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ABSTRACT

Identification of time-varying linear systems, which introduce both
time-shifts (delays) and frequency-shifts (Doppler-shifts), is a cen-
tral task in many engineering applications. This paper studies the
problem of identification of underspread linear systems (ULSs), de-
fined as time-varying linear systems whose responses lie within a
unit-area region in the delay–Doppler space, by probing them with
a known input signal. The main contribution of the paper is that it
characterizes conditions on the bandwidth and temporal support of
the input signal that ensure identification of ULSs described by a fi-
nite set of delays and Doppler-shifts, and referred to as parametric
ULSs, from single observations. In particular, the paper establishes
that sufficiently-underspread parametric linear systems are identifi-
able as long as the time–bandwidth product of the input signal is
proportional to the square of the total number of delay–Doppler pairs
in the system. In addition, the paper describes a procedure that en-
ables identification of parametric ULSs from an input train of pulses
in polynomial time by exploiting recent results on sub-Nyquist sam-
pling for time delay estimation and classical results on recovery of
frequencies from a sum of complex exponentials.

1. INTRODUCTION

Identification of time-varying linear systems, which introduce both
time-shifts (delays) and frequency-shifts (Doppler-shifts) to the in-
put signal, is one of the central tasks in applications such as wire-
less communications and radar target detection. Mathematically,
identification of a time-varying linear systemH involves probing
it with a singleknown input signalx(t) and identifyingH by an-
alyzing thesingle system outputH(x(t)), as illustrated in Fig. 1.
Kailath was the first to recognize that the identifiability ofa time-
varying linear systemH from a single observation is directly tied to
the area of the regionR in the delay–Doppler space that contains
H(δ(t)) [1]. Kailath’s seminal work in [1] laid the foundations for
the future works of Bello [2], Kozek and Pfander [3], and Pfander
and Walnut [4], which establish the nonidentifiability ofoverspread
linear systems—defined as systems witharea(R) > 1—and pro-
vide constructive proofs for the identifiability ofunderspreadlinear
systems—defined as systems witharea(R) < 1.1

In this paper, we study the problem of identification of under-
spread linear systems (ULSs) whose responses can be described by
a finite set of delays and Doppler-shifts. That is,

H(x(t)) =
K
∑

k=1

αkx(t− τk)e
j2πνkt (1)

1It is still an open question as to whethercritically-spreadlinear systems,
which correspond toarea(R) = 1, are identifiable or nonidentifiable [4];
see [3] for a partial answer to this question whenR is a rectangular region.

Fig. 1. Schematic representation of identification of a time-varying
linear systemH by probing it with a known input signal. Characteri-
zation of an identification scheme involves specification ofthe input
probe,x(t), and the accompanying sampling and recovery stages.

where(τk, νk) denotes a delay–Doppler pair andαk ∈ C is the
complex attenuation factor associated with(τk, νk). Unlike most of
the existing work in the literature, however, our goal in this paper
is to explicitly characterize conditions on the bandwidth and tem-
poral support of the input signal that ensure identificationof such
ULSs, henceforth referred to asparametricULSs, from single ob-
servations. Specifically, note that the constructive proofs provided
in [1–4] are for the identification ofarbitrary ULSs. None of these
results therefore shed any light on the bandwidth and temporal sup-
port of the input signal needed to ensure identification of parametric
ULSs. On the contrary, the constructive proofs of [1–4] require use
of input signals with infinite bandwidth and temporal support.

In contrast, this paper uses a constructive proof to establish that
sufficiently underspread parametric linear systems are identifiable as
long as the time–bandwidth product of the input signal is propor-
tional to square of the total number of delay–Doppler pairs,K, in
the system. Equally importantly, as part of our constructive proof,
we specify the nature of the input signal (a finite train of pulses) and
the structure of a corresponding polynomial-time recoveryproce-
dure that enable identification of parametric ULSs. The key develop-
ments in the paper leverage recent results on sub-Nyquist sampling
for time-delay estimation [5] and classical results on direction-of-
arrival estimation [6–8]. The connection to sub-Nyquist sampling in
this regard can be understood by noting that the sub-Nyquistsam-
pling results of [5] enable recovery of the delays associated with a
parametric ULS using a small-bandwidth input signal. Further, the
“train-of-pulses” nature of the input signal combined withresults on
recovery of frequencies from a sum of complex exponentials [9] al-
low recovery of the Doppler-shifts and attenuation factorsusing an
input signal of small temporal support.

Several works in the past have considered identification of spe-
cialized versions of parametric ULSs. Specifically, [10–14] treat
parametric ULSs whose delays and Doppler-shifts lie on a quantized
grid in the delay–Doppler space. On the other hand, [15] consid-
ers the case in which there are no more than two Doppler-shifts as-
sociated with the same delay. The proposed recovery procedures
in [15] also have exponential complexity, since they require exhaus-
tive searches in aK-dimensional space, and stable initializations of
these procedures stipulate that the system output be observed by
anM -element antenna array withM ' K. Finally, while the in-



Fig. 2. Schematic representation of the polynomial-time recovery procedure proposed in the paper for identification of parametric underspread
linear systems from single observations.

sights of [10–14] can be extended to arbitrary parametric ULSs by
taking infinitesimally-fine quantization of the delay–Doppler space,
this will require input signals with infinite bandwidth and tempo-
ral support. In contrast, our ability to avoid quantizationof the
delay–Doppler space is due to the fact that we treat the system-
identification problem directly in the analog domain.

2. PROBLEM FORMULATION AND MAIN RESULTS

In this section, we formalize the problem of identification of para-
metric ULSs and state main results of the paper. We begin by first
expressing the response of a parametric ULSH comprising ofK
delay–Doppler pairs [cf. (1)] in terms ofKτ ≤ K distinctdelays2

H(x(t)) =

Kτ
∑

i=1

Kν,i
∑

j=1

αijx(t− τi)e
j2πνij t (2)

whereνij denotes thejth Doppler-shift associated with theith dis-
tinct delayτi,αij ∈ C denotes the attenuation factor associated with

the delay–Doppler pair(τi, νij), andK
def
=

∑Kτ

i=1Kν,i. Through-

out the rest of the paper, we useτ
def
= {τi, i = 1, . . . , Kτ} to

denote the set ofKτ distinct delays associated withH. The first
main assumption that we make here concerns the footprint ofH in
the delay–Doppler space.

[A1] The responseH(δ(t)) of H lies within a rectangular region:
(τi, νij) ∈ [0, τmax] × [−νmax/2, νmax/2]. This is indeed
the case in many engineering applications (see, e.g., [12,14]),
and the parametersτmax andνmax are termed as thedelay
spreadand theDoppler spreadof the system, respectively.

Next, we useT andW to denote the temporal support and the
two-sided bandwidth of the known input signalx(t) used to probe
H, respectively. We propose using input signals that correspond to a
finite train of pulses:

x(t) =

N−1
∑

n=0

xng(t− nT ), 0 ≤ t ≤ T (3)

whereg(t) is a prototype pulse of bandwidthW that is (essentially)
temporally supported on[0, T ] and is assumed to have unit energy
(
∫

|g(t)|2dt = 1), and{xn ∈ C} is anN -length probing sequence.

2Note that (1) and (2) are equivalent in terms of the mathematical char-
acterization; nevertheless, we choose to expressH(x(t)) as in (2) so as to
facilitate the forthcoming analysis.

The parameterN is proportional to the time–bandwidth product of
x(t), which roughly defines the number of temporal degrees of free-
dom available for estimatingH: N = T /T ∝ T W.3 The final
two assumptions that we make in this paper concern the relation-
ship between the delay spread and the Doppler spread ofH and the
temporal support and bandwidth ofg(t).

[A2] The delay spread ofH is strictly smaller than the temporal
support ofg(t) (in other words,τmax < T ).

[A3] The Doppler spread ofH is much smaller than the bandwidth
of g(t) (in other words,νmax � W).

Note that, sinceW ∝ 1/T , [A3] equivalently imposes that
νmaxT � 1; in words, this assumption states that the temporal
scale of variations in the system response is large relativeto the
temporal scale of variations inx(t). It is worth pointing out here
that linear systems that are sufficiently underspread in thesense that
τmaxνmax � 1 can always be made to satisfy[A2] and [A3] for
any given budget of the time–bandwidth product.

We are now ready to summarize the key findings of this paper
concerning identification of parametric ULSs.

Theorem 1. Suppose thatH is a parametric ULS that is completely
described by a total ofK =

∑Kτ

i=1Kν,i triplets (τi, νij , αij).
Then, irrespective of the distribution of{(τi, νij)} within the delay–
Doppler space, the polynomial-time recovery procedure depicted
in Fig. 2 with samples taken at{t = 2nπ/W} uniquely identifies
H from a single observationH(x(t)) as long as[A1]–[A3] are
satisfied, the probing sequence{xn} remains bounded away from
zero in the sense that|xn| > 0 ∀ n = 0, . . . , N − 1, and the
time–bandwidth product of the inputx(t) satisfies the condition

T W ≥ 8πKτKν,max (4)

whereKν,max
def
= maxiKν,i is the maximum number of Doppler-

shifts associated with any one of the distinct delays. Further, the
time–bandwidth product ofx(t) is guaranteed to satisfy(4) as long
asT W ≥ 2π(K + 1)2.

For the sake of brevity, we limit ourselves in the following to describ-
ing the polynomial-time recovery procedure used for identification
of H. We refer the reader to [16] for the accompanying conditions
on x(t) needed to guarantee identification ofH using the proposed
procedure, which in turn lead to a formal proof of Theorem 1 in[16].

3Recall that the temporal support and the bandwidth of an arbitrary pulse
g(t) are related to each other asW ∝ 1/T .



3. POLYNOMIAL-TIME IDENTIFICATION OF
PARAMETRIC UNDERSPREAD LINEAR SYSTEMS

In this section, we characterize the polynomial-time recovery proce-
dure proposed in the paper for identification ofH. In order to facil-
itate understanding of the proposed algorithm, shown in Fig. 2, we
conceptually partition the procedure into two stages: the sampling
stage and the recovery stage. Before describing these two stages in
detail, we first make use of (2) and (3) to rewrite the output ofH as

H(x(t)) ≈
Kτ
∑

i=1

N−1
∑

n=0

ai[n]g(t− τi − nT ) (5)

where the sequences{ai[n]}, i = 1, . . . ,Kτ , are defined as

ai[n]
def
=

Kν,i
∑

j=1

αijxne
j2πνijnT , n = 0, . . . , N − 1 (6)

and (5) follows from the assumption thatνmaxT � 1, which im-
plies thatej2πνij t ≈ ej2πνijnT for all t ∈ [(n− 1)T, nT ).

3.1. The Sampling Stage

The sampling stage of our recovery method first passes the system
outputH(x(t)) through a low-pass filter (LPF) whose impulse re-
sponse is given bys∗(−t) and then uniformly samples the output of
this LPF at times

{

t = nT/p
}

. Here, we only require that the fre-
quency response,S∗(ω), of the LPF is nonzero in the spectral band

F , defined asF def
=

[

− π
T
p, π

T
p
]

, while S∗(ω) is zero for frequen-
ciesω /∈ F . The other condition that we have is that the parameter
p is even and satisfies the inequalityp ≥ 2Kτ .

The sampling stage afterwards periodically splits the sampled
sequence at the output of the LPF, which is generated at a rateof
p/T , into p slower sequences

{

c`[n]
}

at a rate of1/T each using a
serial-to-parallel converter. Next, we define two sets of digital filters
{φ`[n], 1 ≤ ` ≤ p} and{ψ`[n], 1 ≤ ` ≤ p} as follows:

φ`[n]
def
= IDTFT

{

[√
p(−1)`−1ejω(`−1)T/p

]−1
}

[n], and (7)

ψ`[n]
def
= IDTFT

{

[ 1

T
S∗

(

ω +
2π

T
(`− p/2− 1)

)

×

G
(

ω +
2π

T
(`− p/2− 1)

)

]−1
}

[n]. (8)

Here, IDTFT denotes the inversediscrete-time Fourier transform
(DTFT) operation andG(ω) denotes the frequency response of the
prototype pulseg(t). The next step in the sampling stage involves
filtering the (sub)sequences

{

c`[n]
}

using the set of filters{φ`[n]}.
This is followed by an application of thefast Fourier transform
(FFT) to the outputs of the filters{φ`[n]}. The final step in the sam-
pling stage involves filtering the resulting sequences using the set of
filters {ψ`[n]} to get sequences{d`[n]}; see Fig. 2 for a detailed
schematic representation of the sampling stage.

3.2. The Recovery Stage

By defining a vectord[n] as thep-length vector whosèth element
is d`[n], we have established in [16] that

d[n] = N (τ )b[n], n ∈ Z. (9)

Here,N (τ ) is a p × Kτ Vandermonde matrix whose(m, i)th el-

ement is given byNmi (τ )
def
= e−j 2π

T
(m−p/2−1)τi . On the other

hand, the elements ofb[n] are discrete-time sequences that are in-

verse DTFT of the elements ofb
(

ejωT
) def

= D
(

ejωT , τ
)

a
(

ejωT
)

,
whereD

(

ejωT , τ
)

is aKτ ×Kτ diagonal matrix whoseith diago-
nal element is given bye−jωτi anda

(

ejωT
)

is aKτ -length vector
whoseith element isAi

(

ejωT
)

, the DTFT ofai[n] [cf. (6)].
Note that (9) can be viewed as an infinite ensemble of modi-

fied measurement vectors in which each element corresponds to a
distinct matrixN (τ ) that, in turn, depends on the set of (distinct)
delaysτ . Linear measurement models of the form (9) have been
studied extensively in the literature on DOA estimation. One spe-
cific class of methods that has proven to be quite useful in this area
are the so-calledsubspace methods[6–8]. Consequently, our ap-
proach in the following is to first use subspace methods in order to
recover the setτ from d[n]. Afterwards, since the Moore–Penrose
pseudoinverseN† (τ ) of N (τ ) is a left inverse ofN (τ ) because of
the assumption thatp ≥ 2Kτ , we recover the vectora

(

ejωT
)

from
the measurement vectord[n] as

a

(

ejωT
)

= D
−1

(

ejωT , τ
)

N
† (τ )d

(

ejωT
)

. (10)

Finally, we recover the Doppler-shifts and the attenuationfactors
from a

(

ejωT
)

by making another use of the subspace methods.

3.2.1. Recovery of the Delays

We propose to recoverτ from d[n] using the following method that
is based on the well-known ESPRIT algorithm [7] together with an
additional smoothing stage [17].

(i) Construct the matrixRdd = 1
M

∑M
m=1

∑

n∈Z
dm[n]dH

m[n],
wheredm is aM = p/2 length subvector that is given by
dm [n] =

[

dm [n] dm+1 [n] . . . dm+M [n]
]T

.

(ii) RecoverKτ as the rank ofRdd.

(iii) Perform singular value decompositionof Rdd and construct
Es consisting of theKτ singular vectors corresponding to the
Kτ nonzero singular values ofRdd as its columns.

(iv) ComputeΦ = E
†
s↓Es↑, whereEs↑ andEs↓ are obtained by

removing the first and the last row ofEs, respectively.

(v) Compute the eigenvalues ofΦ, λi, i = 1, 2, . . . ,Kτ .

(vi) Recover the unknown delays as follows:τi = − T
2π

arg(λi).

3.2.2. Recovery of the Doppler-Shifts and Attenuation Factors

Once the unknown delays are recovered, we can also easily recover
the vectorsa[n] from (10). Next, define for each delayτi, the set of

corresponding Doppler-shiftsνi asνi
def
= {νij , j = 1, . . . ,Kν,i}

and recall that theith element ofa[n] is given by (6). We can
therefore write theN -length sequence{ai[n]} for each indexi in
the matrix–vector formai = XR(νi)αi, whereai is a length-
N vector whosenth element isai[n], X is anN × N diagonal
matrix whosenth diagonal element is given byxn, R(νi) is an
N × Kν,i Vandermonde matrix with(n, j)th elementej2πνijnT ,
andαi is length-Kν,i vector withjth elementαij . Now since the
sequence{xn} is completely determined by the input signalx(t),
X can be inverted under the assumption that the probing sequence
{xn} satisfies|xn| > 0 ∀ n = 0, . . . , N−1 and we therefore obtain
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Fig. 3. (a) An example illustrating the ability of the proposed recov-
ery procedure to accurately identify parametric underspread linear
systems. (b) An example illustrating the ability of the proposed re-
covery procedure to perform robustly in the presence of noise.

ãi = R(νi)αi, where we have that̃ai
def
= X

−1
ai. It now follows

from a simple inspection of the elements ofãi that

ãi[n] =

Kν,i
∑

j=1

αije
j2πνijnT , 0 ≤ n ≤ N − 1. (11)

The recovery of the Doppler-shifts from the sequences{ãi[n]} is
now equivalent to the problem of recovering distinct frequencies
from a (weighted) sum of complex exponentials. In our case, for
each fixed indexi, the frequency of thejth exponential is given by
ωij = 2πνijnT and its amplitude is given byαij .

Fortunately, the problem of recovering frequencies from a sum
of complex exponentials has been studied extensively in thelitera-
ture and various strategies exist for solving this problem.One of
these techniques that has gained interest recently, especially in the
literature on finite rate of innovation [18], is theannihilating-filter
method. The annihilating-filter approach, in contrast to some of the
other techniques, allows the recovery of the frequencies associated
with the ith index even at the critical value ofN = 2Kν,i. On
the other hand, subspace methods [6–8] are generally more robust
to noise but also require more than2Kν,i samples. In summary, we
conclude that there are a number of methods in the literaturethat can
be used for recovery of the Doppler-shifts from (11) depending upon
the temporal degrees of freedomN available for identification ofH.
In particular, if one is faced with the condition thatN = 2Kν,i for
any one of the indices then the annihilating filter should be used.

Finally, under the assumption that the Doppler-shifts for each
indexi have been recovered using any one of the subspace methods,
the attenuation factors{αij} associated with each of the delaysτi
can simply be determined asαi = R

†(νi)ãi, i = 1, . . . ,Kτ , since
R

†(νi)R(νi) = I because of the requirementN ≥ 2Kν,i.

4. CONCLUSION

In this paper, we have revisited the problem of identification of
parametric underspread linear systems and presented a polynomial-
time recovery procedure that enables identification of suchsystems
as long as the time–bandwidth product of the input signal is pro-
portional to the square of the total number of delay–Dopplerpairs
(cf. Theorem 1 and [16]). Extensive simulation results reported
in [16] confirm that—as long as the time–bandwidth product of
the input signal satisfies the requisite conditions—the proposed re-
covery procedure is quite robust to noise and other implementation
issues (also, see Fig. 3(a) and Fig. 3(b)). This makes our algorithm
extremely useful for application areas in which the system perfor-
mance depends critically on the ability to resolve closely spaced

delay–Doppler pairs. In particular, as elaborated in [16],our method
for identifying parametric underspread linear systems canbe used
for super-resolution target detection using radar. We conclude this
paper by referring the reader to [16] for a formal proof of Theorem 1,
an extensive discussion of its relationship with existing work, and
its application in super-resolution radar.
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