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Abstract—Super-resolution ultrasound enables detailed assess-
ment of the fine vascular network by pinpointing individual
microbubbles, using ultrasound contrast agents. The fidelity and
achieved resolution of this technique is determined by the density
of localized microbubbles and their localization accuracy. To
obtain high densities, one can evaluate extremely sparse subsets
of microbubbles across thousands of frames by using a very low
microbubble dose and imaging for a very long time, which is im-
practical for clinical routine. While ultrafast imaging somewhat
alleviates this problem, long acquisition times are still required to
enhance the full vascular bed. As a result, localization accuracy
remains hampered by patient motion. Recently, sparsity-based
ultrasonic super resolution hemodynamic imaging was proposed,
featuring a high spatial as well as temporal resolution by exploit-
ing the temporal correlation structure of flowing microbubbles.
However, when using clinical scanners operating at low frame-
rates, this pixel-wise correlation across imaging frames may
vanish. The aim of this work is hence twofold. First, to attain high
microbubble localization accuracy on dense contrast-enhanced
ultrasound data using a clinical dose of ultrasound contrast
agents and a standard clinical scanner. Second, to retain a high
resolution by adequate motion compensation.

I. INTRODUCTION

S UPER-resolution ultrasound is a recently emerging imag-
ing technology that enables detailed assessment of the

fine vascular network by translating concepts from fluores-
cence photo-activated localization microscopy (FPALM, [1])
to ultrasound. While FPALM localizes active and isolated
fluorophores, super-resolution ultrasound exploits ultrasound-
contrast-agents: inert gas microbubbles (MBs) that are sized
similarly to red blood cells. Hence, they remain intravascular.
By pinpointing individual isolated MBs with high precision
across many frames, one can circumvent the diffraction limit
and reconstruct an image at a 10-fold increase in resolution
[2]. The availability of such an imaging technique in clinical
practice can open up new possibilities for precise vascular
characterization in the context of localizing tumor-driven an-
giogenesis, or assessment of impaired cardiac perfusion. In
this paper, we apply sparse signal recovery techniques to attain
super resolution on highly dense, clinically acquired contrast-
enhanced ultrasound (CEUS) images.

Typically, extremely sparse subsets of MBs are evaluated
across thousands of frames by using a very low MB dose and
imaging for a very long time. Such conditions enable isolating

individual bubbles effectively; however, in particular imaging
for a long time is impractical in clinical routine. While high-
frame-rate imaging somewhat alleviates this problem [3], long
acquisition times (on the order of minutes) are still required to
cover the full vascular bed. Alternatively, and more practically,
one can increase the density of MBs to a clinical dose.
However, this causes the point-spread-functions of bubbles to
overlap severely, invalidating the widely used single-particle
localization methods [4].

In optics, a similar trade-off between acquisition time and
localization accuracy was addressed by the introduction of
super-resolution optical fluctuation imaging (SOFI), which
features a moderate resolution gain within short acquisition
times [5]. Bar-Zion et al. translated the principles of SOFI
to CEUS, by relying on the temporal statistics of demod-
ulated echoes of flowing MBs between consecutive frames,
demonstrating a moderate spatial resolution gain, but with a
temporal resolution of hundreds of milliseconds [6]. More
recently, the introduction of sparsity-based ultrasonic super
resolution hemodynamic imaging (SUSHI) [7] led to further
increase in the spatial resolution, while maintaining sub-
second temporal resolution. This ultrasound method exploits
sparsity in the temporal correlation structure of fluctuating
MBs at a very high frame-rate (e.g. by using plane-wave
imaging). However, when scanning with low frame-rates as
in most clinical scanners, this distinct correlation is no longer
observable in the acquired movie, as the MBs decorrelation
time is merely a few milliseconds [3]; much smaller than
the temporal resolution. We note that SUSHI could then in
principle still be implemented as a frame-by-frame technique,
not exploiting temporal MB correlation.

In fluorescence microscopy, several similar strategies have
been developed for emitter localization in highly dense sce-
narios. These methods are either based on fitting clusters
of overlapped spots with a fixed number of point-spread-
functions (e.g. DAOSTORM [8]), or based on sparse-recovery
(e.g. CS-STORM [9] and SPIDER [10]). The latter efficiently
enables high-density localization by the combination of inverse
image reconstruction with an additional regularization that
imposes sparsity of the solution [11].

Here, we apply similar sparse signal recovery techniques
to attain super-resolution on highly dense, clinically acquired
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Figure 1: Selected examples of microbubble (MB) location recovery using the proposed algorithm with varying MB densities. (a,b)
Localization for relatively low densities, with several overlapping point-spread-functions. (c) Localization for high densities, with many
overlapping point-spread-functions.

in-vivo CEUS images of a human prostate. By modeling
an individual CEUS frame as the convolution of the MB
distributions with the system point spread function (PSF),
we employ sparse reconstruction techniques (like a frame-by-
frame implementation of SUSHI) to recover the MB positions
even in scenarios with extensive overlap. A dedicated regis-
tration algorithm is then used to compensate for the inevitable
presence of tissue motion and probe drift in this clinical
scenario.

The clinical CEUS data acquisition protocol is given in
Section II-A, after which the adopted motion compensation
and sparse recovery algorithms are presented in Sections II-B
and II-C, respectively. The results are described in Section III,
and conclusions are drawn in Section IV.

II. METHODS

A. Data acquisition

The in-vivo CEUS data was acquired at the AMC University
Hospital (Amsterdam, the Netherlands). An intravenous injec-
tion of a 2.4-ml MB bolus (SonoVue®, Bracco, Milan, Italy)
was administered, and its passage through the prostate was
imaged using a C10-3v transrectal endfiring ultrasound probe.
The CEUS loops were acquired and stored using a Philips
iU22 ultrasound system (Philips Healthcare, Bothell, WA).
A dual-screen view was selected to simultaneously obtain
fundamental mode as well as contrast-specific imaging data.
The axial resolution of the ultrasound system is approximately
0.3 mm and its lateral resolution is on the order of 0.5 mm at 5
cm from the probe. At this distance, the elevational beamwidth
is approximately 3.4 mm. The pixel spacing is 0.146 mm in
both directions. Imaging was performed for 120 seconds to
record the full in- and out-flow of the injected MB bolus. The
data was then linearized according to [12] in order to obtain the
ultrasound intensities from the log-compressed and quantized
image data.

B. Sparse recovery

We model the measured CEUS frames as:

y = Ax, (1)

where x is a vector which describes the MB distribution on
a high-resolution image grid, y is the vectorized frame of the
CEUS loop, and A is the measurement matrix where each
column of A is the PSF shifted by a single pixel on the high-
resolution grid. The PSF of the system is estimated from the
data by first manually pinpointing several isolated MB spots
from those frames in which only few were present. These spots
were then block-windowed and fitted with a rotated anisotropic
2D Gaussian kernel to mitigate the impact of noise on the PSF.

Given the PSF, the goal is now to obtain the MB vector
x from the measurements y according to (1). With x defined
on a much denser grid than the original CEUS frame, this
is an ill-posed problem, requiring the use of some form of
regularization. If we assume that the MB distribution is sparse
on a sufficiently high-resolution grid, i.e. ||x||0 (number of
non-zero entries in x) is low, then we can formulate the
following regularized problem:

x̂ =argmin
x

||y− Ax||22 + λ||x||0

subject to x ≥ 0,
(2)

where λ is a parameter that determines the influence of the
sparsity-promoting penalty ||x||0 on the estimate. The problem
described in (2) is however an NP-hard combinatorial problem.
To make the solution tractable, we resort to a widely adopted
heuristic alternative to (2), by replacing ||x||0 with ||x||1 [13]:

x̂ =argmin
x

||y− Ax||22 + λ||x||1

subject to x ≥ 0.
(3)

To facilitate high-resolution MB localization, the grid on
which x is assessed is oversampled by a factor of 4 with
respect to the original pixel grid. We divided the up-sampled
CEUS frames into partially overlapping patches of size 128×
128, which were processed separately. The results for all these
subregions are then stitched together.

For each region, (3) is numerically solved using the Fast
Iterative Shrinkage Thresholding Algorithm (FISTA), a fast
proximal gradient method [14]. The FISTA algorithm is
modified to only consider non-negative values for x. After
estimating x for each frame, the estimated MB distributions
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Figure 2: (a) First up-sampled fundamental mode image in the sequence, serving as the reference frame. (b) Resulting registration of a
frame captured 3 seconds later. (c) Motion-corrected microbubble locations.

in x are summed across all frames to yield the final super-
resolution image.

C. Motion compensation

To correct the detected high-resolution MB distribution for
tissue motion, we first extract the pure-tissue signal from
the fundamental mode images. With the aim of separating
those components originating from tissue, MBs, and noise,
we formulate the source extraction problem as a subspace
selection problem. To this end, we perform a singular value
decomposition (SVD) on the full space-time CEUS data (i.e.
a matrix of which the columns are the vectorized frames),
and attribute the first k singular values to tissue. The resulting
rank-k approximation of the original space-time matrix that
is based on these low-order singular values yields signal
components with high spatiotemporal coherence. Such an
approach was recently introduced as a highly effective clutter
filtering strategy to remove tissue signal [15]. Here we exploit
it for tissue-signal extraction rather than removal. For each
subregion/patch, we determine the affine transformation that
maps the image data back to the first frame in the loop, by
minimizing the mean squared error among those patches. We
use MATLAB’s (The MathWorks, Natick, MA) imregtform
function for this purpose. We then apply the same trans-
formation to the estimated MB distribution x̂ to adequately
compensate for displacements induced by tissue motion. While
this patch-based approach effectively deals with probe-motion
(translation) and to some extent local strain (scaling), it is
limited to in-plane transformations. Motion compensation is
performed after MB localization to avoid distortion of the
system PSF following the affine transformation.

III. RESULTS

Several examples of MB localization based on sparse recov-
ery are given in Figure 1. Compared to (a,b), the detected MB
density is notably higher in (c), demonstrating the method’s
ability to deal with varying densities and signal intensities.

In Figure 2, we exemplify the adopted motion compensation
procedure and indicate how this impacts the MB location
estimates.

Figure 3 shows the obtained super-resolution ultrasound
image of a region of interest in the human prostate. In total,

300 frames were used to construct this image, which were
taken during the wash-out phase of the CEUS acquisition.
The proposed sparse-recovery method reveals fine details that
are not visible in the diffraction limited maximum-intensity
projection.

IV. CONCLUSIONS AND DISCUSSION

In this paper, a new super-resolution ultrasound method that
is designed specifically to deal with high-density clinically-
acquired CEUS data is presented. By adapting sparse re-
construction techniques as used in fast super-resolution flu-
orescence microscopy and SUSHI, and combining them with
effective motion compensation, the proposed method enables
high resolution imaging of the perfused vasculature in a
standard clinical setting.

We observed that bubbles can be localized (Figure 1),
even if their PSFs show significant overlap. Moreover, the
method yields plausible position estimates for varying den-
sities, without adapting the algorithm parameters (e.g. the
sparsity-promoting penalty λ).

A qualitative exemplification of the results obtained with
this principle is shown in Figure 3, where complex and
fine vascular structures are revealed. This level of detail
was achieved with merely 300 image frames, which was
predominantly limited by the increasingly impaired robustness
of motion compensation after longer accumulation times.

Tissue motion impedes the achievable resolution and fidelity
of super-resolution methods. Although dedicated registration
techniques were exploited to mitigate its impact, one can not
account for out-of-plane movements which are in practice
inevitable. This stresses the need for methods that can reach
a high density of localized bubbles in a very short time in a
clinical setting, and exploitation of 3D ultrasound acquisitions
that facilitate complete registration in all directions.

The initial results presented in this work are promising
and yield plausible outcomes. Yet, a more extensive study is
required to validate the proposed approach. The localization
performance should be thoroughly assessed in-silico and,
ideally, to some extent in-vitro. The latter poses challenges on
its own, as microfabrication of vascular structures is in practice
not an easy task. These aspects, along with optimization of the
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Figure 3: (a) Standard maximum intensity projection of a CEUS acquisition in a human prostate and (b) a selected area in the image. (c)
Sparsity-driven super-resolution ultrasound on the same area.

adopted algorithm and exhaustive comparison with alternative
super-resolution methods, are therefore part of future work.
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