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Xampling: Signal Acquisition and Processing in
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Moshe Mishali, Student Member, IEEE, Yonina C. Eldar, Senior Member, IEEE, and Asaf J. Elron

Abstract—We introduce Xampling, a unified framework for
signal acquisition and processing of signals in a union of sub-
spaces. The main functions of this framework are two: Analog
compression that narrows down the input bandwidth prior to
sampling with commercial devices followed by a nonlinear algo-
rithm that detects the input subspace prior to conventional signal
processing. A representative union model of spectrally sparse
signals serves as a test-case to study these Xampling functions.
We adopt three metrics for the choice of analog compression:
robustness to model mismatch, required hardware accuracy, and
software complexities. We conduct a comprehensive comparison
between two sub-Nyquist acquisition strategies for spectrally
sparse signals, the random demodulator and the modulated
wideband converter (MWC), in terms of these metrics and draw
operative conclusions regarding the choice of analog compression.
We then address lowrate signal processing and develop an algo-
rithm for that purpose that enables convenient signal processing
at sub-Nyquist rates from samples obtained by the MWC. We
conclude by showing that a variety of other sampling approaches
for different union classes fit nicely into our framework.

Index Terms—Analog to digital conversion, baseband pro-
cessing, compressed sensing, digital signal processing, modulated
wideband converter, sub-Nyquist, Xampling.

I. INTRODUCTION

S IGNAL processing methods have changed substantially
over the last several decades. The number of operations

that are shifted from analog to digital is constantly increasing,
leaving amplifications and fine tunings to the traditional front-
end. Sampling theory, the gate to the digital world, is the key
enabling this revolution. Traditional sampling theorems assume
that the input lies in a predefined subspace [1], [2]. The most
prevalent example is bandlimited sampling, according to the
theorem of Shannon-Nyquist [3], [4]. Recently, nonlinear union
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TABLE I
ABBREVIATIONS USED THROUGHOUT THE PAPER

of subspaces (UoS) models have been receiving growing in-
terest in the context of analog sampling [5]–[13]. The UoS set-
ting captures uncertainty in the signal by allowing several pos-
sible subspace descriptions, with the exact signal subspace un-
known a-priori.
In contrast to classic subspace sampling, the theory of sam-

pling over UoS is still developing. In particular, to date, there
is no equivalent to the oblique projection operator which recon-
structs the signal when its exact subspace is known for almost
all sampling functions [1], [2], [14]–[16]. The lack of a com-
plete theory has not withheld development of numerous stylized
applications [6]–[11], [16]–[20], aiming at reducing the sam-
pling rate below Nyquist by exploiting the UoS model. The ac-
quisition and reconstruction methods of [6]–[11], [16]–[20] are
substantially different from each other, raising the question of
whether the apparent distinct approaches can be derived from a
common framework.
The first and main contribution of this paper is a unified and

pragmatic framework for acquisition and processing of UoS
signal classes, referred to as Xampling. It consists of two main
functions: lowrate analog to digital conversion (X-ADC), in
which the input is compressed in the analog domain prior to
sampling with commercial devices, and lowrate digital signal
processing (X-DSP), in which the input subspace is detected
prior to signal processing in the digital domain. In both cases
the X prefix hints at the rate reduction. After presenting the
architecture in Section II, we show that a wide range of UoS
applications [6]–[11], [16]–[20] fit elegantly into the proposed
sampling structure. The nomenclature Xampling is built up
throughout the paper and is further explained in the conclusions.
We next study the X-ADC block and address the choice of

analog compression. We do that by examining the compression
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TABLE II
APPLICATIONS OF UNION OF SUBSPACES

techniques used in the random demodulator (RD) [20] and mod-
ulated wideband converter (MWC) [8] systems. These methods
apply compressed sensing (CS) ideas to reduce the sampling
rate of spectrally sparse signals below the Nyquist rate. At first
sight, the signal models and compression techniques used seem
similar, at least visually. By examining three design metrics: ro-
bustness to model mismatch, required hardware accuracy and
computational loads, we reveal several advantages of the MWC
in all three metrics. Based on the insights gained, we draw oper-
ative guidelines for the choice of analog compression in Xam-
pling systems that rely on CS principles. Besides the main in-
terest in studying X-ADC, this contribution is also the first com-
prehensive technical comparison between the RD and MWC
systems, which reveals major differences, that are not evident
from the original publications [8], [20].
As a third contribution, we study the X-DSP stage and

sub-Nyquist processing, which is challenging since conven-
tional DSP methods assume their input data stream is given
at the Nyquist rate. We develop a digital algorithm, named
Back-DSP, that provides the MWC with a smooth interface
to existing DSP software. Our algorithm consists of several
lowrate processing steps, which together detect the exact
signal subspace, thereby gaining backward compatibility to
conventional processing methods. The alternative approach of
[26], which suggests the development of processing methods
tailored to CS measurements, is discussed and compared to. As
a nice feature, we show that once the Back-DSP algorithm is
applied, the input can be reconstructed more efficiently than
the original method of [8]. Numerical simulations demonstrate
backward compatibility in typical noisy wideband scenarios.
The paper is organized as follows. Section II describes the

UoS model and presents the Xampling framework. X-ADC
and X-DSP are studied in the next two sections. The choice of
analog compression is studied in Section III based on a com-
parison between the RD and MWC architectures. Following, in
Section IV, we develop and simulate the Back-DSP algorithm.
Table I lists abbreviations that are used throughout.

II. XAMPLING

In this section, we describe the class of UoS signals and
present Xampling—our proposed framework for acquisition
and digital processing of these signal models.

A. Union of Subspaces

Let be an input signal in the Hilbert space .
The signal is assumed to lie in a UoS of , namely within
a parameterized family of subspaces

(1)

where is a list of indices, and each individual subspace
. The key property of the UoS model is that the input

resides within for some , but a-priori, the exact
subspace index is unknown. This model was originally in-
troduced by Lu and Do in [5]. In general, the sum (or a linear
combination) of does not lie in . Thus, (1)
typically represents a nonlinear set of possible inputs, which is a
true subset of the linear sum of all subspaces , denoted here-
after by .
The first column of Table II lists several signal classes that

can be readily modeled as UoS (see also a list of applications
in [5]). We consider two motivating examples from this table.
A first application of (1) is multiband sampling, encountered
when a communication receiver intercepts multiple radio-fre-
quency (RF) transmissions, but is not provided with their car-
rier frequencies . In this setting, the input has multiband
spectra with energy that is concentrated on frequency inter-
vals of individual widths located anywhere below some max-
imal frequency . Such a receiver faces a challenging sam-
pling problem, since classic acquisition methods, such as RF
demodulation or bandpass undersampling, require knowledge
of the values . At first sight, it may seem that sampling at the
Nyquist rate

(2)

is necessary, since every frequency interval below can po-
tentially contain a transmission of interest. On the other hand,
since each specific fills only a portion of the Nyquist range
(only ), one would intuitively expect to be able to reduce
the sampling rate below .
A multiband model can be described in union terminology

by indexing the possible band positions with and let-
ting capture the subspace of multiband signals on the chosen
support. It is therefore expected that an input from a multiband
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union can be determined from sampling at a rate proportional
to the actual bandwidth occupied by , namely , up to
some rate increase needed to determine the unknown subspace
index of the given . In principle, lies in the continuum

in this modeling, so that the union contains in-
finitely many subspaces. A different viewpoint, utilized in [8],
[17], is to divide the Nyquist range to slices and enumerate
the possible supports according to the slice indices that contain
signal energy. This approach results in a finite union of band-
pass subspaces, which enables efficient hardware and software
implementation, as further discussed in detail in Section III-B.
Another interesting application is estimation of time delays

from observation of a signal of the following form

(3)

Inputs of this type belong to a broader family of signals with a fi-
nite rate of innovation (FRI) [6], [23]. In practice, there aremany
interesting situations with unknown , which can be modeled
in union terminology by assigning the delays for the
index of an -dimensional subspace of FRI signals, spanned
by the amplitudes . Such an FRI union is encountered, for ex-
ample, when a channel with multipath fading generates echoes
of a transmitted pulse in various unknown delays and atten-
uations [9], or in radar [12], where and correspond to target
locations and speeds, respectively. Ultrasound imaging [11] and
underwater acoustics also conform with (3). Since in all these
applications, the pulse is short in time, sampling ac-
cording to its Nyquist bandwidth, which is effectively that of

, results in unnecessary large sampling rates. Classic match
filtering methods require Nyquist rate sampling [9]. In contrast,
union modeling implies a rate requirement that is proportional
to the innovation rate , which in all the above applications
can be substantially lower than Nyquist.

B. Unified Goals

The above examples imply that treating UoS models at low
rates calls for sophisticated acquisition and processing methods
in order to exploit the underlying structure. In principle, one
could employ traditional techniques developed in sampling
theory for linear single-subspace scenarios [1], [2], by sam-
pling , namely the linear sum of all subspaces . However,
this technically correct approach often leads to practically
infeasible sampling systems wasting expensive hardware and
software resources. For example, in multiband sampling,
is the -bandlimited space, for which no rate reduction is
possible. Similarly, in time-delay estimation problems, has
the high bandwidth of , and again no rate reduction can
be achieved. To benefit from the union structure, we need to
incorporate its nonlinear structure and exploit the fact that is
typically a true subset of .
To be a bit more precise, we define the sampling problem for

the union set (1) as the design of a system that provides:
1) ADC: an acquisition operator which converts the analog
input to a sequence of measurements;

2) DSP: a toolbox of processing algorithms, which uses
to perform classic tasks, e.g., estimation, detection, data
retrieval etc., and

3) DAC: a method for reconstructing from the samples
.

In order to exclude from consideration inefficient solutions,
such as those treating the Nyquist subspace and not exploiting
the union structure, we adopt as a general design constraint that
the above goals should be accomplished with minimum use of
resources. Minimizing the sampling rate, for example, excludes
inefficient Nyquist-rate solutions and promote lowrate sampling
approaches that wisely incorporate the union structure to stand
this resource constraint. For reference, this requirement is out-
lined as

minimum use of resources (4)

In practice, besides constraining the sampling rate, (4) trans-
lates to the minimization of several other resources of interest,
including the number of devices in the acquisition stage, design
complexity, processing speed, memory requirements, power
dissipation, system cost, and more. As we shall see via exam-
ples in the sequel, the challenge posed in (4) is to treat a union
model at an overall complexity (of hardware and software) that
is comparable with a system which knows the exact .
As evident from Table II, different instances of UoS models

have received treatment using quite different hardware and soft-
ware techniques. In the next subsection we introduce Xampling,
our proposed architecture to unify the sampling of UoS signal
classes and address the resource constraint (4).

C. Architecture

The Xampling framework we propose has the high-level
architecture presented in Fig. 1. As highlighted, the Xampling
architecture is driven by two main considerations: reducing
analog bandwidth prior to sampling and gaining lowrate DSP,
preferably backward-compatible with existing processing algo-
rithms. We next describe the five functional blocks and explain
these two considerations.
Analog bandwidth compression. The first two blocks,

termed X-ADC, perform the conversion of to digital. An
operator compresses the high-bandwidth input into a
signal with lower bandwidth, effectively capturing the entire
union by a subspace with substantially lower sampling
requirements. A commercial ADC device then takes pointwise
samples of the compressed signal, resulting in the sequence of
samples .
The role of in Xampling is to narrow down the analog band-

width that enters the acquisition devices, so that lowrate ADC
devices can be used. Actual acquisition is modeled in Fig. 1 as a
lowpass filter followed by a pointwise sampler, with the lowpass
reflecting a limited front-end bandwidth of the conversion de-
vice. The X-ADC can be realized on a circuit board, chip design,
optical system or other appropriate hardware. In all these plat-
forms, the front-end has certain bandwidth limitations, which
stem from the responses of all circuitries comprising the in-
ternal front-end. Commercial ADC devices are often specified
with front-end bandwidth that is not much wider than twice their
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Fig. 1. Xampling–A functional framework for signal acquisition and processing in union of subspaces.

sampling rate capabilities [8]. Thus, direct acquisition of point-
wise values of with commercial components generally re-
quires an ADC device with Nyquist-rate bandwidth, even when
taking pointwise values at a low rate. In Xampling, the input
signal belongs to a union set which typically has high
bandwidth, e.g., multiband signals whose spectrum reaches up
to or FRI signals with wideband pulse . A preceding
analog compression step is therefore necessary in order to
capture all vital information within a narrow range of frequen-
cies. In contrast to popular compression techniques that are re-
alized in software, here captures all vital information of the
input by hardware preprocessing. The design of therefore
needs to properly exploit the union structure, in order not to
lose any essential information while reducing the bandwidth.
The next stage can then employ commercial devices with low
analog bandwidth, as part of minimizing resource usage (4).
Lowrate DSP. A second goal of Xampling is to translate the

sampling rate reduction to a comparable decrease in processing
speeds. Our proposal for achieving this goal consists of the three
computational blocks in the digital part of Fig. 1. A nonlinear
step detects the signal subspace from the lowrate samples.
Once the index is determined, we compute a low-rate se-
quence of numbers that matches standard sampling of .
As a nice feature, this creates a seamless interface to existing
DSP algorithms and interpolation techniques, hence provides
backward compatibility. The combination of nonlinear detec-
tion and standard DSP is referred to as X-DSP. Besides back-
ward compatibility, the nonlinear detection decreases computa-
tional loads, since the subsequent DSP and DAC stages need
to treat only the single subspace , complying with (4). The
important point is to detect and compute without going
through reconstruction of the Nyquist-rate samples of , or
through Nyquist-rate computations.
Lowrate DSP can sometimes be an important requirement,

regardless of whether the sampling rate is reduced as well. In
particular, the digital flow proposed in Fig. 1 is beneficial even
when a high ADC rate is acceptable. In this case, can be
acquired directly without narrowing down its bandwidth prior
to ADC, but we would still like to reduce computational loads
and storage requirements in the digital domain. This can be ac-
complished by imitating rate reduction in software, detecting the
signal subspace and processing at the information bandwidth.
Compounded usage of both X-ADC and X-DSP is for main-
stream applications, where reducing the rate of both signal ac-
quisition and processing is of interest.

Xampling is a generic template architecture. It does not
specify the exact acquisition operator or nonlinear detection
method to be used. These are application-dependent functions.
Our goal in introducing Xampling is to propose a high-level
system architecture and a basic set of guidelines:
1) an analog preprocessing unit to compress the input band-
width;

2) commercial lowrate ADC devices for actual acquisition at
a low rate;

3) subspace detection in software; and
4) standard DSP and DAC methods.
As a first step in establishing the framework, we summarize

in Table II various recent sampling strategies and identify their
compression and detection blocks. It can be verified that the ap-
parent different acquisition stages all aim at capturing signal in-
formation using only a small set of lowrate sample sequences,
and that in all scenarios, the digital algorithms determine the
input subspace as part of reconstruction. This affirms that Xam-
pling is sufficiently general to capture a variety of UoS applica-
tions in a unified manner.
In the next two sections, we consider a representative union

model of spectrally sparse signals in order to study in more de-
tail practical considerations in designing the analog compres-
sion stage and subspace detection algorithms that provide
lowrate DSP.

III. X-ADC: SUB-NYQUIST SIGNAL ACQUISITION

In this section, we study the X-ADC stage of Fig. 1 and in
particular the analog compression operator . This stage needs
to be realized in hardware as it precedes the sampler. In prac-
tice, hardware imperfections are inevitable and real-world in-
puts may not perfectly fit the theoretical signal model. There-
fore, two metrics of interest in choosing are robustness to
model mismatch and required hardware accuracy. In addition,
since is effectively inverted by subsequent digital recovery
algorithms, the impact on computational loads is a third metric
to consider.
We study the way analog compression is realized in two

similar systems: RD [20] and MWC [8]. The RD treats a
sparse sum of harmonic tones, whereas the MWC samples
multiband signals. In both cases, analog compression involves
mixing the input with certain waveforms prior to sampling, and
reconstruction relies on CS techniques. Despite the seemingly
similar setup, our study reveals significant differences in terms
of the three metrics we consider, and leads to several operative
suggestions regarding the choice of in Xampling systems
that incorporate CS principles. Besides our prime focus on
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Fig. 2. Block diagram of the random demodulator [20].

Fig. 3. Block diagram of the modulated wideband converter [8].

X-ADC design, this study provides the first comprehensive
technical comparison between these two systems.

A. Random Demodulator

The RD approach treats signals consisting of a discrete set of
harmonic tones with the system that is depicted in Fig. 2.
Signal model. A multitone signal consists of a sparse

combination of integral frequencies:

(5)

where is a finite set of out of an even number of possible
harmonics

(6)

The model parameters are the tone spacing , number of ac-
tive tones and grid length . The Nyquist rate is . In
[20], the tones spacing is normalized to . Whenever
normalized, is omitted from formulas under the convention
that all variables take nominal values (e.g., instead of

).
Sampling. The input signal is mixed by a pseudorandom

chipping sequence which alternates at a rate of . The
mixed output is then integrated and dumped at a constant rate
, resulting in the sequence . The development

in [20] uses the following parameter setup

(7)

Fig. 4. Spectrum slices of are overlaid in the spectrum of the output se-
quences (taken from [29]). Since , a single band occupies at most
2 adjacent spectrum slices. In the example, channels and realize different
linear combinations of the spectrum slices centered around . For
simplicity, the aliasing of the negative frequencies is not drawn.

It was proven in [20] that if is an integer and (7) holds, then
the vector of samples can be written as

(8)

The matrix has dimensions , effectively capturing the
mechanism of integration over Nyquist intervals, where the
polarity of the input is flipped on each interval according to the
chipping function . See Fig. 6(a) in the sequel for further
details on . The -squared discrete Fourier transform (DFT)
matrix accounts for the sparsity in the frequency domain. The
vector has entries which are up to a constant scaling
from the corresponding tone amplitudes . Since the signal has
only active tones, , where the -norm counts the
number of nonzero entries.
Reconstruction. The unknown in (8) is . Observe that
does not determine by itself, since is underdeter-

mined, i.e., has less rows than columns, . An underde-
termined system has a nontrivial null space and infinitely many
solutions in general. Among these solutions, (8) requires the
one with . This type of problem has received ex-
tensive treatment in the CS literature, where is referred to
as the sensing matrix and is termed the sparsity basis of .
Under mild conditions on , (8) has a unique sparse solution
[18], [19]. Whilst finding a sparse solution is NP-hard in gen-
eral, several polynomial-time CS techniques are known to co-
incide with the true under certain conditions on . Example
techniques include minimization, , basis pursuit [27],
and greedy-type algorithms; cf. [28]. Roughly speaking, we say
that is a “nice” CS matrix, if (8) with sparsity order can
be solved efficiently with existing polynomial-time algorithms1.
Correct recovery with a “nice” requires a sampling rate on the
order of [20]

(9)

1We comment that most known constructions of “nice” CS matrices involve
randomness. In practice, is fixed and defines a deterministic .



4724 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 10, OCTOBER 2011

Once the sparse is found, the amplitudes are determined
from by constant scaling, and the output is synthesized
according to (5).

B. Modulated Wideband Converter

TheMWC system samples multiband signals with the system
that is depicted in Fig. 3.
Signal model. A multiband signal has sparse spectra,

supported on frequency bands, with individual widths not
exceeding . The band positions are anywhere below .
Fig. 4 illustrates a typical multiband spectra.
Sampling. The input passes through RF processing

front-end of channels. In the th channel, is multiplied
by a periodic waveform with period , lowpass filtered
by with cutoff , and then sampled at rate . The
basic parameter setting is [8]

(10)

An advanced configuration enables to collapse the number of
branches by a factor of at the expense of increasing the
sampling rate of each channel by the same factor, so that
. The overall sampling rate is unchanged [8]. In principle,

the MWC system can be collapsed to a single sampling branch
using . For the purpose of studying X-ADC, the basic
version with is analyzed.
Since is periodic, it has a Fourier expansion

(11)

with spectra that consists of a weighted Dirac-comb, with Dirac
locations on and weights , where . De-
note by the sequence that would have been obtained if
the signal was mixed by a pure sinusoid and lowpass fil-
tered, so that are samples of the contents in a width-
slice of the spectrum around . The input is deter-
mined by , where is the smallest index
such that . Together, such spectral
slices cover the entire Nyquist range . Choosing

ensures that a single band occupies at most 2 adja-
cent spectrum slices; see Fig. 4. Under this choice, the vector
of samples obtained at time instant

satisfies the underdetermined system

(12)

with an matrix whose entries are , and
. Conceptually, the MWC shifts

a weighted-sum of these slices to the origin, with the lowpass
filter transferring only the narrow band frequencies up to
from that sum to the output sequence [8]. This aliasing

structure is illustrated in Fig. 4.
The periodic functions define the sensing matrix in

(12) through their Fourier coefficients . Thus, need to
be chosen such that the resulting matrix has “nice” CS prop-
erties. In principle, any periodic function with high-speed tran-
sitions within the period can satisfy this requirement. One
possible choice for is a sign-alternating function, with

sign intervals within the period [8]. Popular binary patterns,
e.g., Gold or Kasami sequences, are especially suitable for the
MWC [30].
Reconstruction. In principle, we can solve for the sparsest

solution of (12) for every , and then reconstruct by
properly re-positioning the slices on the spectrum. A more ef-
ficient approach, termed continuous to finite (CTF) [17], [31],
exploits the fact that are jointly sparse over time, so that the
index set is constant over consecutive time
instances . The CTF recovers as follows. First, it constructs
a matrix from several (typically ) consecutive samples

, either by directly stacking into the columns of , or
via other simple computations that allow combating noise [8].
Then, it solves the following underdetermined system (which is
independent of ):

(13)

with counting the number of nonidentically zero rows in
. It is proved in [17], that has nonzero rows in locations that

coincide with the indices in .
Once is found, (12) reduces to , with

being the appropriate column subset of . Pseudo-inversion of
enables real-time reconstruction from that point on; one ma-

trix-vector multiplication per incoming vector of samples
recovers

(14)

where denotes Hermitian conjugate and are the en-
tries of indicated by . Standard DAC techniques recon-
struct via lowpass interpolation of and modu-
lation to the proper positions on the spectrum. Polynomial-time
solvers for (13) were developed in [7], [28], [31]–[37]. The re-
quired sampling rate is on the order of [8]

(15)

We note that multiband signals with time-varying carriers can
be treated by reinitiating the CTF procedure upon detection of
a spectral change. Further details and simulations with time-
varying multiband inputs appear in [8].
At first sight, the RD and MWC technologies seem similar,

at least in their sampling stages, which involve mixing followed
by either integration in Fig. 2 or lowpass filtering in Fig. 3. The
difference is in the details which we study below.

C. Comparison-Robustness to Model Mismatch

The RD system is sensitive to inputs with tones slightly dis-
placed from the theoretical grid. To see this, we repeat the de-
velopments of [20] for an unnormalized multitone model, with
as a free parameter and that are not necessarily integers.

The measurements still obey the underdetermined system (8) as
before, where now

(16)

and is the number of samples taken by the RD. We refer
to the technical report [38] for the exact derivation of (16). The
equalities in (16) imply that the rates need to be perfectly
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Fig. 5. Effects of nonintegral tones on the output of the random demodulator.
The top (bottom) panels plot the recovered signal in the time (frequency) do-
main.

synchronized with the tone spacing . If (16) does not hold,
either due to hardware imperfections so that the rates de-
viate from their nominal values, or due to model mismatch so
that the actual spacing is different than what was assumed,
then the reconstruction error grows high.
The following toy-example demonstrates this sensitivity. Let

, with . Construct by
drawing locations uniformly at random on the tones
grid and normally distributed amplitudes . In our simulation,
basis pursuit gave exact recovery for .
For 200 part-per-million (ppm) deviation in the squared-error
reached 26%:

(17)

Fig. 5 plots and in time and frequency, revealing many
spurious tones due to the model mismatch. The equality
in the normalized setup (7) hints at the required synchronization,
though the dependency on the tones spacing is implicit since

. With , this issue appears explicitly. Since the
publication of the technical report [38], this problemwas studied
other works, e.g., [39], where it is referred to as nonintegral
harmonics or sensitivity to basis mismatch.
The MWC is less sensitive to model mismatches in compar-

ison. The parameters are set with inequalities in (10), so that the
number of branches and aliasing rate can be chosen with
some safeguards with respect to the specified number of bands
and individual widths . Thus, the system can handle inputs

with more than bands and widths larger than , up to the
safeguards that were set. The band positions are not restricted
to any specific displacement with respect to the spectrum slices;

a single band can split between slices, as depicted in Fig. 4. A
possible shortcoming in the MWC approach is the requirement
to specify a multiband spectra by a pair of maximal quantities

. This modeling can be inefficient (in terms of resulting
sampling rate) when the individual band widths are significantly
different from each other. For example, a multiband model with
bands of lengths and bands of lengths
is described by a pair , with spec-

tral occupation potentially larger than actually used. A more
flexible modeling in this scenario would assume only the total
actual bandwidth being occupied, i.e., . This issue
can partially be addressed by designing an MWC system to ac-
commodate bands of lengths .

D. Comparison-Hardware Complexity

We next compare the hardware complexity of the RD/MWC
systems. In both approaches, the acquisition stage is mapped to
an underdetermined CS system: Fig. 2 leads to the sparse re-
covery problem (8) in the RD system, while in the MWC ap-
proach, Fig. 3 results in (12). A crucial point is that the hardware
needs to be sufficiently accurate for that mapping to hold, since
this is the key for reconstruction. While the RD and MWC sam-
pling stages seem similar, they rely on different analog proper-
ties of the hardware to ensure accurate mapping to CS, which in
turn imply different design complexities.
Fig. 6 shall assist us in this discussion. The figure depicts the

Nyquist-equivalent of each method, which is the system that
samples the input at its Nyquist rate and then computes the
relevant sub-Nyquist samples by applying the sensing matrix
digitally. The RD-equivalent integrates and dumps the input at
rate , and then applies on serial measurements,

. To coincide with the sub-Nyquist samples of
Fig. 2, is used, where is diagonal with en-
tries, according to the values takes on , and
sums over entries [20]. The MWC-equivalent has chan-
nels, with the th channel demodulating the relevant spectrum
slice to the origin and sampling at rate , which results in .
The sensing matrix is applied on . Note that 6(b) is rem-
iniscent of analog-digital hybrid filter-bank methods that are
useful in high-speed ADC systems [40], [41]. While sampling
according to the equivalent systems of Fig. 6 is a clear waste
of resources, it enables us to view the internal mechanism of
each strategy. Note that the reconstruction algorithms remain
the same; it does not matter whether the samples were actually
obtained at a sub-Nyquist rate, according to Fig. 2 or Fig. 3, or
if they were computed after sampling according to Fig. 6.
Hardware accuracy. In the RD approach, time-domain

properties of the hardware dictate the necessary accuracy. For
example, the impulse-response of the integrator needs to be
a square waveform with width of seconds, so that has
exactly consecutive 1’s in each row. For a diagonal , the
sign alternations of need to be sharply aligned on
time intervals. If either of these properties is nonideal, then
the mapping to CS becomes nonlinear and signal dependent.
Precisely, (8) becomes [20]

(18)
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Fig. 6. The Nyquist-equivalents of: (a) RD and (b) MWC sample the input at its Nyquist rate and apply the sensing matrix digitally.

A noninteger ratio affects both and [20]. Since
is unknown, , , and are also unknown. It is sug-
gested in [20] to train the system on example signals, so as to
approximate a linear system. Note that if (16) is not satisfied,
then the DFT expansion also becomes nonlinear and signal-de-
pendent . The form factor of the RD is therefore the
time-domain accuracy that can be achieved in practice.
The MWC requires periodicity of the waveforms and

lowpass response for , which are both frequency-domain
properties. The sensing matrix is constant as long as
are periodic, regardless of the time-domain appearance of these
waveforms. Nonideal time-domain properties have therefore no
effect on the MWC. The consequence is that stability in the fre-
quency domain dictates the form factor of the MWC. For ex-
ample, 2 GHz periodic functions were demonstrated in a circuit
prototype of the MWC, where simple hardware wirings ensured
that for every [29]. More broadly,
circuit publications report the design of high-speed sequence
generators up to 23 and even 80 GHz speeds [42], [43], where
stable frequency properties are verified experimentally. Accu-
rate time-domain appearance is not considered a design factor in
[42] and [43], and is in fact not maintained in practice as shown
in [29], [42], and [43].
The MWC scheme requires an ideal lowpass filter with

rectangular frequency response, which is difficult to implement
due to its sharp edges. This problem appears as well in Nyquist
sampling, where it is addressed by alternative sampling kernels
with smoother edges at the expense of oversampling. Similar
edge-free filters can be used in theMWC systemwith slight
oversampling [44]. Ripples in the passband and nonsmooth tran-
sitions in the frequency response can be compensated for digi-
tally using the algorithm in [45].
Sampling rate. An integer ratio , in (7) and (16), generally

requires a substantial rate increase above the theoretical rate re-
quirement (9). TheMWC does not limit the rate granularity, and
in principle, can approach (15). A numerical comparison in the
next subsection demonstrates this difference.
Continuous reconstruction. Synthesizing a multitone

output requires oscillators, one per each active tone,
which can be hardware excessive. Computing (5) digitally
needs a processing rate of , and then a DAC device at the
same rate. Thus, the reconstruction complexity of the RD
scales with the Nyquist rate. The MWC reconstructs using
commercial DAC devices, running at the low rate . It

TABLE III
MODEL AND HARDWARE COMPARISON

needs branches. This difference in analog reconstruction
becomes significant for wideband inputs, since they typically
require prohibitively large in order to be adequately
represented on a discrete grid of tones in the RD framework. In
contrast, despite the infinitely many frequencies that comprise
a multiband input, is typically small.
We note however that the MWC may incur difficul-

ties in reconstructing contents around the frequencies
, since these are irregular points

of transitions between spectrum slices. Reconstruction accu-
racy of these irregular points depends on the cutoff curvature of

and relative amplitudes of consecutive . Reconstruction
of an input consisting of pure tones at these specific frequencies
may be imperfect. In practice, the bands encode information
signals, which can be reliably decoded, even when signal
energy is located around the frequencies . For
example, Section IV below considers multiband transmissions
that carry digital information bits. We develop an algorithm that
recovers the digital information bits when the noise is not too
high, even when a band energy is split between adjacent slices.
This algorithm also allows reconstruction of with only
DAC devices instead of that are required for arbitrary

multiband reconstruction. Table III summarizes the model and
hardware comparison.

E. Comparison-Computational Loads

In this subsection, we compare computational loads when
treating multiband signals, either using the MWC system or
in the RD framework by discretizing the continuous frequency
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TABLE IV
DISCRETIZATION IMPACT ON COMPUTATIONAL LOADS

axis to a grid of tones, out of which only
are active [20]. We emphasize that the RD system was designed
formultitone inputs, though for the study of computational loads
we examine the RD on multiband inputs by considering a com-
parable grid of tones of the same Nyquist bandwidth. Table IV
compares between the RD and MWC for an input with 10 GHz
Nyquist rate and 300 MHz spectral occupancy. For the RD we
consider two discretization configurations, and

. The table reveals high computational loads that stem
from the dense discretization that is required to represent an
analog multiband input. We also include the sampling rate and
DAC speeds to complement the previous section. The notation
in the table is self-explanatory, though a few aspects are empha-
sized.
The sensing matrix of the RD has dimensions

(19)

The dimension scales with the Nyquist rate; already for
Nyquist-rate input, there are 1 million unknowns in (8).

The sensing matrix of the MWC has dimensions

small (20)

For the comparable spectral occupancy we consider, has di-
mensions that are 6 to 8 orders of magnitude higher, in both the
row and column dimensions, than the MWC sensing matrix .
The sensing matrix size is a prominent factor since it affects
many digital complexities: the delay and memory length asso-
ciated with collecting the measurements, the number of multi-
plications when applying the sensing matrix on a vector and the

storage requirement of the matrix. See the table for a numerical
comparison of these factors.
We also compare the reconstruction complexity, in the sim-

pler scenario that the support is fixed. In this setting, recovery
is merely a matrix-vector multiplication with the relevant pseu-

doinverse: (14) for the MWC or for the RD,
where indicates the active tones, cf. (6). As before, the size of
results in long delay and huge memory length for collecting

the samples. The number of scalar multiplications (Mult.-ops.)
for applying the pseudo-inverse reveals again orders of magni-
tude differences. We expressed the Mult.-ops. per block of sam-
ples and scaled them to operations per clock cycle of a 100MHz
DSP processor.We conclude the table with our estimation of the
technology barrier of each approach. Computational loads and
memory requirements in the digital domain are the bottleneck
of the RD approach. Therefore the size of CS problems that can
be solved with available processors limits the recovery. We es-
timate that a Nyquist-rate of may be already quite
demanding using convex solvers, whereas is
probably the barrier using greedy methods2. The MWC is lim-
ited by the technology for generating the periodic waveforms

, which depends on the specific choice of waveform. The
estimated barrier of 23 GHz refers to implementation of the pe-
riodic waveforms according to [42] and [43], though realizing a
full MWC system at these high rates can be a challenging task.
Our barrier estimates are roughly consistent with the hardware
publications of these systems: [46], [47] report the implementa-
tion of (single, parallel) RD for Nyquist-rate . An

2A bank of RD channels was studied in [46]. The parallel system duplicates
the analog issues and its computational complexity is not improved by much.
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MWC prototype demonstrates faithful reconstruction of wide-
band inputs with [29].

F. Choice of Analog Compression

The comparison between the RD and MWC systems reveals
how two seemingly similar choices of analog preprocessing can
result in different performance, in terms of the three metrics we
considered: robustness to model mismatch, required hardware
accuracy and computational loads. Based on the insights gained,
we draw several operative conclusions for the choice of :
1) set system parameters with safeguards to accommodate
possible model mismatches,

2) incorporate design constraints on that suit the tech-
nology generating the source signals, and

3) balance between nonlinear (subspace detection) and linear
(interpolation) reconstruction complexities.

The first point follows immediately from Fig. 5 and basically
implies that model and sampler parameters should not be tightly
related, implicitly or explicitly. We elaborate below on the other
two suggestions.
Input signals are ultimately generated by some source, which

has its own accuracy specifications. Therefore, if designing
imposes constraints on the hardware that are not stricter than
those required to generate the input signal, then there are no
essential limitations on the input range. We support this con-
clusion by several examples. The MWC requires accuracy that
is achieved with RF technology, which also defines the pos-
sible range of multiband transmissions. The same principle of
shifting spectral slices to the origin with different weights can be
achieved by periodic nonuniform sampling [17]. This strategy,
however, can result in a narrower input range that can be treated,
since current RF technology can generate source signals at fre-
quencies that exceed front-end bandwidths of existing ADC de-
vices [8]. Multiband inputs generated by optical sources, how-
ever, may require a different compression stage than that of
the RF-based MWC system.
Along the same line, time-domain accuracy constraints may

limit the range of multitone inputs that can be treated in the RD
approach, if these signals are generated by RF sources. On the
other hand, consider a model of piecewise constant inputs, with
knots at the integers and only nonidentically zero pieces out
of . Sampling these signals with the RD system would map
to (8), but with an identity basis instead of the DFT matrix .
In this setting, the time-domain accuracy required to ensure that
the mapping to (8) holds is within the tolerances of the input
source.
Moving on to our third suggestion, we attempt to reason the

computational loads encountered in Table IV. Over 1 second,
both approaches reconstruct their inputs from a comparable set
of numbers; tone coefficients or
amplitudes of active sequences . The difference is, how-
ever, that the RD recovers all these unknowns by a single exe-
cution of a nonlinear CS algorithm on the system (8), which has
large dimensions. In contrast, the MWC splits the recovery task
to a small-size nonlinear part (i.e., CTF) and real-time linear
interpolation. This distinction can be traced back to model as-
sumptions. The nonlinear part of a multitone model, namely the

number of subspaces , is exponentially larger than
which specifies a multiband union of the same Nyquist

bandwidth. Clearly, a prerequisite for balancing computation
loads is an input model with as many unknowns as possible in
its linear part (subspaces ), so as to decrease the nonlinear
cardinality of the union. The important point is that in order
to benefit from such modeling, must be properly designed to
incorporate this structure and reduce computational loads.
For example, consider a block-sparse multitone model with
out of tones, such that the active tones are clustered in

blocks of length . A plain RD system which does not incor-
porate this block structure would still result in a large
sensing matrix with its associated digital complexities. Block-
sparse recovery algorithms, e.g., [48], can be used to partially
decrease the complexity, but the bottleneck continues to be that
the hardware compression is mapped to a large sensing matrix3.
A potential analog compression for this block-sparse model can
be an MWC system designed for and specifi-
cations.
Our conclusions here stem from the study of the RD and

MWC systems, and are therefore mainly relevant for Xampling
systems which use to map the acquisition hardware to un-
derdetermined systems and incorporate CS algorithms for re-
covery. Nonetheless, our suggestions above do not necessitate
such a relation to CS, and may hold more generally with regard
to other compression techniques, as discussed in detail in [49].

IV. X-DSP: SUB-NYQUIST SIGNAL PROCESSING

In this section, we study the X-DSP stage of Fig. 1, which tar-
gets lowrate DSP. Whilst the streaming measurements enter the
digital domain at a low rate, they often cannot be used directly
for DSP purposes. For example, the MWC sequences con-
tain a mixture of information bands, whereas standard DSP al-
gorithms expect treating an individual band at a time, as pro-
vided to them by RF demodulation when the carrier frequencies
are known.
More broadly, the difficulty in directly processing the X-ADC

output stems from the fact that popular DSP algorithms assume
an input stream at the Nyquist rate. A fundamental reason for
processing at the Nyquist rate is the clear relation between the
spectrum of and that of its pointwise values , so
that digital operations can be easily substituted for their con-
tinuous counterparts. Digital filtering is an example where this
relation is successfully exploited. Since the power spectral den-
sities of continuous and discrete random processes are associ-
ated in a similar manner, estimation and detection of parameters
of analog signals can be performed by DSP. When sampling
below Nyquist, this key relation no longer holds in general. As
before, we study X-DSP by gaining insights from lowrate DSP
options available in the RD and MWC systems, and drawing
conclusions which can hold more generally for arbitrary X-DSP
stages.

3Note that simply modifying the chipping and integrate-dumping intervals, in
the existing scheme of Fig. 2, to times larger results in a sensing matrix smaller
by the same factor. However, using (8) in this setting effectively approximates
each block of tones by a single tone, since (8) now corresponds to a model
of active tones out of at spacing . This approximation can generally
result in large reconstruction error.
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A. Coarse and Fine Subspace Detection

We begin by considering multiband signals and defining the
lowrate DSP goal we would like to achieve. A multiband signal
can be described in quadrature representation as [50]

(21)

where are real-valued narrowband signals, and
are relatively high carrier frequencies. Classic communication
methods obey (21), including analog amplitude-, phase- and
frequency-modulation (AM/PM/FM). Modern digital commu-
nication transmit bits using techniques, such as frequency- and
phase-shift keying (FSK/PSK), which also conform with (21).
In all these communication techniques, themessage of interest is
encoded in , which are therefore referred to as the in-
formation signals. The carrier itself does not contain signal in-
formation. When the carrier frequencies of a multiband input
are known, the receiver demodulates the carrier frequency
and obtains , which are then sampled at a low rate.
DSP takes place from that point. In the union settings, our goal
is therefore to provide the same samples of , despite
the lack of information on the carriers . The important point
is to obtain with computational complexity that is
proportional to , without resorting to Nyquist-rate compu-
tations or interpolations. For simplicity, in this section
is assumed, so that the width of a spectrum slice is equal to the
(maximal) width of an individual band.
The CTF block in theMWC system performs subspace detec-

tion by finding the input spectral support at the coarse resolution
of active spectrum slices. This coarse resolution is used in order
to meet the design metrics discussed earlier and is sufficient for
reconstruction purposes via (14). For DSP purposes, however, a
coarse subspace detection is insufficient, since the information
signals are not organized in in a way standard
DSP algorithms expect to receive. For example: in Fig. 4, the en-
ergy of the th band splits between two consecutive sequences

. A single slice may, in general, contain several in-
formation bands. Moreover, even when contains a single
band, conventional software does not accommodate the lack of
a nominal value for the carrier . The fact that is somewhere
within a slice width, e.g., a range of MHz in the ex-
ample of Table IV, does not help, since standard software pack-
ages can tolerate only slight offsets from the nominal ; those
that presumably occur due to slight frequency shifts between the
transmitter and receiver oscillators. What we need is a fine sub-
space detection, at the level of the union model of (21), in which
a fine subspace is defined by and each con-
tains the corresponding information signals .
The algorithm we develop in the sequel refines the sub-

space detection and outputs an accurate estimate of and
samples of the pair , per each band ,
thereby enabling processing at baseband rates with conven-
tional DSP algorithms. For the development, we need to
assume that are random with zero cross-correlation,

for all . In practice, this means that
carry uncorrelated information messages. This holds

for AM, by definition, and for many digital communication

techniques, when using a preceding source coding stage [50].
The algorithm does not assume any specific modulation tech-
nique; the only essential assumption is the quadrature form (21)
and zero cross-correlation between . We refer to the
proposed algorithm as Back-DSP.

Algorithm Description

The Back-DSP algorithm consists of three steps:
1) Refining the coarse support estimate to the actual band
edges . Here, we rely on two additional model pa-
rameters: the minimal width of a single band and the
smallest spacing between bands . These quantities are
often known in communication, though uncertainty in the
values has little effect on the performance, as
described later on;

2) Generating per band . This step processes
and incorporates the edges ; and

3) Estimating using a digital version of the balanced
quadricorrelator (BQ) [50].

The information signals are obtained upon comple-
tion at no additional cost.
Algorithm 1 outlines the operations that are carried out in

each step of Back-DSP, whose technical steps are expanded
below. We specify the MATLAB commands (in verbatim font)
that are used in our implementation. A software package of the
Back-DSP algorithm is available online in [51].
Step 1: For convenience, the complex-valued are con-

verted to real-valued counterparts , taking into account the
conjugate-symmetry of . The sequence is obtained by
repositioning on both sides of the origin. Mathe-
matically, , where

(22)
and denotes rate increase by a factor of , with the appro-
priate postfiltering . By abuse of notation, here and in
the sequel the same index is used before and after the rate
conversion, where the context resolves the ambiguity. The case

, has .
To find the band edges , we estimate the power spec-

tral density (PSD) of . We used the Welch PSD estima-
tion method [52] , with a windows overlapping ratio of
50%, and the shortest window length that meets the fre-
quency resolution

(23)

The PSD estimation produces for .
A logarithmic threshold

(24)

translates to a binary decision on the energy concentra-
tion.
To mitigate undesired noise effects; support regions that are

closer than are united, and isolated regions with widths
smaller than are pruned. Our final estimate of the band
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Fig. 7. Filtering out-of-band noise in Step 2 of algorithm Back-DSP.

edges comprises the most powerful bands, according
to the PSD values.
Step 2: The purpose of this step is to obtain a sequence

for each , such that contains the entire contri-
bution of exactly one band. Using the edges we identify
the cases of band split, namely when the energy of resides
in adjacent spectrum slices for some ;
see Fig. 4, for example. In such cases, merging occurs via

(25)

otherwise, for a frequency band that lies in
a single spectrum slice. As a result, contains the entire en-
ergy of the th band, possibly with additional contributions due
to other information bands. We use the estimated edges
to filter from the out of band contents ( and
are used in our implementation [51]). The filter type can be ei-
ther low-, high-, band-, or all-pass, depending on the locations
of the other bands, as illustrated in Fig. 7. The allowed ripples
in the pass- and stopbands are , respec-
tively. The filter order is often small, since the actual spacing
between the bands relaxes the cutoff constraints.
Step 3: The final step estimates the carriers . Rough

estimates can be readily computed at the median frequencies
, though we observed that this estimate is inaccurate

in noisy settings. To improve the estimate, we use the BQ
whose circuit appears in Fig. 8. For brevity, the band index is
omitted. The BQ is an analog circuit that estimates the carrier
frequency of a quadrature input that consists of a single
pair of information signals. It is initialized with an angular
frequency and outputs whose expected value
is proportional to offset from the true carrier

(26)

In practice, time averaging replaces the expectations. The con-
stant in (26) is the effective analog gain of themixers, filters,
and differentiators along the way.
In our algorithm, we implement a digital version of the BQ

with FIR lowpass filters and finite difference filters (a discrete
impulse response ) for the derivatives. The finite differ-
ence filter, as well as a wide family of other discrete-time filters,
can substitute the analog differentiators [50].
A fundamental requirement of the BQ, either in analog or dig-

ital, is that the first mixing yields nonoverlapping copies of
at . To ensure this property, each is interpolated
by a factor of three, and the positive and negative frequencies
are repositioned in angular positions , respec-
tively. For example, when no merging occurs in Step 2.1, this

Fig. 8. The analog balanced-quadricorrelator [50].

TABLE V

computation boils down to with the relevant .
The digital BQ is initialized to the angular frequency matching

and applied iteratively. Each iteration refines the pre-
vious estimate by

(27)

with a loop gain . The procedure monitors
and terminates upon convergence or if a prede-

fined number of iterations is reached.
Properties. Upon completion, the (samples of the) desired

information signals of the th band are readily
available—the last BQ iteration computed them for the nodes

of Fig. 8. The rate of is either or
, depending on the rate of . With the estimated carrier
and band edges , the rate of can ultimately

be reduced to minimum, i.e., .
Besides the information signals , the algorithm out-

puts additional useful information per band: the edges ,
the isolated sequence and the carrier estimate . The latter
is computed from the angular frequency that the BQ con-
verged to as

(28)
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where when merging was not required, and oth-
erwise. The carrier-frequency-offset (CFO) is not ex-
pected to be zero, but rather to fall below the allowed tolerance
of commercial standards, as if a nominal value was specified.
We report the actual CFO values in the next subsection.
For applications in which the exact are un-

known, approximate values can be set. The uncertainty with
respect to the true values may yield many possible support re-
gions in steps (1.1)-(1.2). Nonetheless, the effect on the overall
performance is minor, since only the powerful regions are
selected in step 1.3. The exact band locations have only a neg-
ligible effect on the filter design in step 2.2. Furthermore, the
BQ in step 3 is insensitive to inaccuracies in . Therefore,
approximate values for are sufficient in practice.
We used in our simulations.
As a nice feature, using the proposed algorithm, the original

continuous reconstruction of Fig. 3 can now be improved. In
[8], is reconstructed from by interpolation and prop-
erly positioning the spectrum slices. Since the scenario of band
splitting can be fairly common, at most spectrum slices may
be active, hence the number of DAC and modulation branches.
With Back-DSP, we can now reconstruct using (21), which
requires only mixers, filters and DACs. In addition, note that
once the information signals are obtained, error cor-
rection DSP algorithms can be employed to improve the overall
robustness to noise.

B. Simulations

To evaluate the accuracy of the estimate , we simulated an
example multiband model with . Quadra-
ture phase-shift keying (QPSK) modulation was used to gen-
erate via

(29)

where
are the symbol energy, rate and raised-cosine pulse shape with
30% rolloff, respectively. The carriers , the
bit streams , and the additive white
Gaussian noise were all drawn independently at random.
An MWC with the basic configuration (10) was used with

channels and sign alternating waveforms with
alternations points per period . We assume the

spectrum slices were obtained successfully by the pre-
ceding stages of Fig. 3. For each one of 40 test signals, we ex-
ecuted the Back-DSP algorithm and measured the CFO
for . Fig. 9 reports the distribution of the CFOs en-
countered in our simulations for various signal-to-noise ratios
(SNRs). Evidently, in most cases our algorithm approaches the
true carriers as close as 150 kHz. For reference, the 40 ppmCFO
specifications of IEEE 802.11 standards tolerate 150 kHz offsets
for transmissions located around 3.75 GHz [53].
To verify data retrieval using the Back-DSP algorithm, we

generated a single binary phase-shift keying (BPSK) transmis-

Fig. 9. The distribution of CFO for fixed SNR=10 dB (a). The curves (b) rep-
resent the percentage of simulations in which the CFO magnitude is within the
specified range.

sion, such that the band energy splits between two adjacent spec-
trum slices. We executed the algorithm and used a Costas-loop
receiver [54] to extract the bits encoded in the BPSK transmis-
sion. We measured the bit error rate (BER), that is the number
of erroneous bits at the output, in a Monte Carlo simulation. For
each trial out of 2500, we redraw a carrier position that gives
band split, and simulated 6000 bits passing through the analog
sampler and the digital algorithms. We repeated the procedure
for input SNRs of 3, 5, 7, and 9 dB. In total, about 15 million bits
were simulated. Estimated BERs for 3 and 5 dB SNR, respec-
tively, are better than and . No erroneous
bits were detected for SNR of 7 and 9 dB. Lab experiments in
[29] report correct continuous reconstruction of a mixture of
AM and FM signals, whose energy overlays at baseband.

C. X-DSP and Related Work

The Back-DSP algorithm provides the MWC with a smooth
interface to existing DSP packages. This backward-com-
patibility is achieved due to a simple relation between the
contents of spectrum slices and the desired information signals

. Thus, a coarse subspace detection is sufficient
for reconstruction purposes while a finer subspace detection
enables lowrate DSP with existing algorithms. In other ap-
plications, the same detection algorithm may work for both
reconstruction and lowrate DSP. For example, in [9] the union
model consists of sequences of innovations which poten-
tially carry information. The active sequences are detected by
ESPRIT [25] at a fine resolution, which is also used for recon-
struction. In [16], a sparse shift-invariant model is assumed and
the CTF is used to detect the active shift-invariant subspaces
and their contents at once.
Subspace detection essentially inverts the analog compres-

sion operator . Thus, lowrate DSP also depends on the chosen
. For example, if we were to treat multiband signals in the RD

approach, presumably via discretization to a grid of -spaced
tones, achieving DSP at low rates could be more difficult. The
price would be the large computational loads of Table IV and
additional computations on length- vectors to extract the in-
formation signals from the recovered tones (

or depending on ).
An interesting related work is [26]. The approach, termed

compressive signal processing (CSP), considers the basic CS
setup of an underdetermined system and questions
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whether the CS measurements could be used to infer quanti-
ties of interest, without first recovering . It is shown that certain
quantities that are invariant under the sensing operator can
be determined from directly, provided that satisfies certain
embedding conditions [26]. For example, Euclidean distances
are approximately preserved under an underdetermined map-
ping. Whilst computational-complexity and implementation is-
sues were not concerned in [26], here we attempt to examine
the potential of CSP to provide lowrate processing from a set of
RD measurements. Since CSP avoids reconstruction, one can,
in principle, apply CSP on a small set of RD measurements and
thus hope to escape the high computational loads involved in
detecting the active tones subspace out of .
In practice, however, high computational loads are not alle-

viated by the combination CSP-RD, since the stable embedding
conditions of CSP require to behave as a near isometry on
Nyquist-rate sparse vectors, effectively requiring with dimen-
sions that can work for reconstruction purposes. This means that
one should collect samples until corresponds to with a suf-
ficiently large number of rows. In turn, as Table IV shows, pro-
cessing of requires computations on vector lengths of

or entries, depending on the discretization
spacing . Thus, while avoiding the reconstruction of which
has even higher dimensions, CSP does not lead to substantial
savings in this case.
More inherently, CSP calls for the development of a new

toolbox of processing methods. Examples CSP techniques were
proposed in [26] for processing tasks that are limited to linear
functions of the data. Moreover, CSP algorithms, as those pro-
posed in [26], involve the exact values of the sensing matrix, so
that any hardware inaccuracy that alters can propagate errors
to the CSP algorithms. In contrast, Xampling proposes first to
detect the signal subspace and then perform conventional sub-
space DSP. In essence, Xampling suggests that the DSP does
not need to be aware of the source of its input. For example, for
multiband transmissions, the data can either arrive from a de-
modulator that knows the carriers or from the MWC which
does not incorporate such knowledge; The information signals

are given the same treatment in either case. In prac-
tice, both CSP and X-DSP can be relevant, depending on the
application at hand.

V. CONCLUDING REMARKS

Union of subspaces models appear nowadays at the research
frontier in sampling theory. The ultimate goal is to build a
complete sampling theory for UoS models of the general form
(1) and then derive specific sampling solutions for applications
of interest. Although several promising advances have already
been made [5]–[7], [16], this esteemed goal is yet to be accom-
plished.
In this paper, we proposed a unified framework for treating

UoS signals from a functional viewpoint. As Table II shows, the
proposed Xampling architecture is broad enough to capture a
multitude of engineering solutions, under the same logical flow
of operations. The core contributions which assisted in devel-
oping Xampling are two. First, we examined analog compres-
sion through the way it is realized in the RD andMWC systems.
Our technical comparison revealed that the somewhat visual

resemblance can be quite misleading. Major differences were
found in three metrics of practical interest: robustness to model
mismatch, hardware complexity and computational loads, with
the MWC outperforming in all three aspects for our signals of
interest. Based on this study, we have drawn operative conclu-
sions for the choice of analog compression operator in Xam-
pling systems, and in particular for those systems that rely on
CS ideas. Second, we addressed the challenge of lowrate DSP
and developed the Back-DSP algorithm, which completes the
X-DSP functionality for the MWC system, with lowrate pro-
cessing options via a smooth interface to standard DSP pack-
ages.
The nomenclature Xampling was chosen to highlight the im-

portant aspects of our framework. The X prefix symbolically
represents the intersection between subspaces in a union, so as
to highlight that sampling a union model requires a systemat-
ically different treatment in acquisition and processing due to
the multiple subspaces, yet that this is still a subfield of gener-
alized sampling theory [1], [2], [55], [56]. Xampling, literally
pronounced as CS-Sampling (phonetically),

also symbolizes a synergy between recent and classic paradigms
in sampling, thereby conveying a balance between CS tech-
niques and traditional concepts from sampling theory, and be-
tween nonlinear and linear reconstruction techniques. Finally, it
was recently suggested to us [57] that X can stand for “extreme
sampling,” hinting at the very low rates.
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