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ABSTRACT

Identification of time-varying linear systems, which irdtwe both
time-shifts (delays) and frequency-shifts (Doppler+sifis a cen-
tral task in many engineering applications. This paperistithe
problem of identification of underspread linear systemsSb)L. de-
fined as time-varying linear systems whose responses |f@ni
unit-area region in the delay—Doppler space, by probingtigth
a known input signal. The main contribution of the paper &t th
characterizes conditions on the bandwidth and temporg@stpf
the input signal that ensure identification of ULSs desdribg a fi-
nite set of delays and Doppler-shifts, and referred to aamatric
ULSs, from single observations. In particular, the papeatdishes
that sufficiently-underspread parametric linear systeradgdentifi-
able as long as the time—bandwidth product of the input $igna
proportional to the square of the total number of delay—Deqpairs
in the system. In addition, the paper describes a procetatesh-
ables identification of parametric ULSs from an input trdipalses
in polynomial time by exploiting recent results on sub-Nigfjgam-
pling for time delay estimation and classical results orovecy of
frequencies from a sum of complex exponentials.

1. INTRODUCTION

Identification of time-varying linear systems, which irduwe both
time-shifts flelayg and frequency-shiftsoppler-shift3 to the in-
put signal, is one of the central tasks in applications sisctviee-
less communications and radar target detection. Mathealigti
identification of a time-varying linear systefd involves probing
it with a single known input signalz(t) and identifying# by an-
alyzing thesingle system output(x(t)), as illustrated in Fig. 1.
Kailath was the first to recognize that the identifiabilityatime-
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Fig. 1. Schematic representation of identification of a time-iagy
linear systen¥{ by probing it with a known input signal. Characteri-
zation of an identification scheme involves specificatiothefinput
probe,z(t), and the accompanying sampling and recovery stages.

where (14, v;) denotes a delay—Doppler pair ang € C is the
complex attenuation factor associated with, v+ ). Unlike most of
the existing work in the literature, however, our goal irstbaper
is to explicitly characterize conditions on the bandwidtid aem-
poral support of the input signal that ensure identificatbrsuch
ULSs, henceforth referred to amrametricULSs, from single ob-
servations. Specifically, note that the constructive qobvided
in [1-4] are for the identification adirbitrary ULSs. None of these
results therefore shed any light on the bandwidth and teahjgop-
port of the input signal needed to ensure identification oapetric
ULSs. On the contrary, the constructive proofs of [1-4] iezjuse
of input signals with infinite bandwidth and temporal sugipor

In contrast, this paper uses a constructive proof to estattiat
sufficiently underspread parametric linear systems ardiftible as
long as the time—bandwidth product of the input signal igppre
tional to square of the total number of delay—Doppler paifs,in
the system. Equally importantly, as part of our constrcfivoof,
we specify the nature of the input signal (a finite train ofsesl) and
the structure of a corresponding polynomial-time recovanyce-
dure that enable identification of parametric ULSs. The lexetbp-
ments in the paper leverage recent results on sub-Nyquigtlsay
for time-delay estimation [5] and classical results on dim-of-

varying linear systerft from a single observation is directly tied to arrival estimation [6-8]. The connection to sub-Nyquishpéing in
the area of the regio® in the delay-Doppler space that contains this regard can be understood by noting that the sub-Nygaist
H(6(2)) [1]. Kailath’s seminal work in [1] laid the foundations for pjing results of [5] enable recovery of the delays assodiatith a

the future works of Bello [2], Kozek and Pfander [3], and Rfan
and Walnut [4], which establish the nonidentifiability ferspread
linear systems—defined as systems wdifea(R) > 1—and pro-
vide constructive proofs for the identifiability ohderspreadinear
systems—defined as systems wittea(R) < 1.1

In this paper, we study the problem of identification of urder

spread linear systems (ULSs) whose responses can be @esbyib
a finite set of delays and Doppler-shifts. That is,

K
H(l’(t)) = Zakm(t*m)eﬂ"”kt (l)
k=1

Litis still an open question as to whetlitically-spreadlinear systems,
which correspond tarea(R) = 1, are identifiable or nonidentifiable [4];
see [3] for a partial answer to this question wiferis a rectangular region.

parametric ULS using a small-bandwidth input signal. Fertithe
“train-of-pulses” nature of the input signal combined wigisults on
recovery of frequencies from a sum of complex exponentBilslf

low recovery of the Doppler-shifts and attenuation factsig an
input signal of small temporal support.

Several works in the past have considered identificatiompef s
cialized versions of parametric ULSs. Specifically, [10}-réat
parametric ULSs whose delays and Doppler-shifts lie on atiged
grid in the delay—Doppler space. On the other hand, [15]idens
ers the case in which there are no more than two Dopplerssisft
sociated with the same delay. The proposed recovery proegdu
in [15] also have exponential complexity, since they regjeixhaus-
tive searches in & -dimensional space, and stable initializations of
these procedures stipulate that the system output be ausépw
an M-element antenna array withl 2 K. Finally, while the in-
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Fig. 2. Schematic representation of the polynomial-time regppencedure proposed in the paper for identification of pataimunderspread

linear systems from single observations.

sights of [10—14] can be extended to arbitrary parametriStJhy
taking infinitesimally-fine quantization of the delay—Démpspace,
this will require input signals with infinite bandwidth anentpo-
ral support. In contrast, our ability to avoid quantizatiohthe

The parametelV is proportional to the time—bandwidth product of
z(t), which roughly defines the number of temporal degrees of free
dom available for estimating{: N = 7 /T « TW.2 The final
two assumptions that we make in this paper concern the oafati

delay—Doppler space is due to the fact that we treat the rayste ship between the delay spread and the Doppler spreafiaid the

identification problem directly in the analog domain.

2. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we formalize the problem of identificatidnpara-

metric ULSs and state main results of the paper. We begin 8ly fir

expressing the response of a parametric (W.Somprising of K
delay—Doppler pairs [cf. (1)] in terms df, < K distinctdelay$

K, Kui

Hz(t) = Z Z aijr(t —7i)e?? it

i=1 j=1

)

wherev;; denotes thgth Doppler-shift associated with thigh dis-

tinct delayr;, a;; € C denotes the attenuation factor associated with

the delay—Doppler paifr;, vi;), and K def Zf*l K, ;. Through-

out the rest of the paper, we use </ {ri, i =1,...,K,} to
denote the set oK, distinct delays associated witH. The first
main assumption that we make here concerns the footpriht of
the delay—Doppler space.

[A1] The respons@éi((t)) of H lies within a rectangular region:
(74, vi5) € [0, Tmaz] X [—Vmaz/2; Vmaz/2]. This is indeed
the case in many engineering applications (see, e.g.,412,1
and the parameters, .. andv,., are termed as thdelay
spreadand theDoppler spreacbf the system, respectively.

Next, we useJ andW to denote the temporal support and the

two-sided bandwidth of the known input signa&lt) used to probe
H, respectively. We propose using input signals that coomedgpo a
finite train of pulses:

N-1
z(t) = Z Tng(t—nT), 0<t<T

n=0

®)

whereg(t) is a prototype pulse of bandwidy that is (essentially)

temporal support and bandwidth @ft).

[A2] The delay spread of{ is strictly smaller than the temporal
support ofg(¢) (in other wordsypma. < T)).

[A3] The Doppler spread df is much smaller than the bandwidth
of g(t) (in other wordspmaz < W).

Note that, sinceWw o 1/T, [A3] equivalently imposes that
UmazT < 1; in words, this assumption states that the temporal
scale of variations in the system response is large relativilne
temporal scale of variations in(¢). It is worth pointing out here
that linear systems that are sufficiently underspread isé¢nse that
TmazVmaz << 1 Can always be made to satig#2] and[A3] for

any given budget of the time—bandwidth product.

We are now ready to summarize the key findings of this paper
concerning identification of parametric ULSs.

Theorem 1. Suppose thea# is a parametric ULS that is completely
described by a total ofX’ Zf:’l K, ; triplets (7, vij, aij).
Then, irrespective of the distribution &f7;, v;;) } within the delay—
Doppler space, the polynomial-time recovery procedureicieg
in Fig. 2 with samples taken gt = 2n7/W} uniquely identifies
H from a single observatiorH (z(¢)) as long as[A1]{A3] are
satisfied, the probing sequenée.,} remains bounded away from
zero in the sense thgt,| > 0V n = 0,...,N — 1, and the
time—bandwidth product of the inpuft) satisfies the condition

(4)

TW > 87K, Ky max

where K, max “ max; K, is the maximum number of Doppler-
shifts associated with any one of the distinct delays. Fautthe
time—bandwidth product af(¢) is guaranteed to satisfi4) as long
asTW > 2r(K + 1)

For the sake of brevity, we limit ourselves in the followirgtescrib-
ing the polynomial-time recovery procedure used for idamattion

temporally supported oft, 7] and is assumed to have unit energy of H. We refer the reader to [16] for the accompanying conditions

([ 1g(t)]?dt = 1), and{z,, € C} is anN-length probing sequence.

°Note that (1) and (2) are equivalent in terms of the matheralathar-
acterization; nevertheless, we choose to exp?¢&s(t)) as in (2) so as to
facilitate the forthcoming analysis.

on z(t) needed to guarantee identification#fusing the proposed
procedure, which in turn lead to a formal proof of Theorem [iL5].

3Recall that the temporal support and the bandwidth of artraripulse
g(t) are related to each other W8 o< 1/7.



3. POLYNOMIAL-TIME IDENTIFICATION OF
PARAMETRIC UNDERSPREAD LINEAR SYSTEMS

In this section, we characterize the polynomial-time recg\proce-
dure proposed in the paper for identificatior?éf In order to facil-
itate understanding of the proposed algorithm, shown in Eigve
conceptually partition the procedure into two stages: dragsing
stage and the recovery stage. Before describing these agestn
detail, we first make use of (2) and (3) to rewrite the output{ads

) & gt — 1 —nT) 5)
i=1 n=0
where the sequencés;[n|},i = 1,..., K., are defined as
K, ;
a’l[n] d;f Z aijxnejQTryijnTv n = 07 ) N - 1 (6)

j=1

and (5) follows from the assumption that,..T" < 1, which im-
plies thate??™ii* a 72" T for all t € [(n — 1)T,nT).

3.1. The Sampling Stage

The sampling stage of our recovery method first passes thensys
output#(x(t)) through a low-pass filter (LPF) whose impulse re-
sponse is given by* (—t) and then uniformly samples the output of
this LPF at times{t = nT/p}. Here, we only require that the fre-
quency response” (w), of the LPF is nonzero in the spectral band

F, defined asF Y [~ Zp, Zp], while 5* (w) is zero for frequen-

Here,N (1) is ap x K, Vandermonde matrix whos@n, i)th el-

ement is given byN,,; (1) </ ¢=#%F (m=p/2=D7i  On the other
hand, the elements df[n] are discrete-time sequences that are in-
verse DTFT of the elements bf (/™) “Ip (7T, 1) a (e/°T),
whereD (e/“", 7) is aK, x K. diagonal matrix whoséth diago-
nal element is given by 77 anda (e’*") is a K--length vector
whoseith element is4; (e/“"), the DTFT ofa;[n] [cf. (6)].

Note that (9) can be viewed as an infinite ensemble of modi-
fied measurement vectors in which each element corresponals t
distinct matrixN (7) that, in turn, depends on the set of (distinct)
delaysT. Linear measurement models of the form (9) have been
studied extensively in the literature on DOA estimation.eGipe-
cific class of methods that has proven to be quite useful ;\dtea
are the so-calledubspace method6—8]. Consequently, our ap-
proach in the following is to first use subspace methods iemtal
recover the set from d[n]. Afterwards, since the Moore—Penrose
pseudoinvers® () of N (1) is a left inverse oN (7) because of
the assumption that > 2K, we recover the vectar (e’ from
the measurement vectdin] as

a (ej“JT) =D ! (ejWT7T) N () d (ejWT) .

Finally, we recover the Doppler-shifts and the attenuafmstors
froma (eJ“’T) by making another use of the subspace methods.

(10

3.2.1. Recovery of the Delays

We propose to recover from d[n] using the following method that
is based on the well-known ESPRIT algorithm [7] togetheihvein

ciesw ¢ F. The other condition that we have is that the parameteidditional smoothing stage [17].

p is even and satisfies the inequality> 2K-.

The sampling stage afterwards periodically splits the dadhp
sequence at the output of the LPF, which is generated at afate
p/T, into p slower sequencefc,[n]} at a rate ofl /T each using a
serial-to-parallel converter. Next, we define two sets gftdl filters
{¢e[n],1 < £ < p}and{yy[n],1 < ¢ < p} as follows:

be[n] defIDTFT{[\/_( l)zflej“<lfl)T/p]71}[n], and (7)

2
+_

weln] & IDTFT{[;S (w+ 7

(0 —p/2=1))x
Gw+ 2%((—1)/2 - 1))]71}[711. @®)

Here, IDTFT denotes the inversiscrete-time Fourier transform

(i)

Construct the matriRag = - S0 _, 3, <5 dm[n]d5[n],
whered.,, is aM = p/2 length subvector that is given by

dy [n] = [ dm [n] dm+1 [n] dm+Mm [n] ]T

(i) RecoverK, as the rank oR4q.
(i) Perform singular value decompositionf R4 and construct
E, consisting of the(; singular vectors corresponding to the

K. nonzero singular values ® 4 as its columns.

(iv) Compute® = ELEsm whereE,+ andE; are obtained by

removing the first and the last row B, respectively.
, K+
Recover the unknown delays as follows:= — %arg(

v)
(vi)

Compute the eigenvalues @&, \;,i = 1,2,...

).

(DTFT) operation and~(w) denotes the frequency response of the3 2 2. Recovery of the Doppler-Shifts and Attenuationdtact

prototype pulsey(¢). The next step in the sampling stage involves
filtering the (sub)sequences:[n]} using the set of filter§e,[n]}.
This is followed by an application of théast Fourier transform
(FFT) to the outputs of the filtersp,[n]}. The final step in the sam-
pling stage involves filtering the resulting sequencesgidie set of
filters {+¢[n]} to get sequence&d,[n]}; see Fig. 2 for a detailed
schematic representation of the sampling stage.

3.2. The Recovery Stage

By defining a vectod[n] as thep-length vector whoséth element
is d;¢[n], we have established in [16] that
dn] =N(7)b[n], ne€Z.

9)

Once the unknown delays are recovered, we can also easilyerec
the vectorsa[n] from (10). Next, define for each delay, the set of

corresponding Doppler-shifis; asv; def {vij, 5=1,...,Kv;}
and recall that theth element ofa[n] is given by (6). We can
therefore write theV-length sequencéa;[n]} for each index in
the matrix—vector forma; = XR(v;)as, Wherea; is a length-
N vector whosenth element isa;[n], X is an N x N diagonal
matrix whosenth diagonal element is given hy,, R(v;) is an
N x K, Vandermonde matrix witt{n, j)th elemente/? "7
and«; is length#,; vector withjth elemento;;. Now since the
sequencex,, } is completely determined by the input signgl),
X can be inverted under the assumption that the probing sequen
{zn} satisfiegz,| >0Vn =0,..., N —1and we therefore obtain



delay—Doppler pairs. In particular, as elaborated in [@6}, method
for identifying parametric underspread linear systems lmamsed
for super-resolution target detection using radar. We lcatecthis
paper by referring the reader to [16] for a formal proof of Giem 1,
an extensive discussion of its relationship with existingrky and
its application in super-resolution radar.
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