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Near-Oracle Performance of Greedy Block-Sparse
Estimation Techniques From Noisy Measurements
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Abstract—This paper examines the ability of greedy algorithms
to estimate a block sparse parameter vector from noisy mea-
surements. In particular, block sparse versions of the orthogonal
matching pursuit and thresholding algorithms are analyzed under
both adversarial and Gaussian noise models. In the adversarial
setting, it is shown that estimation accuracy comes within a constant
factor of the noise power. Under Gaussian noise, the Cramér–Rao
bound is derived, and it is shown that the greedy techniques come
close to this bound at high signal-to-noise ratio. The guarantees are
numerically compared with the actual performance of block and
non-block algorithms, identifying situations in which block sparse
techniques improve upon the scalar sparsity approach. Specifically,
we show that block sparse methods are particularly successful
when the atoms within each block are nearly orthogonal.

Index Terms—Block sparsity, Gaussian noise, orthogonal
matching pursuit, performance guarantees, thresholding.

I. INTRODUCTION

T HE success of signal processing techniques depends to
a large extent on the availability of an appropriate model

which captures our knowledge of the system under consid-
eration and translates it to a useful mathematical framework.
There is consequently an ongoing search for mathematical
models which can accurately describe real-world signals. In
recent years, much research has been devoted to the sparse
representation model, which stems from the observation that
many signals can be approximated using a small number of
elements, or “atoms,” chosen from a large dictionary [1], [2].
Thus, we may write , where the signal is a linear
combination of a small number of columns of the dictionary
matrix , corrupted by noise . Since only a small number of
elements of are required for this representation, the vector

is sparse, i.e., most of its entries equal 0. It turns out that
the sparsity assumption can be used to accurately estimate
from , even when the number of possible atoms (and thus,
the length of ) is greater than the number of measurements
in [2]–[4]. This model has been used to great advantage
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in many fundamental fields of signal processing, including
compressed sensing [1], [2], denoising [3], deblurring [5], and
interpolation [6].

The assumption of sparsity is an example of a much more
general class of signal models which can be described as a union
of subspaces [7], [8]. Indeed, each support pattern defines a sub-
space of the space of possible parameter vectors. Saying that the
parameter contains no more than nonzero entries is equiva-
lent to stating that belongs to the union of all such subspaces.
Unions of subspaces are proving to be a powerful generaliza-
tion of the sparsity model. Apart from ordinary sparsity, unions
of subspaces have been applied to estimate signals as diverse as
pulse streams [9]–[12], multi-band communications [13]–[15],
and block sparse vectors [8], [16]–[19], the latter being the focus
of this paper. The common thread running through these appli-
cations is the ability to exploit the union of subspaces structure
in order to achieve accurate reconstruction of signals from a very
low number of measurements.

The block sparsity model is based on the realization that in
many practical sparse representation settings, not all support
patterns are equally likely. Specifically, if a particular element of

is nonzero, then in many cases “similar” elements in are also
nonzero. The precise definition of similarity is context-depen-
dent. For example, in Fourier-based dictionaries, neighboring
frequency bins are often jointly nonzero, while in wavelet-based
dictionaries, nonzero entries in a certain detail level are likely
to be correlated with nonzeros in higher detail levels. Conse-
quently, the sparsity model does not incorporate all of the struc-
ture present in the signal. The block sparsity approach aims to
partially overcome this drawback by partitioning the vector
into blocks, each of which contains a small number of elements.
The structure imposed by the block sparsity model is that no
more than a small number of blocks are nonzero. The model
thus favors the use of related atoms, rather than sporadic dictio-
nary columns. Consequently, block sparsity is well-suited for
those situations described above, in which specific atoms tend
to be used together.

The usefulness of a model depends on the existence of effi-
cient and effective methods for estimating a signal from its
measurements. Fortunately, estimators designed for the ordi-
nary sparsity model can be readily adapted to the block sparse
setting. Previous work has described techniques such as Group
Lasso [16], also known as L-OPT [8], [17], [18], block orthog-
onal matching pursuit (BOMP) [18], [20], and a block version
of the CoSaMP algorithm [19]. In this paper, we also consider
a block-sparse version of the thresholding algorithm, which we
refer to as block-thresholding (BTH). The BOMP and BTH ap-
proaches are representatives of a class of so-called greedy algo-
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rithms, which attempt to identify the support of by choosing
at each step the most likely candidate.

Having described various estimation algorithms, it is natural
to ask what can be guaranteed analytically about the perfor-
mance of these methods in practice. For example, in the ordi-
nary (non-block) sparsity setting, a rich collection of perfor-
mance guarantees exists for various algorithms under different
noise models. In particular, a distinction is made between ad-
versarial and random noise models. In the former case, nothing
is known about except that it is bounded, ; in par-
ticular, might be chosen so as to maximally harm a given es-
timation algorithm. Consequently, guarantees in this case are
relatively weak, ensuring only that the error in is on the order
of [2]–[4]. By contrast, when the noise is random, estimation
performance is considerably improved for most noise realiza-
tions [3], [21]–[23]. Even better performance can be obtained
in the Bayesian case, in which itself is random with a known
distribution [24]–[26].

This paper contributes to the ongoing effort to extend such
performance guarantees to the block sparse setting. Such guar-
antees are already available in the context of Group Lasso in
the random [27] and adversarial noise settings [8], [28]. Perfor-
mance assurances were also derived for a block version of the
CoSaMP approach under adversarial noise [19]. Some research
has focused on the related problem in which the same dictionary

is used to obtain measurements of a series of distinct signals
[29]. The performance of BOMP under Gaussian noise was first
addressed by Lozano et al. [20], who provided a bound on the

estimation error, i.e., the maximum componentwise error,
in the presence of Gaussian noise. However, their performance
guarantees are based on an extension of the Exact Recovery Co-
efficient, whose computation time is prohibitive.

In this paper, we restrict attention to greedy algorithms, which
are simpler (and more naive) than convex relaxation methods
such as Group Lasso, and are therefore more suitable for imple-
mentation in large-scale or computationally parsimonious set-
tings. We consider both adversarial noise and Gaussian random
noise, and bound the norm of the estimation error. Although
greedy algorithms are simpler and more efficient than convex
relaxation approaches, we demonstrate that under suitable con-
ditions, they are similarly successful. Our results are based di-
rectly on efficiently computable extensions of the mutual coher-
ence to the block sparse setting, and can therefore be examined
for any given matrix .

We begin by analyzing the adversarial noise model, and show
that both BOMP and BTH achieve an error on the order of
when the noise is bounded by . These results gener-
alize previous guarantees in several ways: First, when the noise
bound equals 0, we obtain the noise-free guarantees of Eldar
et al. [18]. Second, when each block contains one element, we
recover the non-block sparsity guarantee of Donoho et al. [4].
However, the adoption of the group sparsity model entails fur-
ther benefits, as we describe shortly.

We next turn to the random noise model, and examine in par-
ticular the case in which is white Gaussian noise. We derive
the Cramér–Rao bound (CRB) for estimating from its mea-
surements, and show that this bound equals the error of the “or-
acle estimator” which knows the locations of the nonzero blocks

of . However, while the oracle estimator relies on information
which is unavailable in practice, the CRB is known to be achiev-
able by the maximum-likelihood (ML) technique at high SNR.
Unfortunately, the ML approach is NP-complete, and thus can
probably not be implemented efficiently. Nevertheless, we pro-
ceed to show that both BOMP and BTH come within a nearly
constant factor of the CRB at high SNR, for dictionaries satis-
fying suitable requirements. Once again, when each block con-
tains one element, we can recover previously known guarantees
for non-block sparsity [22] from our results.

Comparing our results with those available for ordinary or
“scalar” sparsity reveals the conditions under which the block
sparse approach is beneficial. Our results are a function of two
numeric values, the block coherence and the sub-coherence
[18], which extend the concept of mutual coherence to the block
sparse setting. The block coherence and sub-coherence respec-
tively measure the degree of correlation between blocks and
within blocks. Dictionaries which have a natural segmentation
into blocks typically have sub-coherence and block coherence
values which are much lower than the mutual coherence; block
sparsity performance guarantees in this case are far better than
the scalar assurances. However, when a dictionary is arbitrarily
sectioned into blocks, the sub-coherence is typically not much
lower than the mutual coherence, and performance guarantees
for block techniques do not significantly improve upon scalar
sparsity algorithms.

The rest of this paper is organized as follows. The block
sparse setting is defined in Section II, and the BOMP and BTH
techniques are described in Section III. The adversarial noise
model is then analyzed in Section IV. The treatment of random
noise begins with the derivation of the CRB in Section V, while
performance guarantees for this case appear in Section VI. Fi-
nally, the guarantees and the CRB are compared with the ac-
tual performance of BOMP and BTH in a numerical study in
Section VII.

II. PROBLEM SETTING

A. Notation

The following notation is used throughout the paper. Ma-
trices and vectors are denoted by boldface uppercase letters
and boldface lowercase letters , respectively. The norm of a
vector is and the spectral norm of a matrix is .
The expectation of a random vector will be denoted or,
occasionally, , where the subscript is intended to empha-
size the fact that the expectation is a function of the deterministic
quantity . The adjoint and the Moore–Penrose pseudoinverse
of a matrix are denoted, respectively, by and , while
the column space of is .

We denote by the th -element block of a vector of
length . Thus,

(1)

Consequently, we may write

(2)
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Similarly, given a matrix having columns, the submatrix
contains the columns of ,

i.e., those columns of which correspond to the th block. The
support of is defined as the set of indices of nonzero
blocks of ; formally

(3)

Given an index set , the vector is constructed as the sub-
vector of containing the blocks indexed by ; in other words,
if , then

(4)

Likewise, the submatrix contains the column blocks in-
dexed by , so that

(5)

To uniquely define and , we will assume as a convention
that the elements of are sorted, i.e., .

B. Problem Definition

Let be a deterministic block-sparse vector, i.e.,
consists of blocks of size , of which at most

are nonzero [18]. The maximum support size is assumed to
be known. The block sparsity restriction can then be written as

(6)

For convenience, let be the support of the param-
eter , and let . Note the distinction between and : It is
known that at most blocks are nonzero, but the actual number
of nonzero blocks is unknown and may be smaller than . In
the sequel, it will be useful to define

(7)

The block sparse model differs from the more common
non-block sparsity setting: in the latter, it is assumed that a
small number of entries (rather than blocks) in the vector are
nonzero. To emphasize this difference, we occasionally refer to
the conventional model as “ordinary” or “scalar” sparsity.

We are given noisy observations

(8)

where is a known, deterministic dictionary, and is
a noise vector. Our goal is to estimate from the measurements

. It will be convenient to denote the th column (or “atom”) of
as . Thus, we have

(9)
We assume for simplicity that the dictionary atoms are normal-
ized, . We also assume that the measurement system
is underdetermined, i.e., the number of measurements is less

than the number of parameters ; thus, we must utilize the
structure , for otherwise we have no hope of recovering from
its measurements. Finally, we require that for any index set
of size , the subdictionary has full column rank.
This latter assumption is needed to ensure that after a support
set is chosen, one may estimate using standard techniques
for inverting an overcomplete set of linear equations, e.g., the
least-squares approach.

We will provide performance guarantees for two separate
noise models. First, we consider the adversarial setting, in
which the noise is unknown but bounded:

(10)

for a known constant . In this case, the goal is to provide
performance guarantees which hold for all values of satis-
fying (10). Second, we treat additive white Gaussian noise, in
which

(11)

In this case, is unbounded, and the goal will be to provide
guarantees which hold with high probability.

Following [18], we define the block coherence of as

(12)

We also define the sub-coherence

(13)

The block coherence and sub-coherence are generalizations of
the concept of the coherence, which is defined as

(14)

and applies to dictionaries regardless of whether they have a
block structure.

III. TECHNIQUES FOR BLOCK-SPARSE ESTIMATION

For reference and in order to fix notation, we now describe
the two greedy algorithms for which we provide performance
guarantees.

a) Block-Thresholding (BTH): We propose the following
straightforward extension of the well-known thresholding
algorithm. Given a measurement vector , perform the
following steps:

1) Compute the correlations

(15)

2) Find the largest correlations and denote their indices
by . In other words, find a set of indices

such that for all and .
3) The reconstructed signal is given by

(16)
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b) Block Orthogonal Matching Pursuit (BOMP): The BOMP
algorithm, based on the OMP algorithm [30], was independently
proposed in [20] and [18].

Given a measurement vector , perform the following
steps:

1) Define .
2) For each , do the following:

a) Set

(17)

b) Set

(18)

c) Set .
3) The estimate is given by .
c) Oracle Estimator: We will find it useful to analyze the

oracle estimator, which is defined as the least-squares solution
within the true support set, i.e.,

(19)

Using the notation introduced above, we have

(20)

where is the complement of the support
set . Note that the term “oracle estimator” is somewhat mis-
leading, since relies on knowledge of the true support set ,
and is therefore not a true estimator.

IV. GUARANTEES FOR ADVERSARIAL NOISE

We begin by stating our performance guarantees in the case of
adversarial noise. The proofs of these results are quite technical
and can be found in Appendix A.

Theorem 1: Consider the setting of Section II with adver-
sarial noise (10). Suppose that

(21)

Then, the BTH algorithm correctly identifies all elements of the
support of , and its error is bounded by

(22)

Theorem 2: Consider the setting of Section II with adver-
sarial noise (10). Suppose that

(23)

Then, the BOMP algorithm identifies all elements of ,
and its error is bounded by

(24)

The following remarks should be made concerning Theorems
1 and 2.

Scalar sparsity: The scalar sparsity setting, in which has no
more than nonzero elements, can be recovered by choosing

. In this case, BOMP and BTH reduce to their scalar
versions, which are called OMP and thresholding, respectively,
and the block-coherence equals the coherence of (14).
Theorems 1 and 2 then coincide with the well-known results
of Donoho et al. [4] for performance of scalar sparse signals
under adversarial noise. As an example (and for future refer-
ence), the OMP performance guarantee [4, Theorem 5.1] is pro-
vided below.

Corollary 1 (Donoho et al. [4]): Let be a
measurement vector of a signal having sparsity .
Suppose that the coherence of the dictionary satisfies

(25)

Then, OMP recovers the correct support pattern of and
achieves an error bounded by

(26)

Note that in the case of ordinary sparsity, , and therefore
can be defined simply as the magnitude of the smallest

nonzero element in .
Benefits and limitations of block sparsity: It is interesting to

compare the achievable performance guarantees when one uti-
lizes the block-sparse structure, as opposed to merely using or-
dinary (scalar) sparsity information. For concreteness, we focus
in this discussion on a comparison between OMP and BOMP,
but identical conclusions can be drawn by comparing the thresh-
olding algorithm with its block-sparse version BTH.

Consider a block sparse signal as defined in Section II.
Such a signal can also be viewed as a scalar sparse signal of
length , having no more than nonzero elements.
It is readily shown that the coherence satisfies and

[18]. Consequently,

(27)

which implies that if the conditions for the performance guaran-
tees of both BOMP and OMP hold, then the performance guar-
antee (24) for BOMP will be at least as good as that of OMP
(26). Moreover, in typical block-sparse settings, both and
will be substantially smaller than [18], and the guarantees for
BOMP will then be considerably better.

These results notwithstanding, it should be noted that
BOMP should not automatically be preferred over OMP in
any setting. This is because the condition (23) of Theorem 2
can sometimes be weaker than that of OMP. Specifically, the
factor in (23) is larger than the analogous
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term in (25).1 This implies that if the sub-coherence is
large, block sparse algorithms will not perform as well as their
scalar counterparts. Such a result is to be expected: highly
correlated dictionary blocks may cause noise amplification,
and in such cases, it may be preferable to separately correlate
each atom with the measurements, rather than relying on the
combined correlation of the entire block. Indeed, it would be
quite surprising if a partition of any dictionary into arbitrary
blocks could be shown to perform as well as a scalar sparsity
algorithm, since the former adds a restriction on the possible
support patterns of the vector . The lesson to be learned from
this analysis is that block sparsity techniques are effective when
the dictionary can be separated into blocks whose elements are
orthogonal or nearly orthogonal. Indeed, if , then the
block sparsity results are always preferable to the guarantees
for scalar sparsity.

Noiseless case: The situation in which , i.e., no noise
is present in the system, has been previously analyzed in the
context of block sparsity in [18, Th. 3]. This setting can be re-
covered by choosing the noise bound . In this case, the
condition (23) simplifies to

(28)

and Theorem 2 then amounts to a guarantee for perfect recovery
of if (28) holds.

Similarly, by substituting into Theorem 1, one obtains
a perfect recovery condition for BTH in the noiseless setting.
Specifically, if the condition

(29)

is satisfied, then BTH correctly recovers from its noiseless
measurements .

Severity of the error: As in the scalar sparsity scenario, the
presence of adversarial noise severely limits the ability of any
algorithm to perform denoising. This is evident from Theorems
1 and 2, which guarantee only that the distance between the es-
timates and the true value of is on the order of the noise mag-
nitude . Given our detailed knowledge of the structure of the
signal , one would expect more powerful denoising capabilities
for typical noise realizations. Consequently, in the remainder
of this paper, we adopt the assumption of random noise, which
cannot align itself so as to maximally interfere with the recovery
algorithms.

V. CRAMÉR–RAO BOUND

A central goal in assessing the quality of an estimator is to
check its proximity to the best possible performance in the given
setting. To this end, it is common practice to compute the CRB
for unbiased estimators [31], i.e., those techniques for which
the bias equals zero. The CRB is a lower
bound on the mean-squared error
for any unbiased estimator .

1The remaining terms in (23) are always no worse than the corresponding
terms in (25).

To utilize the information inherent in the block sparsity struc-
ture, we apply the constrained CRB [32]–[35] to the present set-
ting. In the constrained estimation scenario, one often seeks es-
timators which are unbiased for all parameter values in the con-
straint set [32], [33]. However, as we will see below, this require-
ment is too strict in the block sparse setting. Indeed, in Theorem
3 we show that it is not possible to construct any method which
is unbiased for all feasible parameter values. Consequently, a
weaker, local definition of unbiasedness is called for, which we
refer to as -unbiasedness [35].

Intuitively, an estimator is said to be -unbiased at a point
if holds at the point and at all points

in which are sufficiently close to . To formally define -un-
biasedness, we first recall the concept of a feasible direction. A
vector is said to be a feasible direction at if, for any
sufficiently small , we have . We then say that
is -unbiased at if and if

(30)

for any feasible direction . In other words, the bias is zero at
and remains unchanged, up to a first-order approximation,

when moving away from along feasible directions. This defi-
nition yields the following result, whose proof can be found in
Appendix B.

Theorem 3 (Cramér–Rao Bound for Block-Sparse Signals):
Consider the setting of Section II in which the block sparse
parameter vector is to be estimated from measurements cor-
rupted by Gaussian noise (11).

1) Suppose contains fewer than nonzero blocks, i.e.,
. Then, no finite-variance estimator is -unbiased

at .
2) Suppose contains precisely nonzero blocks, i.e.,

. Then, any estimator which is -unbiased at satisfies

(31)

We recall that both the MSE and the CRB are functions of the
unknown vector , as is generally the case when estimating a
deterministic parameter. It follows immediately from Theorem
3 that no finite-variance estimator can satisfy for all

, which explains why we previously avoided this simpler
definition of unbiasedness in the constrained setting. Instead,
restricting attention to a local unbiasedness requirement led to
a finite CRB for almost all parameter values in : specifically,
those parameters whose support is maximal,

.
For maximal-support values of , it is not difficult to show

that the CRB (31) coincides with the MSE of the oracle
estimator (20). In this case it is possible to get a sense for
the value of the bound, as follows. From (44) of Lemma 1
(see Appendix A), we have that none of the eigenvalues of

are larger than .
Thus,

(32)
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In other words, when the block coherence and sub-coherence
of are low, the bound of Theorem 3 will be close to .
This value is typically much lower than the total noise variance

. Thus, at least according to the CRB, it is pos-
sible to achieve substantial denoising in the presence of random
noise. This stands in contrast to the rather disappointing guar-
antees presented for adversarial noise in the previous section.
We may thus hope that the performance will be improved when
considering random noise.

As opposed to the oracle estimator, which cannot be im-
plemented in practice, it is well-known that the CRB can be
asymptotically achieved at high SNR by the maximum-like-
lihood (ML) estimator [31]. However, in the present setting,
computing the ML estimator is NP-hard, and thus impractical.
Consequently, it is of interest to determine whether there exist
efficient techniques which come close to the performance
bound (31), at least for high SNR values. As we will show in
the next section, this question is answered in the affirmative:
greedy block sparsity techniques do indeed approach the CRB
for sufficiently high SNR.

VI. GUARANTEES FOR GAUSSIAN NOISE

We now analyze the performance of block sparse algorithms
when the noise . Our main performance guaran-
tees are summarized in Theorems 4 and 5. The proofs of these
theorems are found in Appendix C.

Theorem 4: Consider the setting of Section II with additive
white Gaussian noise . Suppose that

(33)

for some constant . Then, with probability exceeding

(34)

the BTH algorithm identifies the correct support of and
achieves an error bounded by

(35)
Theorem 5: Consider the setting of Section II with additive

white Gaussian noise . Suppose that

(36)

for some constant . Then, with probability exceeding
(34), the BOMP algorithm identifies the correct support of and
achieves an error bounded by

(37)
We now provide some insights into the performance of block-

sparse algorithms under random noise.

Random noise versus adversarial noise: As noted in
Section IV, performance guarantees in the case of adversarial
noise can ensure a recovery error on the order of the total noise
magnitude. This is a result of the fact that the noise could, in
principle, be concentrated in a single nonzero component of

, whereupon it would be indistinguishable from the signal.
However, for random noise, such an event is highly unlikely.
Consequently, Theorems 4 and 5 provide much tighter perfor-
mance guarantees: both theorems demonstrate that, with high
probability, the estimation error is on the order of ,
i.e., within a constant times of the CRB presented in
Section V. Since the noise variance is given by ,
and since typically , we conclude that the block
sparse algorithms have successfully removed a large portion of
the noise, owing to the utilization of the union-of-subspaces
structure.

Scalar sparsity: It is interesting to note that known results for
scalar sparsity algorithms can be recovered from our block spar-
sity guarantees, by substituting into Theorems 4 and 5.
For example, consider the BOMP guarantee (Theorem 5). In the
scalar case, we obtain the OMP algorithm, and its performance
guarantee can be written as follows.

Corollary 2: Let be a measurement vector of a
signal having sparsity . Suppose the coherence of

satisfies

(38)

for some . Then, with probability exceeding

(39)

the OMP algorithm recovers the correct support of , and
achieves an error bounded by

(40)

Corollary 2 is nearly identical to [22, Thm. 4], with the only
difference being that the constant in (39) is
replaced in [22] with the slightly better constant .
This slight discrepancy can be resolved if the more accurate
version (88a) of Lemma 4 is used in the proof of Theorem 5,
but the resulting expression becomes much more cumbersome
in the block sparse case.

Block sparsity versus scalar sparsity: A comparison between
Theorem 5 and Corollary 2 indicates that block sparse tech-
niques can outperform scalar sparsity algorithms if the dictio-
nary is well-suited to division into blocks, in the sense that
the sub-coherence and block coherence are substantially
lower than the mutual coherence . This is indeed the case when
the division into blocks is sensible, as can be seen from the fol-
lowing example: Consider an arbitrary dictionary containing
atoms divided into blocks, each consisting of
atoms. The coherence in this case is obtained as the maximum
over pairs of atoms. On the other hand, the sub-co-
herence is a maximum over pairs of atoms,
which is much lower. Thus, the sub-coherence can potentially
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TABLE I
PERFORMANCE GUARANTEES FOR OMP AND BLOCK-OMP

be much smaller than the coherence. Of course, it is possible that
the two most highly correlated atoms lie within the same block,
in which case . Thus, as mentioned in Section IV, it is not
possible to guarantee improved performance merely by taking
an existing scalar sparsity scenario and arbitrarily dividing it
into blocks. Rather, block sparsity yields improvements when
some underlying logic separates the atoms into blocks.

Even when a natural segmentation into blocks exists, a legit-
imate question is whether the adoption of a block sparse ap-
proach can provide a significant quantitative advantage over
standard scalar techniques. This question will be addressed in
the next section, where we will see via simulations that consid-
erable performance benefits are indeed achieved by the block
sparse approach.

Greedy versus convex relaxation approaches: The results
above are comparable to performance guarantees obtained
previously for convex relaxation algorithms, such as the Group
Lasso approach [27]. An important difference, however, is
the requirement on in both Theorems 4 and 5. This
essentially requires all blocks in to have a minimal norm,
a condition which does not exist when using convex relax-
ation algorithms. This is a fundamental property of greedy
approaches, which follows from the fact that such algorithms
must correctly identify all support blocks in order to provide a
reliable estimate. The requirement can thus be seen as the price
one must pay for the use of the faster greedy approaches. An
analogous phenomenon occurs in the scalar sparsity setting,
and is further discussed in [22].

VII. NUMERICAL EXPERIMENTS

In this section, we describe a numerical experiment which
was conducted to measure the quantitative benefits provided
by the use of block sparse algorithms. Our experiment used
dictionaries containing orthonormal blocks. Such dictionaries
were constructed by first generating a random matrix
containing IID, zero-mean Gaussian random variables, and
then performing a Gram–Schmidt procedure separately on the
columns of each block. As a first experiment, we generated a
variety of such dictionaries, and computed their coherence
and block coherence . (The sub-coherence of dictionaries
generated in this manner is necessarily .) These values
were used to compute performance guarantees for BOMP
(using Theorem 5) and for OMP (using Corollary 2). We
assumed throughout that the minimum norm among
nonzero blocks equals 1 and that the minimum nonzero ele-
ment equals . Some typical results are listed in Table I.
To compute the guarantees in this table, the smallest value of
yielding a 99% probability of success was chosen. The resulting
guarantee is listed in multiples of . For example, a value of
Guarantee means that for 99% of
the noise realizations. Also listed in Table I are the maximum
noise standard deviations for which the performance
guarantees still hold. A dash indicates that no guarantee
can be made for the given setting even in the noise-free case.

It is evident from Table I that the block sparse algorithm
BOMP is guaranteed to perform over a much wider range of
problem settings than the scalar OMP approach. Furthermore,
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even when performance guarantees are provided for both tech-
niques, those for BOMP are substantially stronger. This is a con-
sequence of the fact that the block coherence and sub-coherence
are substantially lower than the mutual coherence in this setting.
To provide merely one striking example from Table I, note that
50 measurements suffice for BOMP to identify a signal com-
posed of a single five-element block among a set of 1200 pos-
sible blocks, whereas for OMP to identify such a signal at the
same noise level, as many as 3000 measurements are required.
The reason for this advantage is clear: the OMP algorithm must
separately identify each nonzero component of the signal, and
must therefore choose among a total of
possible support sets. This is obviously more challenging than
identifying one nonzero block among a set of 1200 possibili-
ties. Clearly, then, knowledge of a block-sparse structure can
substantially improve performance if it is correctly utilized.

Table I also compares the performance guarantees with the
CRB of Theorem 3. The CRB is listed for a random choice of
support set containing precisely nonzero blocks; however,
choosing different sets only has a small effect on the value
of the bound. The gap between these lower and upper bounds
is not inconsiderable, and is typically on the order of a factor
of 10. There are several reasons for this gap. First, the perfor-
mance guarantees plotted above indicate an error which is ob-
tained with 99% confidence, whereas the CRB is a bound on the
MSE. By its very nature, the MSE averages out unusually dis-
ruptive noise realizations, and thus tends to be more optimistic.
Second, different values of may yield significantly different
performance; the performance guarantees apply to all values of

, whereas the CRB is plotted for a single, typical parameter
value. Third, some loss of tightness undoubtedly results from
the derivations of the theorems, i.e., there may still be room for
improved bounds.

To measure the relative influence of these factors, we per-
formed another experiment, in which the guarantees were com-
pared with the actual performance of the various algorithms. To
overcome the aforementioned pessimistic effect of a guarantee
which holds with overwhelming probability, in this second ex-
periment we computed guarantees with a 50% confidence level.
In other words, these are assurances on the median of the dis-
tance between and its estimate, which captures the typical es-
timation error. We also computed the actual median error of the
various algorithms for a variety of parameter values.

The details of this experiment are as follows. We constructed
a 3000 6000 dictionary containing blocks of

atoms each, using the orthogonalization algorithm de-
scribed above. The resulting coherence of was ,
the block coherence was , and since each block
was orthonormal, the sub-coherence was . We then con-
structed a variety of block sparse vectors , each having
nonzero blocks, with and . We
chose the parameter vectors so as to cover as wide a range of
scenarios as possible, within the aforementioned requirements.
For example, some parameter vectors contained a block with a
single nonzero component whose value was , while other
vectors contained a block with each of the elements receiving
a value of . Although it is clearly not feasible to cover
the full range of possible parameter vectors, it is hoped that in

this way some sense is given of the variability in performance
for different parameter values. Indeed, as shown below, different
parameters often yield widely differing estimation errors.

For each choice of a parameter vector, 20 noise realizations
were generated and the resulting measurement vector was
computed using (8). The BOMP, BTH, OMP, and thresholding
algorithms were then applied to each of the measurement vec-
tors. For every technique and each parameter vector, the median
estimation error (among the noise realizations) was computed.
The range of median estimation errors obtained for different
choices of is plotted as a shaded area in Fig. 1.

In the present setting, neither of the scalar sparsity algorithms
was capable of providing a performance guarantee. For BOMP
and BTH, performance guarantees were available, and these are
plotted as a solid line in Fig. 1. These guarantees are valid only
up to a certain maximal noise variance, at which point the solid
line in Fig. 1 stops. The results are also compared with the CRB
of Theorem 3. It should be emphasized that the CRB is a bound
on the MSE, rather than the median error, although in prac-
tice the differences between these two quantities appear to be
quite small. It is also worth recalling that the CRB is a bound
on unbiased estimators, while all of the techniques discussed
herein are biased; nevertheless, it is evident that the CRB still
provides a rough measure of the performance of the proposed
algorithms.

Several comments are in order concerning Fig. 1. First,
the performance of both block sparse algorithms exhibits a
transition: near-CRB performance for low noise levels dete-
riorates substantially when the noise level crosses a certain
threshold. This behavior qualitatively matches the predictions
of the performance guarantees, which ensure support recovery
and near-CRB performance for sufficiently low noise levels.
The threshold at which this transition occurs is identified
fairly accurately for BOMP, and less so for BTH, although it
is possible that there exist some (untested) parameter values
for which the BTH transition occurs at lower noise levels.
However, the numeric value of the performance guarantee
is somewhat pessimistic: while the observed performance is
close to the CRB for all parameter values, analytically one can
guarantee only that the median error will not be larger than
approximately 10 times the CRB. This result is most likely due
to the various inequalities employed in the proofs of Theorems
4 and 5. Indeed, since the correct support is identified with high
probability for most noise realizations, the BTH and BOMP
algorithms will likely tend to coincide with the oracle estimator,
whose error equals that of the CRB. The question of formally
proving such a claim remains a topic for further research.

The advantages of the block sparse approach become
evident when compared with scalar sparsity algorithms
[Fig. 1(c) and (d)]. For the scalar techniques, no performance
guarantees can be made in the present setting. Unlike the block
sparsity algorithms, the scalar approaches fail to recover the
correct parameter vector even when the noise is negligible, and
for some parameter values, their error does not converge to
the CRB. The thresholding algorithm, in particular, ceases to
improve (for some parameter values) as the noise is reduced,
while the OMP approach, although significantly better than
thresholding, does not converge to the CRB as do the block
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Fig. 1. Median squared error as a function of the noise variance for block and scalar sparse estimation algorithms. The shaded region indicates the range of errors
encountered for different parameter values. The dotted line plots the CRB. The thick solid line in (a) and (b) indicates the performance guarantees for the block
sparse algorithms; no guarantee can be made for the scalar sparsity techniques in (c) and (d). (a) Block-OMP. (b) Block-thresholding. (c) OMP. (d) Thresholding.

sparse techniques. This demonstrates the advantages of uti-
lizing the fact that is known to have a block-sparse structure.

The performance of BOMP [Fig. 1(a)] is quite similar to that
of BTH [Fig. 1(b)] in the experiment above. This is not surprising
when one compares our problem setting with the guarantees of
Section VI. Indeed, the primary difference between the BOMP
and BTH algorithms is that the one-shot support estimation em-
ployed by BTH causes large-magnitude blocks to overshadow
small-magnitude nonzero blocks [24]. In the setting of Fig. 1, the
range of magnitudes between and
is not very large, and therefore BTH performs nearly as well as
BOMP. If a wider dynamic range is present in the signal , then
it can be shown that the guarantees and actual performance for
BOMP is hardly changed, whereas the guarantee for BTH no
longer holds, and its performance deteriorates severely.

VIII. CONCLUSION

In this paper, we examined the performance of the greedy
block sparse algorithms BOMP and BTH under the adversarial
and Gaussian noise models. Comparing our performance guar-
antees to those known for the analogous scalar sparsity algo-
rithms, we saw that the block sparse model can provide a sub-
stantial benefit in appropriate settings. Specifically, the block
approach replaces the mutual coherence with two quantities,

the block coherence and the sub-coherence , which re-
spectively measure the inter-block and intra-block correlation.
While it can be shown that and , the true benefit
of block sparsity arises when these measures are siginificantly
lower than the mutual coherence. As we have seen, this indeed
occurs when the dictionary or sensing matrix can naturally be
segmented into distinct blocks which are close to orthogonal;
in this case, the performance guarantees for block sparse algo-
rithms are substantial. Fortunately, and can be efficiently
calculated, providing practitioners with a means to assess the
potential benefit of block techniques for their specific setting.

APPENDIX A
PROOFS FOR ADVERSARIAL NOISE

We begin by providing several lemmas which will prove
useful for the analysis under both the adversarial and the
Gaussian noise models.

Lemma 1: Given a dictionary having block coherence
and sub-coherence , we have

(41)

and

(42)
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If , then

(43)

Suppose and let be an index
set with . Then

(44)

Proof: The bound (41) follows directly from the definition
(12) of block coherence. To prove (42), (43), observe that the
diagonal elements of the matrix equal 1, while the off-
diagonal elements are bounded in magnitude by . Therefore, by
the Gershgorin circle theorem [36], all eigenvalues of
are in the range , demonstrating (42).
Furthermore, it follows that the eigenvalues of
are in the range , leading
to (43).

It remains to prove (44). To this end, let and
write as

...
...

. . .
...

(45)

where each is a matrix containing the correlations
between two blocks of dictionary atoms. From the definition of
block coherence, we have

for all (46)

By a generalization of the Gershgorin circle theorem [37, Th.
2], it follows that all eigenvalues of satisfy

(47)

Now, from the definition of sub-coherence, the off-diagonal
elements of are no larger in magnitude than , while
the diagonal elements of all equal 1. Therefore, by the
Gershgorin circle theorem, given an arbitrary constant , all
eigenvalues of the matrix are in the range

. Consequently,

(48)

Combining with (47) and rearranging, we conclude that all
eigenvalues of satisfy

(49)

Consequently, the eigenvalues of are no larger than
, establishing (44).

Lemma 2: Consider the setting of Section II, and suppose that

(50)

for a given value . If the dictionary satisfies

(51)

then

(52)

where .
If (51) is replaced by the stronger condition

(53)

then

(54)

Proof: The proof is an extension of [22, Lemma 3] to the
block-sparse case, and is ultimately inspired by [4]. We first note
that

(55)

By (50), the first term in (55) is smaller than . Together with
(41), we obtain

(56)

On the other hand,

(57)

As we have seen in the proof of Lemma 1, the eigenvalues of
are bounded in the range .

Consequently,

(58)
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Combining this result with (57), we have

(59)

Together with (50) and (41), this implies that

(60)

Merging the results (56) and (60) yields

(61)

Consequently, if (51) holds, then (52) follows, as required.
In a similar fashion, observe that

(62)

As noted previously, all eigenvalues of are larger than
or equal to , and therefore

(63)

Furthermore, using (41) we have, for ,

(64)

Substituting (50), (63), and (64) into (62) provides us with

(65)

Finally, using (56) we obtain

(66)

Therefore, if the condition (53) is satisfied, then (54) holds, com-
pleting the proof.

We are now ready to prove Theorems 1 and 2.

Proof of Theorem 1: Using (10) and (42), we have for all

(67)

Thus, (50) holds with .
In light of (21), the condition (53) for the second part of

Lemma 2 holds, and therefore, by Lemma 2, we conclude that
(54) holds. It follows that all blocks with are more
highly correlated than the off-support blocks . Thus,
the estimated support contains the true support set (with the
possible addition of superfluous indices if ). It follows
from the definition (16) of that , and thus

(68)

where we have used the fact that , which follows
from our assumption that has full row rank for any set of
size (see Section II).

Since , it follows from (21) that

(69)

Therefore, we may apply (44), yielding

(70)

Combining this result with (68) and using (10), we obtain (22),
as required.

Proof of Theorem 2: As shown in the proof of Theorem 1, it
follows from (10) that (50) holds with .
From (23) we then have

(71)

Since , this implies the condition (51) for the
first part of Lemma 2. Thus, by Lemma 2, the dictionary block
most highly correlated with is a block within the support
of . In other words, the first iteration in the BOMP algorithm
correctly identifies an element within the support .

The proof continues by induction. Assume we have reached
the th iteration with and that all previous iterations
have correctly identified elements of . In other words, using
the notation of Section III, we have .

By definition, we now have

(72)

where is the estimation error after itera-
tions. Since and, by induction, ,
we have . Furthermore, , so that

contains less than elements, and is thus a strict
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subset of . It follows that at least one nonzero block in is
equal to the corresponding block in . Therefore,

(73)

To summarize, by (72), can be thought of as a noisy mea-
surement of the block sparse vector , which contains a
block whose norm is at least . Using (73) and (23), we
find that the condition (51) holds for this modified estimation
problem. Consequently, by Lemma 2, we have

(74)

Therefore, by (17), the th iteration of the BOMP algorithm will
choose an index belonging to the correct support set , as long
as .

Since the BOMP algorithm never chooses the same support
element twice, we conclude that precisely the elements of
will be identified in the first iterations. If , then the re-
maining iterations will identify some additional elements not in

, so that ultimately the estimated support set
will satisfy . The estimate therefore satisfies

. Following the procedure (68)–(70) in the
proof of Theorem 1, we obtain in an identical manner the re-
quired result (24).

APPENDIX B
PROOF OF THEOREM 3

To compute the CRB, we must first determine the Fisher in-
formation matrix for estimating from of (8). This can
be done using a standard formula [31, p. 85] and yields

(75)

We now identify, for each , an orthonormal basis for
the feasible direction subspace, which is defined as the smallest
subspace of containing all feasible directions at . To this
end, denote by the th column of the identity matrix.
Consider first points for which . In other words,
these are parameter values whose support contains fewer than

elements. For such values of , we have, for any and any

(76)

and therefore for any and for any . Consequently,
the set of feasible directions at includes , and
the feasible direction subspace is therefore itself. Thus, for
values containing fewer than nonzero blocks, a convenient
choice of a basis for the feasible direction subspace consists of
the columns of the identity matrix.

Next, consider maximal-support parameter values, i.e., vec-
tors for which . It is now no longer possible to add any
vector to without violating the constraints. Indeed, it is not
difficult to see that the only feasible directions are linear com-
binations of the unit vectors for which belongs to one of the

blocks in . These unit vectors can thus be chosen as a basis for
the feasible direction subspace.

Let be a matrix whose columns comprise the chosen
orthonormal basis for the feasible direction subspace at . Note
that the dimensions of change with ; specifically,

when , and is an matrix other-
wise. A necessary condition for a finite-variance -unbiased es-
timator to exist at a point is [35, Th. 1]

(77)

When , we have . In this case, using (75), the
condition (77) becomes

(78)

Since the dimensions of are with , the rank of
is at most , and thus cannot include the entire

space . We conclude that in this case, (77) does not hold, and
therefore no -unbiased estimator exists at points for which

, proving part (a) of the theorem.
Let us now turn to maximal-support parameter values . As

we have seen above, in this case the matrix consists of
the columns for which is an element of a block within the
support of . Therefore, the product selects those atoms
of belonging to blocks within , i.e., . Using
(75), this leads to

(79)

which is invertible by assumption (see Section II). It follows that
the condition (77) holds for maximal-support parameters . One
can therefore apply [35, Th. 1], which states that for such values
of :

(80)

Combining with (79) and using the fact that ,
we obtain (31), proving part (b) of the theorem.

APPENDIX C
PROOFS FOR GAUSSIAN NOISE

We begin with two lemmas which prove some useful proper-
ties of the Gaussian distribution. The first of these is a general-
ization of a result due to Šidák [38].

Lemma 3: Let be a set of jointly Gaussian
random vectors. Suppose that for all , but that the
covariances of the vectors are unspecified and that the vectors
are not necessarily independent. We then have

(81)

Proof: We will demonstrate that

(82)
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The result then follows by induction. For simplicity of notation,
we will prove that (82) holds for the case ; the general
result can be shown in the same manner.

Denote by the pdf of conditioned on . Ob-
serve that, for a deterministic value , the pdf defines
a Gaussian random vector whose mean depends linearly on ,
but whose covariance is constant in . Therefore, using a result
due to Anderson [39], it follows that

(83)

is a non-increasing function of .
Next, denoting by the marginal pdf of , we have

(84)

Thus, the function is a weighted average of expressions
of the form for values of satisfying

. However, as we have shown,
is non-increasing in . Consequently, is non-

increasing in .
On the other hand, observe that as , the probability

of the event converges 1. Thus, we have

(85)

Combined with the fact that is non-increasing in ,
we find that

for all (86)

Using the definition of and applying Bayes’s rule, we
obtain

(87)

and thus complete the proof.
Our next lemma bounds the tail probability of the chi-squared

distribution.
Lemma 4: Let be a -dimensional Gaussian random vector

having mean zero and covariance . Then, for any , we
have

(88a)

(88b)

where is the Gamma function and

(89)

is the double factorial operator.

Of the two bounds provided in (88), the first is some-
what tighter, but obviously more cumbersome. For analytical
tractability, we will use the latter bound in the sequel.

Proof of Lemma 4: The expression is distributed as a
chi-squared random variable with degrees of freedom. There-
fore, its tail probability is given by [40, §16.3]

(90)

where is the incomplete Gamma function
. It follows from the series expansion of

that [41, §6.5.32]

(91)

where when is odd and when is even. Note
that (91) holds with equality for even , but the inequality is
strict for odd . Since , we can enlarge each of the terms
in the square brackets in (91) by replacing it with .
The total number of terms in brackets is , yielding

(92)

Substituting into (90) demonstrates (88a).
To prove (88b), we distinguish between even and odd values

of . Assume first that is even and denote . We then
have

(93)

and

(94)

Substituting these values into (88a) and simplifying yields

(95)

which clearly satisfies (88b).
Similarly, assume that is odd and write . Substi-

tuting the formula

(96)

into (88a), we obtain

(97)

It is easily verified that

for all (98)

Substituting back into (97) yields the required result.
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Our next result applies more specifically to the block sparse
estimation setting. Following [3], [22], we consider the event

(99)

where

(100)

for a given . We then have the following
lemma.

Lemma 5: Under the setting of Section II, assume that is
a Gaussian random vector with mean zero and covariance .
Then, the probability of the event of (99) is bounded by

(101)

Proof: Observe that is a -dimensional Gaussian
random vector with mean zero and covariance .
Therefore, the random vector

(102)

is a -dimensional Gaussian random vector with mean zero and
covariance . We thus have

(103)

where, in the last step, we used (42). Using Lemma 4 and sub-
stituting the value (100) of , we obtain

(104)

where

(105)

Using Lemma 3, we have

(106)

When , the bound (101) is meaningless and the theorem
holds vacuously. Otherwise, when , we have

(107)

where we used the fact that whenever
and . Substituting the value of from (105) and

recalling that yields the required result.
We are now ready to prove Theorems 4 and 5.
Proof of Theorem 4: By Lemma 5, the event of (99) oc-

curs with probability exceeding (34). Furthermore, using (33),

it follows from Lemma 2 that under the event , all blocks in
the correct support set are more highly correlated with than
the off-support blocks. Consequently, when occurs, we have

, where is the support estimated by the BTH algorithm.
Note, however, that the estimated set will contain additional
blocks not in if . It follows that

(108)

where we have used the fact that , which is a
consequence of the assumption that has full row rank (see
Section II). Using (44) and (99), we have that when occurs

(109)

Substituting the value (100) of yields the required result (35).
Proof of Theorem 5: It follows from Lemma 5 that the event
occurs with probability exceeding (34). Our goal in this proof

will thus be to show that, if does occur, then the BOMP al-
gorithm correctly identifies all elements of the support of
(although some off-support elements may be identified as well
if ). The remainder of the proof will then follow the steps
of the proof of Theorem 4.

To demonstrate that the correct support is recovered, we begin
by analyzing the first iteration of the BOMP algorithm. This iter-
ation chooses a block having maximal correlation
with the measurements . Now, since , the con-
dition (36) implies (51), with given by (100). Consequently,
by Lemma 2, under the event we find that the first iteration
of BOMP identifies an element in the correct support set .

To show that the next iterations of the BOMP algorithm
also identify support elements, we proceed by induction. Specif-
ically, assume that iterations have correctly identified
elements , all of which are in the support set . As
in the proof of Theorem 2, define the estimation error after
iterations as . By the induction hypothesis,

, and clearly . Thus, ,
i.e., the support of is a strict subset of . Using the same argu-
ments as in the proof of Theorem 2, we find that contains a
block whose norm is at least . Therefore, we can consider
a modified estimation problem, in which is a noisy measure-
ment vector of the block sparse signal . Together with (36),
this implies that (51) holds for the modified setting. Therefore,
by (52), the block in having maximal correlation with the
measurements is an element of . Consequently, BOMP will
correctly identify a support element in the th iteration. Since
the BOMP algorithm never selects a previously chosen support
element, we find by induction that the support set will be iden-
tified in full after iterations. If , then the remaining
iterations will identify arbitrary off-support elements.
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Denoting by the complete -element support set identi-
fied by the BOMP approach, we thus have . Following
the technique (108), (109) used in the proof of Theorem 4 thus
yields the required result (37).
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