Welch bound, µWelch(Ψ) (solid, blue). We can see however that
although correlations of neighboring columns in Ψ are large, the level of correlation rapidly drops with increasing
distance between the regarded columns. This means the matrix is only partially coherent and well suited for
d-tolerant recovery. For d > 8 (for M = 24, N = 128) it is even µd(Ψ) < µWelch(Ψ) motivating the hope that if
existing incoherent theory could be adapted to d-incoherent theory in a similar way, then it would be possible
to get an even better performance in d-tolerant recovery than the incoherent theory would allow for a perfectly
incoherent sensing matrix. This behavior is well captured by the d-coherence (solid, gray). So more speci�cally
Ψ is d̃-incoherent with d̃ > 8 and could be considered d′-coherent for d′ ≤ 3.

Qualitatively this means that in theory, noise robust reconstruction of S-sparse signals with small dynamic
range, up to an SNR of 0.87 (equal to 0.45 of linear independence) with d = 3 and S = Smax = 18 from M = 24
measurements would be possible. In numerical experiments based on OMP and complex valued signals with
arbitrary range, this translates into a 3-tolerant recovery of 6 more non-zeros on average by using the coherent
matrix Ψ instead of an incoherent matrix (random row restricted submatrix of FN of size M ×N). To recover
at least the same amount of non-zeros with incoherent matrices as with partially coherent matrices and d = 3,
the tolerance would have to be increased to d ≥ 8. This is true for any SNR in the range of [0,∞].

3.2 Additional de�nitions

In this section we introduce a collection of other important concepts that help characterizing the d-tolerant
recovery setup. We begin with generalizing the concept of the aforementioned column correlation invariance,
(8), of Fourier submatrices obtained by row selection. The distribution of highly correlated columns within Φ
can be characterized in terms of matrix coherence functions.

Definition 3. The set of matrix coherence functions
{
µ(j)

}
j∈[N ]

of a matrix Φ ∈ CM×N is de�ned through

µ(j) := (µ (φj , φ1) , . . . , µ (φj , φN )) . (9)

With the help of the matrix coherence functions, two fundamentally di�erent types of partially coherent
matrices can be distinguished.

Definition 4. A set of matrix coherence functions is called dynamic, if the correlation of any column with
the reference column depends only on the di�erence of the column indices. Otherwise a set of matrix coherence
functions is called static. The choice of the terminology static and dynamic is motivated by the simple cases (i)
when all neighboring columns are highly correlated the coherence functions can be viewed via the gram matrix
Φ∗Φ and appear as a sliding gradient (dynamic), e.g. Φ ≡ Ψ, whereas (ii) when the matrix contains blocks of
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correlated columns and columns in di�erent blocks are uncorrelated, the gram matrix consists of a rigid series
of blocks (static), e.g. Φ ≡ Ξ.

A similar d-tolerant extension as was made to the coherence can be made to the cumulative coherence (also
known as `1-coherence or the Babel function). It will be used in the proof of Theorem 9. The cumulative
d-coherence is one way to quantify the correlations of any given element with a consecutive, disjoint block of
length at most 2d+ 1.

Definition 5. For Φ ∈ CM×N , we de�ne its cumulative d-coherence µC
d (Φ, k) with test-set cardinality k as:

µC
d (Φ, k) := max

Γ⊂[N ]
|Γ|=k

max
i/∈closd(Γ)

∑
j∈Γ

∣∣〈φi, φj〉2∣∣
‖φi‖2 ‖φj‖2

. (10)

We write µC(Φ, k) := µC
0 (Φ, k) for the standard cumulative coherence.

It is easy to see that the cumulative d-coherence satis�es the following properties:

• µC
d (Φ, k) is monotonically decreasing as d increases. Indeed, we have for any f < d ∈ N0:

µC
d (Φ, k) ≤ µC

f (Φ, k) ≤ µC(Φ, k) . (11)

• µC
d (Φ, k) is monotonically increasing as k increases:

∀k < l ∈ N0 : µC
d (Φ, k) ≤ µC

d (Φ, l) . (12)

• The lower bound given in Theorem 5.8 of2 applies by replacing N by N̂ := max
{
M,
⌈
N
d

⌉}
. That is:

k ≤
√
N̂ − 1 =⇒ µC

d (Φ, k) ≥ k

√
N̂ −M
M(N̂ − 1)

. (13)

4. NUMERICAL SIMULATION RESULTS

In this section we demonstrate the advantage of coherence in d-tolerant recovery using numerical simulation
results. The main part of the results is based on the d-tolerant recovery measure, (3). Results shown in Fig. 6
and Fig. 7 were produced using MATLAB 2017a32 with the median of 100 iterations per data point. All other
results shown below are obtained via standard OMP with MATLAB 2015b32 using the RPECS Matlab toolbox
(version 1.1)33 and with the median of 500 iterations per data point. For each iteration just the signal and
the noise were re-initialized. The matrices were newly initialized for each set of parameters only. All generated
signals were complex valued. Their support was uniformly random distributed. The amplitudes of the real and
imaginary parts were selected i.i.d. for every non-zero, uniformly at random on [−50, 50]. The noise entries were
i.i.d. standard normally distributed and then rescaled to �t the desired signal-to-noise ratio (SNR). Note that
we do not force the signal to have spread support unless explicitly stated.

We consider several types of sensing matrices, given as:

F_consecBegin: The �rst M consecutive rows of FN . (Called Ψ in Section 3.1.)

F_consecutive: Any M consecutive rows of FN . The shift of the block was uniformly random distributed and
selected from [1, N −M ].

F_rand : M rows of FN were selected uniformly at random.

F_nXStatBlocks: Uses 5 blogNc blocks of consecutive columns from F_consecutive, constructed from F3N .

R_gauss: Gaussian random matrix.
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Figure 2. Consider the percentage of non-zeros recovered with respect to the d-tolerant recovery measure. Let X be
the percentage recovered with a partially coherent sensing matrix (F_consecutive) and Y the percentage recovered with
an incoherent sensing matrix (F_rand). The plot shows the ratio X/Y and as such the bene�t of coherent sensing for
varying tolerances d and amounts of noise. The number of measurements, M = 32, the sparsity, S = 16, and the signal
dimension, N , are �xed within each plot.

All matrices were `2-column normalized.

The incoherent matrices are F_rand and R_gauss, and the partially coherent matrices are F_consecBegin,
F_consecutive and F_nXStatBlocks. F_nXStatBlocks is an approximation to a matrix with static matrix
coherence function. The coherence across the column blocks will be low and thus the matrix will appear to have
almost rigid blocks of high coherence.

Shown in Fig. 2 are the ratios of the percentages of non-zeros that could be recovered, d-tolerant wise, with
a partially coherent sensing matrix (F_consecutive) over an incoherent sensing matrix (F_rand). The color bar
represents the ratio in recovery percentages; thus, when the color is greater than 100% we see improvements with
our method. The presented situations are heavily undersampled with the number of measurementsM = 32 �xed
and N = 1024 or N = 2048. In both plots, we see an optimal value for the tolerance d. More importantly, we
observe improvements from coherence (i.e. when the ratio percentage is above 100) for a broad range of values of
d, especially in the mild SNR regime. Only if d = 0 incoherent matrices perform like partially coherent sensing
matrices. Unsurprisingly, this means that for exact support recovery the incoherent sensing is similar or better
(for small undersampling factors N/M ≤ 4, see discussion of Fig. 4 below) in determining the position of every
non-zero.
Figure 3

shows the average number of d-tolerantly recovered non-zeros as a function of d, for various types of sensing
matrices, various noise levels, and only few measurements (N/M = 32). We consider N/M = 1024/32 in Fig. 3a
�rst. The partially coherent sensing matrices F_consecutive and F_consecBegin (with dynamic matrix coherence
functions) perform especially well. Most importantly, already with small values of d (≈ 5) much more non-zeros
can be reconstructed. If little noise is present (SNR ≤ 10db), for d = 9 the number of reconstructed non-zeros is
doubled for partially coherent versus incoherent sensing. Close to 100% recovery is reached for d > 16 in the low
noise setting. Figure 3b with N/M = 2048/64 shows what happens if both the signal dimension and the number
of measurements get scaled up. Due to the lower normalized sparsity S/M = 0.25 incoherent sensing matrices
are able to perform well for large SNR's (≥ 10db). As the amount of measurement noise increases the incoherent
matrices are however drastically impacted (31% instead of ≈ 100% for d = 0, SNR = 3.01db for both incoherent
matrices). The impact of noise on the coherent sensing matrices is much less severe especially for d ≥ 7. This
emphasizes that partially coherent sensing matrices can be employed very e�ectively at their optimal level of
incoherence for challenging signal detection situations. The percentage of d-tolerantly recovered non-zeros is in
general monotonic with increasing d amongst all the sensing matrices. Therefore, selecting a large value for d

Proc. of SPIE Vol. 10394  1039416-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 2/21/2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



c 100 F_consecutive

o
Ñ

F rand

o
0 8 16 24 32

tolerance d

FconsecBein F_n305tatBlocks

R_gauss
median
N =1024
M =32
S =16
d=[0 1 3 5 7 9 11

13 16 21 26 32]

-.-SNR=0.00 dB
SNR=3.01 dB
SNR=10.00 dB+ SNR=co dB

c 100 F consecutive

O
Ñ

0
0 8 16 24 32

tolerance d

F rand

F_consecBein F_n35StatBlocks

median
N =2048
M -64
5 =16
d= [01357911

13 16 21 26 32 ]

SNR=0.00 dB
SNR=3.01 dB
SNR=10.00 dB
SNR=m dB

o F consecutiveC 100 7,-
0ó

CN 50
O
C
a

0N
>
O

$ 100
a
O

# 50

F rand

0
0 256 512

measurements M

F consecBe in F n305tatBlocks

R_gáuss
median
N =1024
M =[32 64 96 128 256

512]
5 =16
d =13

SNR=0.00 dB
-.-SNR=3.01 dB
-.-SNR=10.00 dB

SNR=oo dB

(a) N/M = 1024/32 (b) N/M = 2048/64
Figure 3. The advantage of coherent (top) over incoherent sensing matrices (bottom) is illustrated in terms of percentages
of d-tolerant recovered non-zeros via OMP for an increasing tolerance d and several noise levels. The undersampling factor
is �xed at N/M = 32 and the sparsity is S = 16.

Figure 4. Even with an increasing number of measurements, the coherent (top) dominate the incoherent sensing matrices
with respect to the percentage of d-tolerant recovered non-zeros via OMP for various noise levels. The signal dimension,
the sparsity, and the tolerance are �xed at N = 1024, S = 16, and d = 13.

will not result in substantially worse recovery. This general rule coincides with intuition. For (almost) exact
support reconstruction (d ∈ {0, 1}) using coherence is irrelevant or even bad in the heavily under-sampled setting
throughout all SNR levels.
Figure 4

depicts the trends in d-tolerant support recovery for an increasing number of measurementsM whileN is �xed,
for various types of sensing matrices, and for various noise levels. Again F_consecutive and F_consecBegin per-
form especially well. Coherent sensing matrices make much better use of additional, possibly very distorted,
measurements, as soon as a certain tolerance (e.g. d = 13) in the signal support is allowed. For larger numbers
of measurements M ≥ 256 incoherent sensing matrices perform similarly well, independent of the SNR. This
again underlines that partially coherent sensing matrices are especially interesting for applications in which using
few measurements is key.

Since we will consider in Section 5 only signals that have their non-zeros never closer then (4d+1), we provide
results for those signals in Fig. 5, in analogy to Fig. 2.
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Figure 5. Extended regions with more then twice as many d-tolerant recovered non-zeros using coherent versus incoherent
sensing matrices are shown in the analogue of Fig. 2a for the special case of signals that have their non-zeros never closer
then (4d+ 1).

(a) N/M = 1024/64 (b) N/M = 2048/64
Figure 6. A comparison of the proposed DtOMP, Algorithm 1, with the other methods outlined in Section 2.1 reveals
that out of these options using the coherent sensing matrix, F_consecBegin (F_cB) with DtOMP, recovers the largest
percentage of non-zeros with a certain d-tolerance as soon as considerable noise is present (top) and/or the undersampling
ratio is increased drastically (bottom). F_rand (F_R) was the chosen representative for incoherent matrices.

Next, we compare the coherent sensing paradigm to the simple subsampling strategies described in Section
2.1. Unsurprisingly, the second two naive approaches described there yield very poor results and are not even
competitive. Figure 6 displays the results for the �Subsampling on coarse grid� approach; using the standard
OMP reconstruction method. The notation FR indicates the rows were subsampled at random, and FcB indicates
they were selected to be the �rst M consecutive rows. Since d is typically much smaller than N , both types of
sampling approaches are in some sense coherent, so it is not surprising that both are somewhat comparable. Our
design, however, maintains the signal on a �ner grid, which induces slightly more coherence, which is evident in
the improved reconstruction.

In this paper we have focused on greedy methods for simplicity of the analysis, but for completeness we
include some results using convex methods for reconstruction, Fig. 7. In particular, we compare the results using
the proposed DtOMP, Algorithm 1, against Basis Pursuit Denoising (using SPGL1). We see similar trends and
behavior in terms of the tolerant `2-error measure, Fig. 7a, but from the number of tolerant recovered non-zeros
its clear that actually often the greedy approach outperforms the convex method, Fig. 7b. The reason for this
behavior are multiple false positives in the case of the convex method. Note especially that the typical partially
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Figure 7. Convex methods such as SPGL1 BPDN are comparable to DtOMP in terms of tolerantly recovered intensity
but not in percentages of d-tolerant recovered non-zeros for large undersampling ratios of N/M = 32, irrespective of the
measurement noise and tolerance chosen.

coherent sensing matrix FcB has an advantage over the incoherent matrix FR when noise is present and tolerant
recovery is the objective. However, we emphasize once again that the OMP-based reconstruction method is likely
still not optimal, and that further study should be done to analyze reconstruction performance under this new
paradigm of bene�cial coherent sensing.

We close with a remark on the d-tolerant `2-norm error based recovery measure ρ2, introduced below. Finding
such a measure is not trivial but may be desired for classi�cation of the magnitude di�erences of reconstruction
and true signal. We choose a measure that requires knowledge about the true signal and is evaluated in two
steps: First, we create new proxy signals xp, x̃p via:

(xp)i =

{∑
j∈closd(i) |xj | , if i ∈ supp (x)

0, otherwise
(14a)

(x̃p)i =

{∑
j∈closd(i) |x̃j | , if i ∈ supp (x̃)

0, otherwise .
(14b)

For example, if x = (1, 0, 1, 0, 0, 1, 1, 0, 0) and d = 2, we have xp = (2, 0, 2, 0, 0, 2, 2, 0, 0). Note that we sum over
the same set of indices in both cases, which causes both proxy signals to share the same support. In a second
step we compute

ρ2(x̃p, xp) := 1−
‖x̃p − xp‖2
‖x̃p‖2 ‖xp‖2

. (15)

For that recovery measure we �nd incoherent sensing matrices are favorable for any SNR and M ∈ [64, 256),
i.e. a normalized sparsity smaller than S/M ≤ 0.25 and an undersampling factor larger than N/M ≥ 4. This
is depicted exemplary in Fig. 8 for S/M = 0.5 in Fig. 8a and S/M = 0.25 in Fig. 8b. For F_consecBegin and
F_nXStatBlocks we observe the same low impact of measurement noise and about 50% recovery as soon as the
tolerance is set su�ciently large, d ≥ 7. We notice F_consecBegin is slightly better than F_nXStatBlocks but
F_consecutive produces a much weaker and highly inconclusive result. This is due to the di�erent construction of
F_consecBegin and F_consecutive. Both share exactly the same coherence pattern (absolute value) but in gen-
eral only the former has a smoothly varying phase di�erence among the real and imaginary parts of the columns.
The latter experiences rapid phase shifts in real and imaginary part from column to column. Thus an approximate
d-tolerant reconstruction can have a quite di�erent magnitude even though reconstructed columns are largely
correlated to the true support. Nevertheless, the �ndings for F_consecBegin and F_nXStatBlocks stress that it
is not only possible to better reconstruct the approximate support but also the approximate magnitude by using
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Figure 8. Incoherent (bottom) can compete with coherent sensing matrices (top) in terms of the d-tolerant recovered
`2-norm only if the undersampling ratio is comparatively low, N/M = 16, and the measurement noise is low as well. For
harsher sensing conditions F_consecBegin usually gives the best performance as well.

coherent sensing matrices in di�cult sensing scenarios. With a smaller undersampling factor, e.g. N/M ≥ 4, the
results (not depicted here) of in-/coherent sensing matrices largely coincide again. This nicely complements the
observations made above: For very few (possibly noisy) measurements, partially coherent sensing matrices give
a better reconstruction both in support and magnitude. But in the typical CS setting with exact recovery with
respect to the `2-norm and a moderately low number of measurements, incoherent sensing matrices successfully
prevail.

5. ANALYTICAL JUSTIFICATION

In this section we provide initial guarantees for the d-tolerant recovery of S-sparse signals without measurement
noise through an OMP-like algorithm using partially coherent sensing matrices. We will utilize the notion of
spread support.

Definition 6 (d-spread set). A set B is d-spread, if

∀i 6= j ∈ B : |i− j| > d . (16)

A signal x is said to have a d-spread support, if supp (x) is a d-spread set. For the purpose of this work,
su�ciently spread means a signal has a (4d + 1)-spread support. This allows us to ignore recombinations of
multiple non-zeros to a single representative during reconstruction and enables us to prove results following
closely the initial contributions made for robust recovery via standard OMP. The line of theorems we follow is
based on the exact recovery condition (ERC). Within the spread signal support setting only minor adjustments
to the theorems are necessary in the noiseless scenario to ensure validity for d-tolerant recovery with partially
coherent sensing matrices. Further, the OMP-like algorithm has been empirically found to perform similar to
OMP in this setting with and without measurement noise. The method below is an adaptation of OMP, which
is similar to Band-Excluded OMP in,16 in the context of �coherence bands�.

5.1 Algorithm

To account for the ban of recombinations in the OMP algorithm we forbid new candidates for the reconstructed
support to be selected from the 2d-closure of the already reconstructed support, as shown in Algorithm 1. This
modi�cation ensures that every high coherence neighborhood is met exactly once and since we will assume a
(4d+ 1) spread for our signals in the statements of the next section, we can guarantee not to miss any non-zero
by this exclusion.
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Algorithm 1 Pseudo code for d-tolerant OMP (DtOMP)

Input: y ∈ CM , S ∈ N+, Φ ∈ CM×N , d ∈ N0

Output: d-tolerant recovery x̃ ∈ CN

k = 0, xk = 0, Σ = {}, r(0) = y . Initialization

1: while k ≤ S and |Σ| < S do

2: k = k + 1

3: b =
∣∣Φ∗r(k−1)

∣∣
4: ñ = argmaxn/∈clos2d(Σ) {bn} . Modi�cation

5: Σ = Σ ∪ {ñ}
6: x

(k)
Σ = Φ†Σy

7: r(k) = y − Φx(k)

8: end while

9: x̃ = x(S)

In the algorithm, x
(k)
Σ and Φ†Σ are the reconstruction in the kth iteration restricted to the rows in the set Σ

and the Moore-Penrose pseudoinverse of Φ restricted to the columns with indices in Σ, respectively.

Through the exclusion of the 2d-closures of the already recovered support, the algorithm will select at most
one candidate per high correlation region. This modi�cation is negligible within the scenario of signals with
(4d + 1)-spread support as all the numerical experiments for all tested parameter sets showed. For signals
without spread support DtOMP fails at exact recovery by design due to its exclusion feature.

5.2 Theory

Here we present some results closely related to established results for recovery from coherent sampling. These,
like others in the literature, are for signals with spread support only. As our experiments seem to indicate, we
conjecture this condition is only an artifact of the proofs, and further study should be performed to remove this
assumption. The given theoretical reconstruction guarantees are a close analog to the ERC based incoherent
OMP theory.6,16 The presented results can be understood as a characterization of OMP in the noiseless scenario
of signals with su�ciently spread support.

Before we formulate the theorems we need to �x the notion of a d-approximate pair of sets {Σ,Γ}d.
Definition 7. Let Σ,Γ ⊂ N+ be sets and a d ∈ N0 be given. Then we have a d-approximate pair of sets {Σ,Γ}d,
if and only if

Σ ⊆ closd (Γ) and Γ ⊆ closd (Σ) , (17)

that is their distance in the Hausdor�-metric is at most d. We will call the set of all such pairs of sets containing
at least one set of cardinality S, DS

d .

The following theorem is the essential result ensuring recovery from noiseless measurements via the d-tolerant
recovery condition (TRC). We do not present a proof here, since it follows similarly to previously established
results.6,16 In particular, see Theorem 1 of16 for a more general result that tolerates noise and is in terms of
arbitrary coherence bands, rather than d-tolerant recovery.

Theorem 8 (d-tolerant recovery guarantee without measurement noise). Consider (1) with
e = 0 and |x|0 = S. The d-tolerant reconstruction of the signal can be guaranteed via DtOMP, Algorithm 1, if:

supp (x) is (4d+ 1)-spread (18a)

µd(Φ) ≤ const.� 1 (18b)

∀ {A,B}d ∈ D
S
d : A is (4d+ 1)-spread, T̃ := A ∪B,

T := clos2d (A) =⇒ max
j∈TC

∥∥∥Φ†
T̃
φj

∥∥∥
1
< 1 (TRC)

where {A,B}d, DS
d are given in De�nition 7 and µd(Φ) is given in (7).
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The theorem allows to guarantee the d-tolerant recovery of any S-sparse signal from noiseless measurements
using partially coherent sensing matrices. The original theory for OMP will fail for partially coherent sensing
matrices since the ERC is usually not satis�ed. In addition, given that the utilized sensing matrix has large
d′-coherences (d′ < d) in every d-neighborhood, the reconstruction will naturally be also close in magnitude.

Note that many naturally arising sensing matrices such as overcomplete Fourier frames satisfy the condition
of the theorem for some d. This can be seen in Fig. 1 for the example of Ψ. The TRC will hold for any su�ciently
small µd(Φ) since the Hausdor� distance between TC and T̃ is by construction larger then d. We also point out
that (18b) is primarily a lower bound on the minimal number of measurements M . This link is established using
the Welch bound applied to all possible submatrices restricted to column indices that are (4d+ 1)-spread.

Continuing the theoretical construction as in,6 one can ensure the TRC by imposing conditions on the
cumulative coherence.

Theorem 9 (TRC guarantee). Let Φ ∈ CM×N . Then the TRC holds for all {A,B}d ∈ DS
d , if

µC
d (Φ, 2S − 1) + µC

d (Φ, 2S) < 1 , (19)

where {A,B}d, DS
d are given in De�nition 7 and µC

d (Φ, ·) is given in (10).

Proof. The proof follows analogously to the proof of Theorem 3.5 in6 with only minor modi�cations. Namely
S is replaced with 2S, since the optimal support of that theorem is replaced by the union A∪B of two S-cardinal
sets, and µC(Φ, ·) is replaced by µC

d (Φ, ·).
Corollary 10. Equation (19) of Theorem 9 holds, with the conditions stated, if any of the following inequalities
is satis�ed:

S <
1

4

(
µd(Φ)−1 + 1

)
(20)

µC
d (Φ, 2S) <

1

2
. (21)

Proof. Both conditions follow from the monotonic behavior of µC
d (Φ, ·). Equation (20) is proved using

µC
d (Φ, k) ≤ µd(Φ)k , (22)

which holds due to the monotonic increase of µC
d (Φ, k) as k decreases. So we have:

µC
d (Φ, 2S − 1) + µC

d (Φ, 2S)
(22)

≤ (2S − 1 + 2S)µd(Φ) < 1

⇐⇒ S <
1

4

(
µd(Φ)−1 + 1

)
.

Equation (21) follows immediately from the increasing behavior of µC
d (Φ, k):

µC
d (Φ, 2S − 1) + µC

d (Φ, 2S) ≤ 2µC
d (2S,Φ) < 1

⇐⇒ µC
d (2S,Φ) <

1

2
,

completing the proof.

Both results given in the corollary are stronger than the original requirement but may be easier to verify. As
is the case for OMP, (20) is stronger than (21). As a concrete example of a matrix that satis�es the conditions
of the corollary, one could consider F_consecBegin; when N = 1024, S = 1, and M = 64, the conditions hold
for 13 ≤ d ≤ 23. When N = 512, S = 2, and M = 64, the conditions hold for 15 ≤ d ≤ 20. Clearly these are
not optimal conditions, but do provide a heuristic that holds for practical sensing matrices in certain parameter
regimes. Moreover, we see tolerant support recovery for much broader ranges in the experiments.
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6. CONCLUSION AND FUTURE DIRECTIONS

We considered d-tolerant recovery and showed that in the low and noisy measurement regime, coherence in the
sensing matrix is actually bene�cial � despite just the opposite in the classical recovery setting. We have taken
�rst steps towards developing a framework and building a theoretical foundation for d-tolerant recovery. An
empirical characterization of OMP for the purpose of d-tolerant recovery has been provided. It was backed
for signals with su�ciently spread support theoretically through the interim modi�ed OMP, termed DtOMP,
which was found to be empirically the same as OMP in this setting. A comparison with simpler downsampling
alternatives and the convex SPGL1 BPDN algorithm underlined our �ndings and showed best performance,
both with respect to tolerant support and tolerant magnitude recovery, for partially coherent sensing matrices
when paired with DtOMP. The modi�cations necessary for the ERC based OMP reconstruction guarantees were
minimal. We introduced a modi�ed version of the ERC, called TRC, with which we were able to prove d-tolerant
recovery of arbitrary S-sparse signals with (4d+ 1) spread support from noiseless measurements using partially
coherent sensing matrices. For noisy recovery the classic proofs can not be easily extended.

Some future directions include: (i) developing new prove strategies to proof recovery guarantees for the noisy
measurement setting; (ii) deriving theoretical guarantees of the d-tolerant reconstruction for signals without
a spread support; (iii) analyzing the coherent sensing paradigm for other algorithms in order to improve the
reconstruction performance; (iv) deriving a characterization of the phase transition of d-tolerant algorithms, to
enable clear assertions whether partially coherent or incoherent sensing should be employed given the problem
dimensions; (v) further investigating how the smallest "optimal" value of d relates to the problem dimensions
and the coherence levels in the matrix in general; (vi) the development of partially coherent sensing matrices
speci�cally designed for particular applications. (vii) a study utilizing a variant of the restricted isometry property
may be illuminating in the context of tolerant recovery, see22 for some initial considerations in this direction.
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