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Abstract—Recent work has demonstrated that using a carefully
designed dictionary instead of a predefined one, can improve the
sparsity in jointly representing a class of signals. This has moti-
vated the derivation of learningmethods for designing a dictionary
which leads to the sparsest representation for a given set of signals.
In some applications, the signals of interest can have further struc-
ture, so that they can be well approximated by a union of a small
number of subspaces (e.g., face recognition and motion segmen-
tation). This implies the existence of a dictionary which enables
block-sparse representations of the input signals once its atoms are
properly sorted into blocks. In this paper, we propose an algorithm
for learning a block-sparsifying dictionary of a given set of signals.
We do not require prior knowledge on the association of signals
into groups (subspaces). Instead, we develop a method that auto-
matically detects the underlying block structure given themaximal
size of those groups. This is achieved by iteratively alternating be-
tween updating the block structure of the dictionary and updating
the dictionary atoms to better fit the data. Our experiments show
that for block-sparse data the proposed algorithm significantly im-
proves the dictionary recovery ability and lowers the representa-
tion error compared to dictionary learning methods that do not
employ block structure.

Index Terms—Block sparsity, dictionary design, sparse coding.

I. INTRODUCTION

T HE framework of sparse coding aims at recovering an un-
known vector from an under-determined system

of linear equations , where is a given dic-
tionary, and is an observation vector with .
Since the system is under-determined, can not be recovered
without additional information. The framework of compressed
sensing [1], [2] exploits sparsity of in order to enable recovery.
Specifically, when is known to be sparse so that it contains few
nonzero coefficients, and when is chosen properly, then can
be recovered uniquely from . Recovery is possible ir-
respectively of the locations of the nonzero entries of . This
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result has given rise to a multitude of different recovery algo-
rithms. Most prominent among them are Basis Pursuit (BP) [1],
[3], [4] and Orthogonal Matching Pursuit (OMP) [5], [6].
Recent work [7]–[12] has demonstrated that adapting the dic-

tionary to fit a given set of signal examples leads to im-
proved signal reconstruction. These learning algorithms attempt
to find a dictionary that leads to optimal sparse representations
for a certain class of signals. These methods show impressive
results for representations with arbitrary sparsity structures. In
some applications, however, the representations have further
structure that can be exploited. Our interest is in the case of
signals that are known to be drawn from a union of a small
number of subspaces [13]–[15]. This occurs naturally, for ex-
ample, in face recognition [16], [17], motion segmentation [18],
multiband signals [19]–[21], measurements of gene expression
levels [22], and more. For such signals, sorting the dictionary
atoms according to the underlying subspaces leads to sparse
representations which exhibit a block-sparse structure, i.e., the
nonzero coefficients occur in clusters of varying sizes. Several
methods, such as Block BP (BBP) [13], [23], [24] and Block
OMP (BOMP) [25], [26] and group Lasso [27], [28] have been
proposed to take advantage of this structure in recovering the
block-sparse representation . These methods typically assume
that the dictionary is predetermined and the block structure is
known.
In this paper we propose a method for designing a block-spar-

sifying dictionary for a given set of signals. In other words, we
wish to find a dictionary that provides block-sparse representa-
tions best suited to the signals in a given set. To take advantage
of the block structure via block-sparse approximation methods,
it is necessary to know the block structure of the dictionary. We
do not assume that it is known a priori. Instead, we only as-
sume all blocks have a known maximal size and infer the block
structure from the data accordingly while adapting the dictio-
nary. If we were not constraining the maximal block size, we
would eventually end up with one block which contains all the
dictionary atoms.
We start by formulating this task as an optimization problem.

We then present an algorithm for minimizing the proposed
objective, which iteratively alternates between updating the
block structure and updating the dictionary. The block structure
is inferred by the agglomerative clustering of dictionary atoms
that induce similar sparsity patterns. In other words, after
finding the sparse representations of the training signals, the
atoms are progressively merged according to the similarity of
the sets of signals they represent. A variety of segmentation
methods through subspace modeling have been proposed
recently [29]–[31]. These techniques learn an underlying col-
lection of subspaces based on the assumption that each of the
samples lies close to one of them. However, unlike our method,
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they do not treat the more general case where the signals are
drawn from a union of several subspaces.
The dictionary blocks are then sequentially updated to min-

imize the representation error at each step. The proposed algo-
rithm is an intuitive extension of the K-SVD method [7], which
yields sparsifying dictionaries by sequentially updating the dic-
tionary atoms, to the case of block structures: When the blocks
are of size 1 our cost function and algorithm reduce to K-SVD.
Our experiments show that updating the dictionary block by
block is preferred over updating the atoms in the dictionary one
by one, as in K-SVD.
We demonstrate empirically that both parts of the algorithm

are indispensable to obtain high performance. While fixing a
random block structure and applying only the dictionary up-
date part leads to improved signal reconstruction compared to
K-SVD, combining the two parts leads to even better results.
Furthermore, our experiments show that K-SVD often fails to
recover the underlying block structure. This is in contrast to our
algorithm which succeeds in detecting most of the blocks.
We begin by reviewing previous work on dictionary design

in Section II. In Section III-A we present an objective for de-
signing block-sparsifying dictionaries. We show that this objec-
tive is a direct extension of the one used by K-SVD. We then
propose an algorithm for minimizing the proposed cost func-
tion in Section III-B. Section III-C provides a detailed descrip-
tion of the proposed algorithm. We evaluate the performance of
our method and compare it to previous work in Section IV.
Throughout the paper, we denote vectors by lowercase let-

ters, e.g., , and matrices by uppercase letters, e.g., . The
column of amatrix is written as , and the row as . The
sub-matrix containing the entries of in the rows with indices
and the columns with indices is denoted . The Frobenius

norm is defined by . The element of

a vector is denoted . is its -norm and counts
the number of nonzero entries in .

II. PRIOR WORK ON DICTIONARY DESIGN

The goal in dictionary learning is to find a dictionary and
a representation matrix that best match a given set of vectors
that are the columns of . In addition, we would like each

vector of to be sparse. In this section we briefly review
two popular sparsifying dictionary design algorithms, K-SVD
[7] and MOD (Method of Optimal Directions) [8]. We will gen-
eralize these methods to block-sparsifying dictionary design in
Section III.
To learn a dictionary, both MOD and K-SVD attempt to op-

timize the same cost function for a given sparsity measure :

(1)

where is a matrix containing given input signals,
is the dictionary and is a sparse rep-

resentation of the signals. Note that the solution of (1) is never
unique due to the invariance of to permutation and scaling
of columns. This is partially resolved by requiring normalized
columns in . We will therefore assume throughout the paper
that the columns of are normalized to have -norm equal 1.

Problem (1) is nonconvex andNP-hard in general. BothMOD
and K-SVD attempt to approximate(1) using a relaxation tech-
niquewhich iteratively fixes all the parameters but one, and opti-
mizes the objective over the remaining variable. In this approach
the objective decreases (or is left unchanged) at each step, so
that convergence to a local minimum is guaranteed. Since this
might not be the global optimum both approaches are strongly
dependent on the initial dictionary . The convention [7] is
to initialize as a collection of data signals from the same
class as the training signals .
The first step of the iteration in both algorithms optimizes
given a fixed dictionary , so that (1) becomes

(2)

This problem can be solved approximately using sparse coding
methods such as BP or OMP for each column of , since the
problem is separable in these columns. Next, is kept fixed
and the representation error is minimized over

(3)

The difference between MOD and K-SVD lies in the choice of
optimization method for . While K-SVD converges faster
than MOD, both methods yield similar results (i.e., similar re-
construction errors).
The MOD algorithm treats the problem in (3) directly. This

problem has a closed form solution given by the pseudoinverse

(4)

Here we assume for simplicity that is invertible.
The K-SVD method solves (3) differently. The columns in

are updated sequentially, along with the corresponding
nonzero coefficients in . This parallel update leads to
a significant speedup while preserving the sparsity pattern
of . For , the update is as follows. Let

be the set of indices corre-
sponding to columns in that use the atom , i.e., their
th row is nonzero. Denote by
the representation error of the signals excluding the con-
tribution of the th atom. The representation error of the signals
with indices can then be written as . The
goal of the update step is to minimize this representation error,
which is accomplished by choosing

Here is the Singular Value Decomposition (SVD) of
. Note, that the columns of remain normalized after the

update. The K-SVD algorithm obtains the dictionary update by
separate SVD computations, which explains its name.

III. BLOCK-SPARSIFYING DICTIONARY OPTIMIZATION

We now formulate the problem of block-sparsifying dictio-
nary design. We then propose an algorithm which can be seen as
a natural extension of K-SVD for the case of signals with block
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Fig. 1. Two equivalent examples of dictionaries and block structures with
5 blocks, together with 2-block-sparse representations . Both examples repre-
sent the same signal, since the atoms in and the entries of and are permuted
in the same manner (in both cases ).

sparse representations. Our method involves an additional clus-
tering step in order to determine the block structure.

A. Problem Definition

For a given set of signals , we wish to
find a dictionary whose atoms are sorted in blocks,
and which provides the most accurate representation vectors
whose nonzero values are concentrated in a fixed number of
blocks. In previous works dealing with the block-sparse model,
it is typically assumed that the block structure in is known a
priori, and even more specifically, that the atoms in are sorted
according to blocks [13], [23]. Instead, in this paper we address
the more general case where the association of dictionary atoms
into blocks is not known a priori. We do, however, make the as-
sumption that the maximal block size, denoted by , is known.
More specifically, suppose we have a dictionary whose atoms

are sorted in blocks that enable block-sparse representations of
the input signals. Assume that each block is given an index
number. Let be the vector of block assignments for
the atoms of , i.e., is the block index of the atom . We
say that a vector is -block-sparse over if its nonzero
values are concentrated in blocks only. This is denoted by

, where is the -norm over and counts the
number of nonzero blocks as defined by . Fig. 1 presents ex-
amples of two different block structures and two corresponding
block-sparse vectors and dictionaries.
Our goal is to find a dictionary and a block structure ,

with maximal block size , that lead to optimal -block sparse
representations for the signals in

(5)

where is the set of indices be-
longing to block (i.e., the list of atoms in block ), and is the
number of blocks. The case when there is no underlying block
structure or when the block structure is ignored, is equivalent
to setting and . Substituting this into (5),
reduces it to(1). In this setting, the objective and the algorithm
we propose coincide with K-SVD. In Section IV we demon-
strate through simulations that when an underlying block struc-
ture exists, optimizing(5) via the proposed framework improves

recovery results and lowers the representation errors with re-
spect to(1).

Algorithm Preview

In this section, we propose a framework for solving (5). Since
this optimization problem is nonconvex, we adopt the coordi-
nate relaxation technique. We initialize the dictionary as
the outcome of the K-SVD algorithm (using a random collection
of signals leads to similar results, but slightly slower conver-
gence). Then, at each iteration we perform the following two
steps:
a) Recover the block structure by solving (5) for and
while keeping fixed

(6)

An exact solution would require a combinatorial search
over all feasible and . Instead, we propose a tractable
approximation to (6) in Section III-C, referred to as
Sparse Agglomerative Clustering (SAC). Agglomerative
clustering builds blocks by progressively merging the
closest atoms according to some distance measure [32],
[33]. SAC uses the -norm for this purpose.

b) Fit the dictionary to the data by solving (5) for
and while keeping fixed

(7)

In Section III-D, we propose an algorithm, referred to as
Block K-SVD (BK-SVD), for solving (7). This technique
can be viewed as a generalization of K-SVD since the
blocks in are sequentially updated together with the
corresponding nonzero blocks in .

In the following sections we describe in detail the steps
of this algorithm. The overall framework is summarized in
Algorithm 1.

Algorithm 1: Block-Sparse Dictionary Design

Input: A set of signals , block sparsity and maximal
block size .
Task: Find a dictionary , block structure and the
corresponding sparse representation by optimizing

Initialization: Set the initial dictionary as the
outcome of K-SVD.
Repeat from until convergence:
1) Fix , and update and by applying
Sparse Agglomerative Clustering.

2) Fix , and update and by applying
BK-SVD.

3)
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Fig. 2. (a) A flow chart describing the SAC algorithm. (b) A detailed example of the decision making process in the SAC algorithm.

B. Block Structure Recovery: Sparse Agglomerative Clustering

In this section, we propose a method for recovering the block
structure given a fixed dictionary , as outlined in Fig. 2(a).
The suggested method is based on the coordinate relaxation
technique to solve (6) efficiently. We start by initializing and
. Since we have no prior knowledge on it is initialized as

blocks of size 1, i.e., . To initialize we keep
fixed and solve (6) over using OMP with instead of
nonzero entries, since the signals are known to be combinations
of blocks of size . Based on the obtained , we first update
as described below and then again using BOMP [25]. The

BOMP algorithm sequentially selects the dictionary blocks that
best match the input signals , and can be seen as a general-
ization of the OMP algorithm to the case of blocks.
To update we wish to solve (6) while keeping fixed. Al-

though the objective does not depend on , the constraints do.
Therefore, the problem becomes finding a block structure with
maximal block size that meets the constraint on the block-spar-
sity of . To this end, we seek to minimize the block-sparsity
of over

(8)

Before we describe how (8) is optimized we first wish to pro-
vide some insight. When a signal is well represented by the
unknown block , then the corresponding rows in are likely
to be nonzero. Therefore, rows of that exhibit a similar pattern
of nonzeros are likely to correspond to columns of the same dic-
tionary block. Consequently, grouping dictionary columns into

blocks is equivalent to grouping rows of according to their
sparsity pattern. To detect rows with similar sparsity patterns
we next rewrite the objective of (8) as a function of the pattern
on nonzeros.
Let denote the list of columns in that have

nonzero values in rows corresponding to block , i.e.,
. Problem (8) can now

be rewritten as

(9)

where denotes the size of the list , and is the current
number of blocks. We propose using a suboptimal tractable ag-
glomerative clustering algorithm [33] to minimize this objec-
tive. At each step we merge the pair of blocks that have the most
similar pattern of nonzeros in , leading to the steepest descent
in the objective. In our implementation we allowmerging blocks
as long as the maximum block size is not exceeded. While this
aims at obtaining blocks of size , some of the blocks could be
smaller since, for example, two blocks of size will not be
further merged as their joint dimension exceeds .
More specifically, at each step we find the pair of blocks

such that

We then merge and by setting ,
and . This is repeated until no

blocks can be merged without breaking the constraint on the
block size. We do not limit the intersection size for merging
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blocks from below, since merging is always beneficial. Merging
blocks that have nothing in common may not reduce the ob-
jective of (8); however, this can still lower the representation
error at the next BK-SVD iteration. Indeed, while the number
of blocks stays fixed, the number of atoms that can be used to
reduce the error increases.
Fig. 2(b) presents an example that illustrates the notation

and the steps of the algorithm. In this example the maximal
block size is . At initialization the block structure is set
to , which implies that the objective of (8) is

. At the first iteration,
and have the largest intersection. Consequently, blocks 1
and 3 are merged. At the second iteration, and have the
largest intersection, so that blocks 2 and 4 are merged. This
results in the block structure where no blocks
can be merged without surpassing the maximal block size.
The objective of (8) is reduced to , since
all 4 columns in are 1-block-sparse. Note that since every
column contains nonzero values, this is the global minimum
and therefore the algorithm succeeded in solving (8).
While more time-efficient clustering methods exist, we have

selected agglomerative clustering because it provides a simple
and intuitive solution to our problem. Partitional clustering
methods, such as K-Means, require initialization and are there-
fore not suited for highly sparse data and the -norm metric.
Moreover, it is preferable to limit the maximal block size rather
than to determine the minimal number of blocks. This is since
the latter could lead to degeneracies such as obtaining a single
high-dimensional block and multiple one-dimensional blocks.
It is important to note that due to the iterative nature of our
dictionary design algorithm, clustering errors can be corrected
in the following iteration, after the dictionary has been refined.
The computational complexity of the SAC algorithm is

since we need to calculate the distances between all pairs of
atoms and each distance estimation is of complexity . Prior to
clustering we employ OMP whose complexity is

(see [34]).

C. Block K-SVD Algorithm

We now propose the BK-SVD algorithm for recovering the
dictionary and the representations by optimizing (7) given
a block structure and input signals .
Using the coordinate relaxation technique, we solve this

problem by minimizing the objective based on alternating
and . At each iteration , we first fix and use BOMP
to solve (7) which reduces to

(10)

Next, to obtain we fix and , and solve

(11)

Inspired by the K-SVD algorithm, the blocks in are
updated sequentially, along with the corresponding nonzero co-
efficients in . For every block , the update is as
follows. Denote by the represen-
tation error of the signals excluding the contribution of the

block. Here and are defined as in the previous subsec-

tion. The representation error of the signals with indices can
then be written as . Finally, the representa-

tion error is minimized by setting equal to the matrix
of rank that best approximates . This can obtained by
the following updates:

where the highest rank components of are computed
using the SVD . The updated is now an or-
thonormal basis that optimally represents the signals with in-
dices . Note that the representation error is also minimized
when multiplying on the right by and on the left by

, where is an invertible matrix. However,
if we require the dictionary blocks to be orthonormal subspaces,
then the solution is unique up to a permutation of the atoms. It
is also important to note that if , then su-
perfluous atoms in block can be discarded without any loss of
performance.
This dictionary update minimizes the representation error

while preserving the sparsity pattern of , as in the
K-SVD dictionary update step. However, the update step in the
BK-SVD algorithm converges faster thanks to the simultaneous
optimization of the atoms belonging to the same block. Our
simulations show that it leads to smaller representation errors
as well. Moreover, the dictionary update step in BK-SVD
requires about times less SVD computations, which makes
the proposed algorithm significantly faster than K-SVD.
As was shown in [34] the complexity of K-SVD is dominated

by that of OMP and is hence (assuming the
target sparsity is ). Similarly, for BK-SVD the complexity is

.
We next present a simple example illustrating the advan-

tage of the BK-SVD dictionary update step, compared to the
K-SVD update. Let and be the atoms of the same
block, of size 2. A possible scenario is that and

. In K-SVD, the first update of is
and . In this case, the second up-

date would leave and unchanged. As a consequence,
only the highest rank component of is removed. Con-
versely, in the proposed BK-SVD algorithm, the atoms and

are updated simultaneously, resulting in the two highest
rank components of being removed.

IV. EXPERIMENTS

In this section, we evaluate the contribution of the proposed
block-sparsifying dictionary design framework empirically. We
also examine the performance of the SAC and the BK-SVD al-
gorithms separately. We perform experiments on synthetic data
as well as real-world image data.
For each simulation, we repeat the following procedure 50

times: We randomly generate a dictionary of dimension
with normally distributed entries and normalize its

columns. The block structure is chosen to be of the form

i.e., consists of 20 subspaces of size .We generate
test signals of dimension , that have 2-block
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Fig. 3. Simulation results of the SAC algorithm. The graphs show , , and
as a function of the SNR of the data signals for (a, b, c), and as a function
of in a noiseless setting (d, e, f).

Fig. 4. Simulation results of the BK-SVD and (B)K-SVD algorithms. The
graphs show the reconstruction error and the recovery percentage as a
function of the SNR of the data signals for and after 250 iterations (a,
b), as a function of the number of iterations for in a noiseless setting (c,
d), and as a function of in a noiseless setting after 250 iterations (e, f).

sparse representations with respect to (i.e., ). The
generating blocks are chosen randomly and independently and
the coefficients are i.i.d. uniformly distributed. White Gaussian
noise with varying SNR was added to .
We perform three experiments:
1) Given and , we examine the ability of SAC to recover

.
2) Given and , we examine the ability of BK-SVD to
recover .

3) We examine the ability of BK-SVD combined with SAC
to recover and given only .

We use two measures to evaluate the success of the simula-
tions based on their outputs , , and :
• The normalized representation error .
• The percentage of successfully recovered blocks. For
every block in , wematch the closest block in without
repetition, where the (normalized) distance between two
blocks and (of sizes and ) is measured by [35]

assuming that both blocks are orthonormalized. If the dis-
tance between the block in and its matched block in
is smaller than 0.01, we consider the recovery of this block
as successful.

A. Evaluating SAC

To evaluate the performance of the SAC algorithm, we as-
sume that is known, and use SAC to reconstruct and then
BOMP to approximate . The SAC algorithm is evaluated as
a function of the SNR of the signals for , and as a func-
tion of in a noiseless setting. In addition to and , Fig. 3
also shows the objective of (8), which we denote by . We com-
pare our results with those of an “oracle” algorithm, which is
given as input the true block structure . It then uses BOMP
to find . The oracle’s results provide a lower bound on the
reconstruction error of our algorithm (we cannot expect our al-
gorithm to outperform the oracle). It can be seen that for SNR
higher than , the percentage of successfully recovered
blocks quickly increases to [Fig. 3(b)], the representation
error drops to zero [Fig. 3(a)] and the block-sparsity drops to
the lowest possible value [Fig. 3(c)]. Fig. 3(e) shows that
the block structure is perfectly recovered for . How-
ever, for , SAC fails in reconstructing the block structure
, even though the block sparsity reaches the lowest pos-

sible value [Fig. 3(f)]. This is a consequence of the inability of
OMP to recover the sparsest approximation of the signals
with nonzero entries. In terms of and , our algo-
rithm performs nearly as good as the oracle.

B. Evaluating BK-SVD

To evaluate the performance of the BK-SVD algorithm we
assume that the block structure is known. We initialize the
dictionary by generating 20 blocks of size 3 where each
block is a randomly generated linear combination of 2 randomly
selected blocks of . We then evaluate the contribution of the
proposed BK-SVD algorithm. Recall that dictionary design con-
sists of iterations between two steps, updating using block-
sparse approximation and updating the blocks in and their
corresponding nonzero representation coefficients. To evaluate
the contribution of the latter step, we compare its performance
with that of applying the same scheme, but using the K-SVD
dictionary update step. We refer to this algorithm as (B)K-SVD.
The algorithms are evaluated as a function of the SNR of the sig-
nals for after 250 iterations, as a function of the number
of iterations for in a noiseless setting, and as a function
of in a noiseless setting after 250 iterations. It is clear from
Fig. 4 that the simultaneous update of the atoms in the blocks
of is imperative and does not only serve as a speedup of the
algorithm.
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Fig. 5. Simulation results of our overall algorithm (BK-SVD+SAC), the
BK-SVD algorithm and the K-SVD algorithm. The graphs show the recon-
struction error and the recovery percentage as a function of the SNR of the
data signals for after 250 iterations (a, b), as a function of the number
of iterations for in a noiseless setting (c, d), and as a function of in a
noiseless setting after 250 iterations (e, f).

C. Evaluating the Overall Framework

To evaluate the performance of the overall block-sparsifying
dictionary design method, we combine SAC and BK-SVD. At
each iteration we only run BK-SVD once instead of waiting
for it to converge, improving the ability of the SAC algorithm
to avoid traps. Our results are compared with those of K-SVD
(with a fixed number of 8 coefficients) and with those of
BK-SVD (with a fixed block structure) as a function of the
SNR, as a function of the number of iterations. The algorithms
are evaluated as a function of the SNR of the signals for

after 250 iterations, as a function of the number of
iterations for in a noiseless setting, and as a function of
in a noiseless setting after 250 iterations (Fig. 5).
Our experiments show that for SNR , the proposed

block-sparsifying dictionary design algorithm yields lower
reconstruction errors [see Fig. 5(a)] and a higher percentage
of correctly reconstructed blocks [see Fig. 5(b)], compared
to K-SVD. Moreover, even in a noiseless setting, the K-SVD
algorithm fails to recover the sparsifying dictionary, while our
algorithm succeeds in recovering of the dictionary blocks,
as shown in Fig. 5(d).
For we observe that K-SVD reaches lower

reconstruction error compared to our block-sparsifying dictio-
nary design algorithm. This is since when the SNR is low the
block structure is no longer present in the data and the use of
block-sparse approximation algorithms is unjustified. To verify
this is indeed the cause for failure of our algorithm, we further
compare our results with those of an oracle algorithm, which
is given as input the true dictionary and block structure .
It then uses BOMP to find . Fig. 5 shows that for all noise
levels, our algorithm performs nearly as good as the oracle. Fur-
thermore, for we observe that K-SVD out-
performs the oracle, implying that the use of block-sparsifying
dictionaries is unjustified. For , in a noiseless setting, the

performance of our algorithm lies close to that of the oracle, and
outperforms the K-SVD algorithm. However, we note that this
is not the case for .
Finally, we wish to evaluate the contribution of the SAC algo-

rithm to the overall framework. One could possibly fix an initial
block structure and then iteratively update the dictionary using
BK-SVD, in hope that this will recover the block structure.
Fig. 5 shows that the representation error is much lower when
including SAC in the overall framework. Moreover, BK-SVD
consistently fails in recovering the dictionary blocks. Note, that
for the task of dictionary design it is always beneficiary to ag-
gregate atoms into blocks. Hence, the SAC algorithm continues
grouping atoms until the maximal block size has been reached,
or no further merges can occur (e.g., merging any pair of blocks
will result in exceeding ). The resulting block structure has
blocks of size .

D. Experiments on Real-World Data

To further show the usefulness of the proposed approach we
test it on real image data. Many algorithms in image processing,
e.g., denoising, superresolution, inpainting, and object recogni-
tion, are based on decomposing the query image into patches
and replacing each patch with a combination of the most sim-
ilar ones in a given database of patches [36]–[38]. For example,
in [39] object recognition is performed using a database of la-
beled image patches, i.e., the category from which each patch
originated is known. For each patch from the query image one
finds the most similar ones in the database and extracts their la-
bels. The query image is then classified according to the labels
of the matches from the database using, e.g., majority voting.
In all of these patch-based applications, the success of the algo-
rithm depends on finding correctly the nearest neighbors of each
patch. This is achieved when the database of patches provides a
good coverage of the space of all image patches.
Here, we compare the ability of K-SVD and our

SAC+BK-SVD to cover the space of image patches, via
the following experiment. We randomly generate a dictionary
of dimension with normally distributed entries

and normalize its columns. We further set the maximal block
size to and block sparsity to . We extract all
5 5 nonoverlapping image patches from a training image and
reshape them into column vectors of dimension

, which are used as training signals in . We then use
both K-SVD and the proposed SAC+BK-SVD for optimizing
the dictionary.
Next, we take a different image for testing, extract all its

nonoverlapping patches and find for each patch its sparse repre-
sentation. We find a sparse solution when using the K-SVD
dictionary and a -block sparse solution when using the dictio-
nary trained by SAC+BK-SVD. Finally, we compute the mean
reconstruction error over all image patches. We have repeated
this experiment 50 times and report the mean errors over these
50 trials. The results are presented in Fig. 6 as a function of the
number of iterations in training the dictionary. As can be seen,
the dictionary learned by SAC+BK-SVD leads to smaller errors,
and converges faster than K-SVD.
We have further repeated this experiment, but using the

output of K-SVD as the initialization of SAC+BK-SVD instead
of random initialization. The results were highly similar.
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Fig. 6. Each 5 5 patch in the query image was replaced with its corre-
sponding sparse approximation using the dictionaries trained by K-SVD and
SAC+BK-SVD. The latter leads to smaller errors and faster convergence. (a)
Training image. (b) Reconstruction error versus number of iterations. (c) Query
image. (d) Reconstructed with KSVD. (e) Reconstructed with BK-SVD+SAC.

Similar to [11] we also experimented with superresolution.
We extracted training patches of size 8 8 from the
image in Fig. 7(a). These patches were used to train a dictionary
of size , initialized with random Gaussian
entries. The allowed size of each block is , and the allowed
block sparsity was . We trained three dictionaries. The
first using KSVD with nonzero elements, the second
using SAC+BK-SVDwith nonzero blocks, and the third using
BKSVD (with fixed block structure) with nonzero blocks. The
mean reconstruction errors over the training signals were for
KSVD , for SAC+BK-SVD , and
for BKSVD .
Next, we extracted all 8 8 nonoverlapping image patches of

the image in Fig. 7(b). The corresponding 64 long vectors were
compressed into 16 dimensions using a sensing matrix trained
by the algorithm of [11]. We then used each of the trained dic-
tionaries to reconstruct the 64 dimensional patches. The recon-
struction results are presented in Fig. 7(c)–(e). It can be seen that
the proposed SAC+BK-SVD leads to the smallest errors out of
the three.
Finally, we have further extracted all 8 8 image patches

with overlaps, of the image in Fig. 7(b). The corresponding 64
long vectors were again compressed into 16 dimensions using
a sensing matrix trained by the algorithm of [11]. We then used
each of the trained dictionaries to reconstruct the 64 dimensional
patches. The imagewas reconstructed by averaging at each pixel
the corresponding values from the reconstructed patches that in-
clude it. The reconstruction results are presented in Fig. 7(f)–(h).
It can be seen again, that the proposed SAC+BK-SVD leads to
the smallest errors out of the three.

E. Choosing the Maximal Block Size

We now consider the problem of setting the maximal block
size in the dictionary, when all we are given is that the sizes
of the blocks are in the range . This also includes the
case of varying block sizes. Choosing the maximal block size
to be equal to will not allow to successfully reconstruct

blocks containingmore than atoms. On the other hand, setting
will cause the initial sparse representation matrix ,

Fig. 7. Superresolution experiment. Dictionaries were trained by K-SVD,
BK-SVD, and SAC+BK-SVD using 8 8 patches from the training image in
(a) Then, each 8 8 patch in the query image (b) was compressed into 16 di-
mensions. A 64 dimensional approximation was obtained for each compressed
patch using the three dictionaries (c)-(e) show the obtained reconstruction
with nonoverlapping patches (f)-(h) show the obtained reconstruction after
averaging all overlapping patches. SAC+BK-SVD leads to smallest errors. (a)
Training image. (b) Query image. (c) Reconstructed with KSVD (nonover-
lapping patches). (d) Reconstructed with BK-SVD. (e) Reconstructed with
BK-SVD+SAC (f) Reconstructed with KSVD (averaging overlapping patches).
(g) Reconstructed with BK-SVD. (h) Reconstructed with BK-SVD+SAC.

obtained by the OMP algorithm, to contain too many nonzero
coefficients. This is experienced as noise by the SAC algorithm,
and may prevent it from functioning properly. It is therefore
favorable to use OMP with nonzero entries only, and set
the maximal block size to be .
In Fig. 8(a), we evaluate the ability of our block sparsifying

dictionary design algorithm to recover the optimal dictionary,
which contains 12 blocks of size 3, and 12 blocks of size 2. As
expected, better results are obtained when choosing . In
Fig. 8(b), the underlying block subspaces are all of dimension
2, but is erroneously set to be 3. We see that when ,
we succeed in recovering a considerable part of the blocks, even
though blocks of size 3 are allowed. In both simulations, K-SVD
uses nonzero entries, which explains why it is not signif-
icantly outperformed by our algorithm in terms of representa-
tion error. Moreover, the percentage of reconstructed blocks by
our algorithm is relatively low compared to the previous simu-
lations, due to the small block sizes.

V. CONCLUSION

In this paper, we proposed a framework for the design of a
block-sparsifying dictionary given a set of signals and a max-
imal block size. The algorithm consists of two steps: a block
structure update step (SAC) and a dictionary update step (BK-
SVD). When the maximal block size is chosen to be 1, the al-
gorithm reduces to K-SVD.



2394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 5, MAY 2012

Fig. 8. Simulation results of our overall algorithm (BK-SVD+SAC) and the
K-SVD algorithm, with maximal block size . The graphs show the re-
construction error and the recovery percentage as a function of the number
of iterations (recall that given our definition of we declare a correct recovery
when the distance between the recovered block and its best match is small, i.e.,
they need not be of the same dimension). (a) The input data contains 12 blocks
of size 2 and 12 block of size 3. (b) The input data contains 30 blocks of size 2.

We have shown via experiments that the block structure up-
date step (SAC) provides a significant contribution to the dictio-
nary recovery results. We have further shown that for the
BK-SVD dictionary update step is superior to the K-SVD dic-
tionary update. Moreover, the representation error obtained by
our dictionary design method lies very close to the lower bound
(the oracle) for all noise levels. This suggests that our algorithm
has reached its goal in providing dictionaries that lead to accu-
rate sparse representations for a given set of signals.
To further improve the proposed approach one could try and

make the dictionary design algorithm less susceptible to local

minimum traps. Another refinement could be replacing blocks
in the dictionary that contribute little to the sparse represen-
tations (i.e., “unpopular blocks”) with the least represented
signal elements. This is expected to only improve reconstruc-
tion results. Finally, we may replace the time-efficient BOMP
algorithm, with other block-sparse approximation methods. We
leave these issues for future research.
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