

Sub-Nyquist Cognitive Radio System

Etgar Israeli, Shahar Tsiper, Deborah Cohen, Eli Shoshan, Rolf Hilgendorf, Yonina C. Eldar

FPGA Series Generator $p_i(t)$ XILINX FPGA - VC707

Low Rate Aliased Signal

NI[©] PXIe-1065 with DC Coupled 4-Channel ADC

 $Signal\ ADC + DSP$

Mixing Series

NI® USRP-2942R RF Generator

- The mixing series are generated at high rate and alias the signal's bands to baseband.
- Alternate between ±1 at rate 6.1GHz.
- Generated using XINLINX VC707 FPGA

The MWC Card

Digital Support & Signal Recovery

- The transfer matrix A is produced by the calibration procedure.
- The Orthogonal Matching Pursuit (OMP) algorithm is used to detect the transmitted signal carriers.
- the signal slices are then reconstructed by inverting the matrix A reduced to the recovered support:

$$\mathbf{y}[n] = \mathbf{A}z_{s}[n] \implies \left[\hat{z}_{s}(f) = \mathbf{A}_{s}^{\dagger}\mathbf{y}(f)\right]$$

Support recovery and reconstruction occurs in real time

The Calibration Process

- · The calibration process estimates the transfer function of the system, the matrix A.
- In the *l*-th step, a sine wave is injected to the system:

 $x_{l}(t) = \beta_0 \sin(2\pi (f_p l + f_0)t)$

- To recover the skewed coefficients of the expander we use linear combinations of the output samples.
- An estimation technique recovers the coefficients of the transfer matrix A.

· Least Squares (Trust Region method) minimizes the error according to:

The autonomous calibration process flow chart.

mixer's LO input, adds additional redundant harmonics to the output mixed signal y[n]. When inserting sinusoid waves at rate kf_p+f_0 , additional harmonics are present at $f=m_1f_p\pm m_2f_0$, $m_{1,2}\in {\bf Z}$

Results

Hardware reconstruction success percentage of the calibrated matrix $\mathbf{A}_{calibrated}$ vs. the theoretical \mathbf{A}_{Theory} .

0GHz 3GHz (a) Input Signal. 0GHz (b) Calibrated matrix full band reconstruction.

Correct support detection of the input signal, and full reconstruction, in frequency domain.

Full reconstruction in time domain

References

- Mishall, M., & Eldar, Y. C. (2010). From theory to practice: Sub-Nyquist sampling of sparse wideband analog signals. Selected Topics in Signal Processing, IEEE Journal of, 4(2), 375-391. Cordeiro, Carlos, et al. "IEEE 802.22: the first worldwide wireless standard based on cognitive radios." New Frontiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International Symposium on. IEEE, 2005.

Contact Us

Etgar Israeli Shahar Tsiper setgar@t2.technion.ac.il (Technion) (Technion)

tsiper@technion.ac.il Yonina Eldar yonina@ee.technion.ac.il (Technion)