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DOLPHIn—Dictionary Learning for Phase Retrieval
Andreas M. Tillmann, Yonina C. Eldar, Fellow, IEEE, and Julien Mairal, Senior Member, IEEE

Abstract—We propose a new algorithm to learn a dictionary for
reconstructing and sparsely encoding signals from measurements
without phase. Specifically, we consider the task of estimating a
two-dimensional image from squared-magnitude measurements
of a complex-valued linear transformation of the original image.
Several recent phase retrieval algorithms exploit underlying
sparsity of the unknown signal in order to improve recovery
performance. In this work, we consider such a sparse signal prior
in the context of phase retrieval, when the sparsifying dictionary
is not known in advance. Our algorithm jointly reconstructs
the unknown signal—possibly corrupted by noise—and learns a
dictionary such that each patch of the estimated image can be
sparsely represented. Numerical experiments demonstrate that
our approach can obtain significantly better reconstructions for
phase retrieval problems with noise than methods that cannot
exploit such “hidden” sparsity. Moreover, on the theoretical side,
we provide a convergence result for our method.

Index Terms—Image reconstruction, machine learning, signal
reconstruction.

I. INTRODUCTION

PHASE retrieval has been an active research topic for
decades [1], [2]. The underlying goal is to estimate

an unknown signal from the modulus of a complex-valued
linear transformation of the signal. With such nonlinear
measurements, the phase information is lost (hence the name
“phase retrieval”), rendering the recovery task ill-posed and,
perhaps not surprisingly, NP-hard [3]. Traditional approaches
consider cases where the solution is unique up to a global
phase shift, which can never be uniquely resolved, and devise
signal reconstruction algorithms for such settings. Uniqueness
properties and the empirical success of recovery algorithms
usually hinge on oversampling the signal, i.e., taking more
measurements than the number of signal components.

The most popular techniques for phase retrieval are based
on alternating projections, see [4]–[6] for overviews. These
methods usually require precise prior information about the
signal (such as knowledge of the support set) and often

Manuscript received February 6, 2016; revised July 25, 2016; accepted August
25, 2016. Date of publication September 8, 2016; date of current version October
19, 2016. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Lei Huang. The work of Y. Eldar was
supported by the European Union’s Horizon 2020 research and innovation
programme under grant agreement ERC-BNYQ, and by the Israel Science
Foundation under Grant 335/14. The work of J. Mairal was supported by the
French National Research Agency (Macaron project, ANR-14-CE23-0003-01).

A. M. Tillmann is with the TU Darmstadt, Research Group Optimization,
Darmstadt 64293, Germany (e-mail: tillmann@mathematik.tu-darmstadt.de).

Y. C. Eldar is with the Department of Electrical Engineering, Technion—
Israel Institute of Technology, Haifa 32000, Israel (e-mail: yonina@ee.
technion.ac.il).

J. Mairal is with the Inria, Lear Team, Laboratoire Jean Kuntzmann,
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converge to erroneous results. More recent approaches include
semidefinite programming relaxations [7]–[11] and gradient-
based methods such as Wirtinger Flow [12], [13].

In recent years, new phase retrieval techniques were
developed for recovering sparse signals, which are linear
combinations of only a few atoms from a known dictionary
[8], [13]–[15]. With a sparsity assumption, these algorithms
obtained better recovery performance than traditional non-
sparse approaches. The main idea is akin to compressed sensing,
where one works with fewer (linear) measurements than signal
components [16]–[18]. An important motivation for developing
sparse recovery techniques was that many classes of signals
admit a sparse approximation in some basis or overcomplete
dictionary [19]–[21]. While sometimes such dictionaries are
known explicitly, better results have been achieved by adapting
the dictionary to the data, e.g., for image denoising [20].
Numerous algorithms have been developed for this task, see,
e.g., [19], [22], [23]. In this traditional setting, the signal
measurements are linear and a large database of training signals
is used to train the dictionary.

In this work, we propose a dictionary learning formulation
for simultaneously solving the signal reconstruction and sparse
representation problems given nonlinear, phaseless and noisy
measurements. To optimize the resulting (nonconvex) objective
function, our algorithm—referred to as DOLPHIn (DictiOnary
Learning for PHase retrIeval)—alternates between several
minimization steps, thus monotonically reducing the value of the
objective until a stationary point is found (if step sizes are chosen
appropriately). Specifially, we iterate between best fitting the
data and sparsely representing the recovered signal. DOLPHIn
combines projected gradient descent steps to update the signal,
iterative shrinkage to obtain a sparse approximation [24], and
block-coordinate descent for the dictionary update [23].

In various experiments on image reconstruction problems,
we demonstrate the ability of DOLPHIn to achieve significantly
improved results when the oversampling ratio is low and
the noise level high, compared to the recent state-of-the-art
Wirtinger Flow (WF) method [12], which cannot exploit sparsity
if the dictionary is unknown. In this two-dimensional setting, we
break an image down into small patches and train a dictionary
such that each patch can be sparsely represented using this
dictionary. The patch size as well as the amount of overlap
between patches can be freely chosen, which allows us to control
the trade-off between the amount of computation required to
reconstruct the signal and the quality of the result.

The paper is organized as follows: In Sections II and III,
we introduce the DOLPHIn framework and algorithm. Then,
in Section IV-C, we present numerical experiments and
implementation details, along with discussions about (hyper-
)parameter selection and variants of DOLPHIn. We conclude
the paper in Section V. The appendix provides further details on
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the mathematical derivation of the DOLPHIn algorithm. A short
preliminary version of this work appeared in the conference
paper [25].

II. PHASE RETRIEVAL MEETS DICTIONARY LEARNING

In mathematical terms, the phase retrieval problem can be
formulated as solving a nonlinear system of equations:

Find x ∈ X ⊆ CN s.t. |fi(x)|2 = yi ∀ i = 1, . . . , M,
(1)

where the functions fi : CN → C are linear operators and
the scalars yi are nonlinear measurements of the unknown
original signal x̂ in X , obtained by removing the phase
information. The set X represents constraints corresponding
to additional prior information about x̂. For instance, when
dealing with real-valued bounded signals, this may typically
be a box constraint X = [0, 1]N. Other common constraints
include information about the support set—that is, the set of
nonzero coefficients of x̂. Classical phase retrieval concerns
the recovery of x̂ given the (squared) modulus of the signal’s
Fourier transform. Other commonly considered cases pertain to
randomized measurements (fi are random linear functions) or
coded diffraction patterns, i.e., concatenations of random signal
masks and Fourier transforms (see, e.g., [2], [12]).

A. Prior and Related Work

The most popular methods for classical phase retrieval—
Fienup’s algorithm [5] and many related approaches [2], [4],
[6], [26], [27]—are based on alternating projections onto
the sets Y := {x ∈ CN s.t. |fi(x)| = yi ∀ i} (or {x ∈
CN s.t. |fi(x)|2 = yi ∀ i}) and onto the set X . However, the
nonconvexity of Y makes the projection not uniquely defined
and possibly hard to compute. The success of such projection-
based methods hinges critically on precise prior knowledge
(which, in general, will not be available in practice) and on the
choice of a projection operator onto Y . Ultimately, convergence
to x̂ (up to global phase) is in general not guaranteed and these
methods often fail in practice.

Further algorithmic techniques to tackle (1) include two
different semidefinite relaxation approaches, PhaseLift [7]
and PhaseCut [11]. PhaseLift “lifts” (1) into the space of
(complex) positive semidefinite rank-1 matrices via the variable
transformation X := xx∗. Then, the nonlinear constraints
|fi(x)|2 = yi are equivalent to linear constraints with respect to
the matrix variable X. By suitably relaxing the immediate but
intractable rank-minimization objective, one obtains a convex
semidefinite program (SDP). Similarly, PhaseCut introduces a
separate variable u for the phase, allowing to eliminate x, and
then lifts u to obtain an equivalent problem with a rank-1-
constraint, which can be dropped to obtain a different SDP
relaxation of (1). Despite some guarantees on when these
relaxations are tight, i.e., allow for correctly recovering the
solution to (1) (again up to a global phase factor), their practical
applicability is limited due to the dimension of the SDP that
grows quadratically with the problem dimension.

A recent method that works in the original variable space is
the so-called Wirtinger Flow algorithm [12]. Here, (1) is recast
as the optimization problem

min
x∈CN

1
4M

M∑

i=1

(
|fi(x)|2 − yi

)2
, (2)

which is approximately solved by a gradient descent algorithm.
Note that in the case of complex variables, the concept of a
gradient is not well-defined, but as shown in [12], a strongly
related expression termed the “Wirtinger derivative” can be
used instead and indeed reduces to the actual gradient in the
real case. For the case of i.i.d. Gaussian random measurements,
local convergence with high probability can be proven for the
method, and a certain spectral initialization provides sufficiently
accurate signal estimates for these results to be applicable.
Further variants of the Wirtinger Flow (WF) method that
have been investigated are the Truncated WF [28], which
involves improving search directions by a statistically motivated
technique to filter out components that bear “too much”
influence, and Thresholded WF [13], which allows for improved
reconstruction of sparse signals (i.e., ones with only a few
significant components or nonzero elements), in particular when
the measurements are corrupted by noise.

The concept of sparsity has been successfully employed in
the context of signal reconstruction from linear measurements,
perhaps most prominently in the field of compressed
sensing [16]–[18], [29] during the past decade. There, the task
is to recover an unkown signal x̂ ∈ CN from M < N linear
measurements—that is, finding the desired solution among the
infinitely many solutions of an underdetermined system of linear
equations. For signals that are (exactly or approximately) sparse
with respect to some basis or dictionary, i.e., when x̂ ≈ Dâ
for a matrix D and a vector â that has few nonzero entries,
such recovery problems have been shown to be solvable in
a very broad variety of settings and applications, and with a
host of different algorithms. Dictionaries enabling sparse signal
representations are sometimes, but not generally, known in
advance. The goal of dictionary learning is to improve upon
the sparsity achievable with a given (analytical) dictionary, or to
find a suitable dictionary in the first place. Given a set of training
signals, the task consists of finding a dictionary such that every
training signal can be well-approximated by linear combinations
of just a few atoms. Again, many methods have been developed
for this purpose (see, e.g., [19]–[23]) and demonstrated to work
well in different practical applications.

Signal sparsity (or compressability) can also be beneficially
exploited in phase retrieval methods, cf. [8], [9], [13]–[15].
However, to the best of our knowledge, existing methods assume
that the signal is sparse itself or sparse with respect to a fixed
pre-defined dictionary. This motivates the development of new
algorithms and formulations to jointly learn suitable dictionaries
and reconstruct input signals from nonlinear measurements.

B. Dictionary Learning for Phase Retrieval

In this paper, we consider the problem of phase retrieval by
focusing on image reconstruction applications. Therefore, we
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will work in a two-dimensional setting directly. However, it
should be noted that all expressions and algorithms can also
easily be formulated for one-dimensional signals like (1), as
detailed in the appendix. We will also consider the case of
noisy measurements, and will show that our approach based on
dictionary learning is particularly robust to noise, which is an
important feature in practice.

Concretely, we wish to recover an image X̂ in [0, 1]N1×N2

from noise-corrupted phaseless nonlinear measurements

Y := |F(X̂)|2 + N, (3)

where F : CN1×N2 → CM 1×M 2 is a linear operator, N is a real
matrix whose entries represent noise, and the complex modulus
and squares are taken component-wise. As mentioned earlier,
signal sparsity is known to improve the performance of phase
retrieval algorithms, but a sparsifying transform is not always
known in advance, or a better choice than a predefined selection
can sometimes be obtained by adapting the dictionary to the data.
In the context of image reconstruction, this motivates learning
a dictionary D in Rs×n such that each s1 × s2 patch x̂i of X̂,
represented as a vector of size s = s1s2 , can be approximated
by x̂i ≈ Dai with a sparse vector ai in Rn . Here, n is chosen
a priori and the number of patches depends on whether the
patches are overlapping or not. In general, D is chosen such
that n ≥ s. With linear measurements, the paradigm would be
similar to the successful image denoising technique of [20], but
the problem (3) is significantly more difficult to solve due to the
modulus operator.

Before detailing our algorithm for solving (3), we introduce
the following notation. Because our approach is patch-based (as
most dictionary learning formulations), we consider the linear
operator E : CN1×N2 → Cs×p that extracts the p patches xi

(which may overlap or not) from an image X and forms the
matrix E(X) = (x1 , . . . ,xp). Similarly, we define the linear
operator R : Cs×p → CN1 ×N2 that reverses this process, i.e.,
builds an image from a matrix containing vectorized patches
as its columns. Thus, in particular, we have R(E(X)) = X.
When the patches do not overlap, the operator R simply places
every small patch at its appropriate location in a larger N1 × N2
image. When they overlap, the operator R averages the pixel
values from the patches that fall into the same location. Further,
let A := (a1 , . . . ,ap) in Rn×p be the matrix containing the
patch representation coefficient vectors as columns. Then, our
desired sparse-approximation relation “xi ≈ Dai for all i” can
be expressed as E(X) ≈ DA.

With this notation in hand, we may now introduce our method,
called DOLPHIn (DictiOnary Learning for PHase retrIeval).
We consider an optimization problem which can be interpreted
as a combination of an optimization-based approach to phase
retrieval—minimizing the residual norm with respect to the set
of nonlinear equations induced by the phaseless measurements,
cf. (2)—and a (patch-based) dictionary learning model similar
to that used for image denoising in [20]. The model contains
three variables: The image, or phase retrieval solution X, the
dictionary D and the matrix A containing as columns the
coefficient vectors of the representation X ≈ R(DA). The
phase retrieval task consists of estimating X and the dictionary

learning or sparse coding task consists of estimating D and A;
a common objective function provides feedback between the
two objectives, with the goal of improving the phase retrieval
reconstruction procedure by encouraging the patches of X to
admit a sparse approximation.

Formally, the DOLPHIn formulation consists of minimizing

min
X ,D ,A

1
4

∥∥Y− |F(X)|2
∥∥2

F + μ
2

∥∥E(X) − DA
∥∥2

F + λ

p∑

i=1

∥∥ai
∥∥

1

s.t. X ∈ [0, 1]N1 ×N2 , D ∈ D. (4)

Here, ‖X‖F denotes the Frobenius matrix-norm, which
generalizes the Euclidean norm to matrices. The parameters
μ, λ > 0 in the objective (4) provide a way to control
the trade-off between the data fidelity term from the
phase retrieval problem and the approximation sparsity
of the image patches.1 To that effect, we use the �1-
norm, which is well-known to have a sparsity-inducing
effect [30]. In order to avoid scaling ambiguities, we also
restrict D to be in the subset D := {D ∈Rs×n : ‖dj‖2 ≤ 1
∀j = 1, . . . , n} of matrices with column �2 -norms at most 1, and
assume n < p (otherwise, each patch is trivially representable
by a 1-sparse vector ai by including xi/‖xi‖2 as a column of
D).

The model (4) could also easily be modified to include further
side constraints, a different type of nonlinear measurements, or
multiple images or measurements, respectively; we omit these
extensions for simplicity.

III. ALGORITHMIC FRAMEWORK

Similar to classical dictionary learning [19], [21], [22], [31]
and phase retrieval, problem (4) is nonconvex and difficult to
solve. Therefore, we adopt an algorithm that provides monotonic
decrease of the objective while converging to a stationary point
(see Section III-D below).

The algorithmic framework we employ is that of alternating
minimization: For each variable A, X and D in turn,
we take one step towards solving (4) with respect to this
variable alone, keeping the other ones fixed. Each of these
subproblems is convex in the remaining unfixed optimization
variable, and well-known efficient algorithms can be employed
accordingly. We summarize our method in Algorithm 1, where
the superscript ∗ denotes the adjoint operator (for a matrix Z,
Z∗ is thus the conjugate transpose), �(·) extracts the real part
of a complex-valued argument, and � denotes the Hadamard
(element-wise) product of two matrices. The algorithm also
involves the classical soft-thresholding operator Sτ (Z) :=
max{0, |Z| − τ} � sign(Z) and the Euclidean projection
PX (Z) := max{0,min{1,Z}} onto X := [0, 1]N1 ×N2 ; here,
all operations are meant component-wise.

To avoid training the dictionary on potentially useless
early estimates, the algorithm performs two phases—while the
iteration counter � is smaller than K1 , the dictionary is not
updated. Below, we explain the algorithmic steps in more detail.

1We discuss suitable choices and sensitivity of the model to these parameters
in detail in Section IV-D.
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Algorithm 1: Dictionary learning for phase retrieval (DOLPHIn).

Input: Initial image estimate X(0) ∈ [0, 1]N1×N2, initial dictionary D(0) ∈ D ⊂ Rs×n , parameters μ, λ > 0, maximum
number of iterations K1 ,K2

Output: Learned dictionary D = D(K ) , patch representations A = A(K ) , image reconstructions X = X(K ) and R(DA)
1: for � = 0, 1, 2, . . . ,K1 + K2 =: K do
2: choose step size γA

� as explained in Section III-A and update

A(�+1) ← S
γ A

� λ/μ

(
A� − γA

� D�
(�)

(
D(�)A(�) − E(X(�))

))

3: choose step size γX
� as explained in Section III-D or IV-B and update

X(�+1) ← PX
(
X(�) − γX

�

(
�

(
F∗(F(X) � (|F(X)|2 − Y)

))
+ μR �R

(
E(X) − DA

)))
,

where R is defined in Section III-B
4: if � < K1 then
5: do not update the dictionary: D(�+1) ← D(�)
6: else
7: set B ← E(X(�))A�

(�) and C ← A(�)A�
(�)

8: for j = 1, . . . , n do
9: if Cjj > 0 then
10: update j-th column: (D(�+1))·j ← 1

Cj j

(
B·j − D(�)C·j

)
+ (D(�))·j

11: else
12: reset j-th column: e.g., (D(�+1))·j ← random N (0, 1) vector (in Rs)
13: project (D(�+1))·j ← 1

max{1,‖(D ( � + 1 ) )·j ‖2 } (D(�+1))·j

Note that DOLPHIn actually produces two distinct
reconstructions of the desired image, namely X (the per se
“image variable”) and R(DA) (the image assembled from the
sparsely coded patches).2 Our numerical experiments in Section
IV-C show that in many cases, R(DA) is in fact slightly or
even significantly better than X with respect to at least one
quantitative quality measure and is therefore also considered
a possible reconstruction output of Algorithm 1 (at least in
the noisy setups we consider in this paper). Nevertheless, X
is sometimes more visually appealing and can be used, for
instance, to refine parameter settings (if it differs strongly
from R(DA)) or to assess the influence of the patch-based
“regularization” on the pure non-sparse Wirtinger Flow method
corresponding to the formulation where λ and μ are set to zero.

A. Updating the Patch Representation Vectors

Updating A (i.e., considering (4) with D and X fixed at their
current values) consists of decreasing the objective

p∑

i=1

(
1
2

∥∥D(�)ai − xi
(�)

∥∥2
2 + λ

μ

∥∥ai
∥∥

1

)
, (5)

which is separable in the patches i = 1 . . . , p. Therefore, we
can update all vectors ai independently and/or in parallel. To do
so, we choose to perform one step of the well-known algorithm
ISTA (see, e.g., [24]), which is a gradient-based method that
is able to take into account a non-smooth regularizer such as

2Technically, R(DA) might contain entries not in X , so one should project
once more. Throughout, we often omit this step for simplicity; differences (if
any) between R(DA) and PX (R(DA)) were insignificant in all our tests.

the �1-norm. Concretely, the following update is performed for
each i = 1, . . . , p:

ai
(�+1) = Sγ A

� λ/μ

(
ai

(�) − γA
� D�

(�)

(
D(�)ai

(�) − xi
(�)

))
. (6)

This update involves a gradient descent step (the gradient
with respect to ai of the smooth term in each summand
of (5) is D�

(�)

(
D(�)ai

(�) − xi
�

)
, respectively) followed by soft-

thresholding. Constructing A(�+1) from the ai
(�+1) as specified

above is equivalent to Step 2 of Algorithm 1.
The step size parameter γA

� can be chosen in (0, 1/LA ),
where LA is an upper bound on the Lipschitz constant of
the gradient; here, LA = ‖D�

(�)D(�)‖2 = ‖D(�)‖2
2 would be

appropriate, but a less computationally demanding strategy is to
use a backtracking scheme to automatically update LA [24].

A technical subtlety is noteworthy in this regard: We can
either find one γA

� that works for the whole matrix-variable
update problem—this is what is stated implicitly in Step 2—
or we could find different values, say γa,i

� , for each column
ai , i = 1, . . . , p, of A separately. Our implementation does the
latter, since it employs a backtracking strategy for each column
update independently.

B. Updating the Image Estimate

With D = D(�) and A = A(�+1) fixed, updating X consists
of decreasing the objective

1
4

∥∥Y − |F(X)|2
∥∥2

F
+ μ

2

∥∥E(X) − DA
∥∥2

F
(7)

with X ∈ X = [0, 1]N1×N2 .
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This problem can be seen as a regularized version of
the phase retrieval problem (with regularization parameter μ)
that encourages the patches of X to be close to the sparse
approximation DA obtained during the previous (inner)
iterations.

Our approach to decrease the value of the objective (7) is by
a projected gradient descent step. In fact, for μ = 0, this step
reduces to the Wirtinger flow method [12], but with necessary
modifications to take into account the constraints on X (real-
valuedness and variable bounds [0, 1]).

The gradient of ϕ(X) := 1
4 ‖Y − |F(X)|2‖2

F with respect to
X can be computed as

∇ϕ(X) = �
(
F∗(F(X) � (|F(X)|2 − Y)

))
,

by using the chain rule. For ψ(X) := μ
2 ‖E(X) − DA‖2

F , the
gradient is given by

∇ψ(X) = μE∗(E(X) − DA
)

= μR �R
(
E(X) − DA

)
,

where R is an N1 × N2 matrix whose entries rij equal the
number of patches the respective pixel xij is contained in.
Note that if the whole image is divided into a complete set
of nonoverlapping patches, R will just be the all-ones matrix;
otherwise, the element-wise multiplication with R undoes the
averaging of pixel values performed by R when assembling an
image from overlapping patches.

Finally, the gradient w.r.t. X of the objective in (7) is
∇ϕ(X) + ∇ψ(X) ∈ RN1 ×N2 , and the update in Step 3 of
Algorithm 1 is indeed shown to be a projected gradient descent
step. Typically, a backtracking (line search) strategy is used
for choosing the step size γX

� ; see Theorem 2 in Section III-D
for a selection rule that gives theoretical convergence, and also
Section IV-B for a heuristic alternative.

C. Updating the Dictionary

To update the dictionary, i.e., to approximately solve (4) w.r.t.
D alone, keeping X and A fixed at their current values, we
employ one pass of a block-coordinate descent (BCD) algorithm
on the columns of the dictionary [23]. The objective to decrease
may be written as

1
2

p∑

i=1

∥∥Dai
(�+1) − xi

(�+1)

∥∥2
2 s.t. D ∈ D, (8)

and the update rule given by Steps 4 –13 corresponds3 to one
iteration of [21, Algorithm 11] applied to (8).

3In [21, Algo. 11], and in our implementation, we simply normalize the
columns of D; it is easily seen that any solution with ‖dj ‖2 < 1 for some j
is suboptimal (w.r.t. (4)) since raising it to 1 allows to reduce coefficients in A
and thus to improve the �1 -term of the DOLPHIn objective (4). However, using
the projection is more convenient for proving the convergence results without
adding more technical subtleties w.r.t. this aspect.

To see this, note that each column update problem has a
closed-form solution:

(dj )(�+1) = P‖·‖2 ≤1

⎛

⎜⎜⎝
1∑p

i=1(a
i
j )2

p∑

i=1

ai
j

(
xi −

n∑

k=1
k �=j

ai
kd

k
)

⎞

⎟⎟⎠

=
1

max{1, ‖ 1
wj

qj‖2}
( 1

wj
qj

)

with wj :=
∑

i(a
i
j )

2 and qj :=
∑

i ai
j

(
xi −

∑
k �=j ai

kd
k
)
;

here, we abbreviated ai := ai
(�+1) , xi := xi

(�+1) . If wj = 0,

and thus ai
j = 0 for all i = 1, . . . , p, then column dj is not

used in any of the current patch representations; in that case,
the column’s update problem has a constant objective and is
therefore solved by any d with ‖d‖2 ≤ 1, e.g., a normalized
random vector as in Step 12 of Algorithm 1. The computations
performed in Steps 8–13 of Algorithm 1 are equivalent to these
solutions, expressed differently using the matrices B and C
defined there. Note that the operations could be parallelized to
speed up computation.

D. Convergence of the Algorithm

As mentioned at the beginning of this section, with
appropriate step size choices, DOLPHIn (Algorithm 1) exhibits
the property of monotonically decreasing the objective function
value (4) at each iteration. In particular, many line-search type
step size selection mechanisms aim precisely at reducing the
objective; for simplicity, we will simply refer to such subroutines
as “suitable backtracking schemes” below. Concrete examples
are the ISTA backtracking from [24, Section 3] we can employ in
the update of A, or the rule given in Theorem 2 for the projected
gradient descent update of X (a different choice is described in
Section IV-B); further variants are discussed, e.g., in [32].

Proposition 1: Let (A(�) ,X(�) ,D(�)) be the current iterates
(after the �-th iteration) of Algorithm 1 with step sizes γX

�

and γA
� determined by suitable backtracking schemes (or

arbitrary 0 < γA
� < 1/‖D�

(�)D(�)‖2 , resp.) and let fi,j,k denote
the objective function value of the DOLPHIn model (4) at
(A(i) ,X(j ) ,D(k)). Then, DOLPHIn either terminates in the
(� + 1)-th iteration, or it holds that f�+1,�+1,�+1 ≤ f�,�,� .

Proof: Since we use ISTA to update A, it follows
from [24] that f�+1,�,� ≤ f�,�,� . Similarly, a suitable
backtracking strategy is known to enforce descent in the
projected gradient method when the gradient is locally
Lipschitz-continuous, whence f�+1,�+1,� ≤ f�+1,�,� . Finally,
f�+1,�+1,�+1 ≤ f�+1,�+1,� follows from standard results for
BCD methods applied to convex problems, see, e.g., [33].
Combining these inequalities proves the claim. �

The case of termination in Proposition 1 can occur when
the backtracking scheme is combined with a maximal number
of trial steps, which are often used as a safeguard against
numerical stability problems or as a heuristic stopping condition
to terminate the algorithm if no (sufficient) improvement can be
reached even with tiny step sizes. Note also that the assertion of
Proposition 1 trivially holds true if all step sizes are 0; naturally,
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a true descent of the objective requires a strictly positive step size
in at least one update step. In our algorithm, step size positivity
can always be guaranteed since all these updates involve
objective functions whose gradient is Lipschitz continuous, and
backtracking essentially finds step sizes inversely proportional
to (local) Lipschitz constants. (Due to non-expansiveness, the
projection in the X-update poses no problem either).

Adopting a specific Armijo-type step size selection rule for
the X-update allows us to infer a convergence result, stated in
Theorem 2 below. To simplify the presentation, let fX

� (X) :=
1
4 ‖Y − |F(X)|2‖2

F + μ
2 ‖E(X) − D(�)A(�+1)‖2

F and ΓX
� :=

∇fX
� (X(�)) (cf. ∇ϕ(X) + ∇ψ(X) in Section III-B).
Theorem 2: Let η ∈ (0, 1) and η̄ > 0. Consider the

DOLPHIn variant consisting of Algorithm 1 with K2 = ∞ and
the following Armijo rule to be used in Step 3:

Determine γX
� as the largest number in {η̄ηk}k=0,1,2,...

such that fX
� (PX (X(�) − γX

� ΓX
� )) − fX

� (X(�)) ≤
− 1

2γ X
�

‖PX (X(�) − γX
� ΓX

� ) − X(�)‖2
F and set X(�+1) :=

PX (X(�) − γX
� ΓX

� ).

If μ ≥ 1 and, for some 0 < ν ≤ ν̄, it holds that ν ≤
γX

� , γA
� (or γa,i

� ),
∑p

i=1(a
i
(�))

2
j ≤ ν̄ for all � and j

(and i), then every accumulation point of the sequence
{(A(�) ,X(�) ,D(�))}�=0,1,2,... of DOLPHIn iterates is a
stationary point of problem (4).

Proof: The proof works by expressing Algorithm 1 as
a specific instantiation of the coordinate gradient descent
(CGD) method from [34] and analyzing the objective descent
achievable in each update of A, X and D, respectively. The
technical details make the rigorous formal proof somewhat
lengthy (it can be found in the appendix of the earlier preprint
version [35] of this paper); due to space limitations, we only
sketch it here.

The CGD method works by solving subproblems to obtain
directions of improvement for blocks of variables at a time—in
our case, (the columns of) A, the matrix X, and the columns
of D correspond to such blocks—and then taking steps along
these directions. More specifically, the directions are generated
using a (suitably parameterized) strictly convex quadratic
approximation of the objective (built using the gradient).
Essentially due to the strict convexity, it is then always possible
to make a positive step along such a direction that decreases the
(original) objective, unless stationarity already holds. Using a
certain Armijo line-search rule designed to find such positive
step sizes which achieve a sufficient objective reduction, [34,
Theorem 1] ensures (under mild further assumptions, which
in our case essentially translate to the stated boundedness
requirement of the step sizes) that every accumulation point of
the iterate sequence is indeed a stationary point of the addressed
(block-separable) problem.

To embed DOLPHIn into the CGD framework, we can
interpret the difference between one iterate and the next (w.r.t.
the variable “block” under consideration) as the improvement
direction, and proceed to show that we can always choose a step
size equal to 1 in the Armijo-criterion from [34] (cf. (9) and
(46) therein). For this to work out, we need to impose slightly
stricter conditions on other parameters used to define that rule

than what is needed in [34]; these conditions are derived directly
from known descent properties of the D- and A-updates of our
method (essentially, ISTA descent properties as in [24]). That
way, the D- and A-updates automatically satisfy the specific
CGD Armijo rule, and the actual backtracking scheme for the X-
update given in the present theorem can be shown to assert that
our X-update does so as well. (The step sizes used in DOLPHIn
could also be reinterpreted in the CGD framework as scaling
factors of diagonal Hessian approximations of the combined
objective to be used in the direction-finding subproblems. With
such simple Hessian approximations, the obtained directions
are then indeed equivalent to the iterate-differences resulting
from the DOLPHIn update schemes.) The claim then follows
directly from [34, Theorem 1(e) (and its extensions discussed
in Section 8)]. �

A more formal explanation for why the step sizes can be
chosen positive in each step can be found on page 392 of [34];
the boundedness of approximate Hessians is stated in [34,
Assumption 1]. Arguably, assuming step sizes are bounded away
from zero by a constant may become problematic in theory
(imagine an Armijo-generated step size sequence converging
to zero), but will not pose a problem in practice where one
always faces the limitations of numerical machine precision.
(Note also that, in practice, the number of line-search trials can
be effectively reduced by choosing η based on the previous step
size [34].)

Our implementation uses a different backtracking scheme for
the X-update (see Section IV-B) that can be viewed as a cheaper
heuristic alternative to the stated Armijo-rule which still ensures
monotonic objective descent (and hence is “suitable” in the
context of Proposition 1), also enables strictly positive steps,
and empirically performs equally well. Finally, we remark that
the condition μ ≥ 1 in Theorem 2 can be dropped if the relevant
objective parts of problem (4) are not rescaled for the A- and
D-updates, respectively.

To conclude the discussion of convergence, we point out that
one can obtain a linear rate of convergence for DOLPHIn with
the Armijo rule from Theorem 2, by extending the results of
[34, Theorem 2 (cf. Section 8)].

IV. NUMERICAL RESULTS

In this section, we discuss various numerical experiments
to study the effectiveness of the DOLPHIn algorithm. To
that end, we consider several types of linear operators F
within our model (4) (namely, different types of Gaussian
random operators and coded diffraction models). Details on
the experimental setup and our implementation are given in
the first two sections, before presenting the main numerical
results in Section IV-C. Our experiments demonstrate that with
noisy measurements, DOLPHIn gives significantly better image
reconstructions than the Wirtinger Flow method [12], one recent
state-of-the-art phase retrieval algorithm, thereby showing that
introducing sparsity via a (simultaneously) learned dictionary
is indeed a promising new approach for signal reconstruction
from noisy, phaseless, nonlinear measurements. Furthermore,
we discuss sensitivity of DOLPHIn with regard to various
(hyper-)parameter choices (Sections IV-D, IV-E and IV-F) and
a variant in which the �1-regularization term in the objective
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TABLE I
TEST RESULTS FOR mY GAUSSIAN-TYPE AND CODED DIFFRACTION PATTERN (CDP) MEASUREMENTS

is replaced by explicit constraints on the sparsity of the patch-
representation coefficient vectors ai (Section IV-G).

A. Experimental Setup

We consider several linear operators F corresponding to
different types of measurements that are classical in the phase
retrieval literature. We denote by F the (normalized) 2D-
Fourier operator (implemented using fast Fourier transforms),
and introduce two complex Gaussian matrices G ∈ CM 1 ×N1 ,
H ∈ CM 2 ×N2 , whose entries are i.i.d. samples from the
distribution N (0, I/2) + iN (0, I/2). Then, we experiment
with the operators F(X) = GX, F(X) = GXG∗, F(X) =
GXH∗, and the coded diffraction pattern model

F(X) =

⎛

⎝
F

(
M1 � X

)
...

F
(
Mm � X

)

⎞

⎠ , F∗(Z) =
m∑

j=1

(
Mj � F∗(Zj )

)
,

(9)

where Zj := Z{(j−1)N1 +1,...,jN1 },· (i.e., Z� = (Z�
1 , . . . ,Z�

m ))
and the Mj ’s are admissible coded diffraction patterns (CDPs),
see for instance [12, Section 4.1]; in our experiments we
used ternary CDPs, such that each Mj is in {0,±1}N1×N2 .
(Later, we will also consider octanary CDPs with Mj ∈
{±

√
2/2,±i

√
2/2,±

√
3,±i

√
3} ∈ CN1 ×N2 .)

To reconstruct X̂, we choose an oversampling setting where
M1 = 4N1 , M2 = 4N2 and/or m = 2, respectively. Moreover,
we corrupt our measurements with additive white Gaussian
noise N such that SNR(Y, |F(X̂)|2 + N) = 10 dB for the
Gaussian-type, and 20 dB for CDP measurements, respectively.
Note that these settings yield, in particular, a relatively heavy
noise level for the Gaussian cases and a relatively low
oversampling ratio for the CDPs.

B. Implementation Details

We choose to initialize our algorithm with a simple random
image X(0) in X to demonstrate the robustness of our approach
with respect to its initialization. Nevertheless, other choices

are possible. For instance, one may also initialize X(0) with a
power-method scheme similar to that proposed in [12], modified
to account for the real-valuedness and box-constraints. The
dictionary is initialized as D(0) = (I,FD ) in Rs×2s , where FD

corresponds to the two-dimensional discrete cosine transform
(see, e.g., [20]).

To update A, we use the ISTA implementation from the
SPAMS package4 [23] with its integrated backtracking line
search (for LA ). Regarding the step sizes γX

� for the update
of X (Step 3 of Algorithm 1), we adopt the following simple
strategy, which is similar to that from [24] and may be viewed
as a heuristic to the Armijo rule from Theorem 2: Whenever
the gradient step leads to a reduction in the objective function
value, we accept it. Otherwise, we recompute the step with
γX

� halved until a reduction is achieved; here, as a safeguard
against numerical issues, we implemented a limit of 100 trials
(forcing termination in case all were unsuccessful), but this
was never reached in any of our computational experiments.
Regardless of whether γX

� was reduced or not, we reset its
value to 1.68γX

� for the next round; the initial step size
is γX

0 = 104/f(0) , where f(0) is the objective function of the
DOLPHIn model (4), evaluated at X(0) , D(0) and least-squares
patch representations arg minA ‖E(X(0)) − D(0)A‖2

F. (Note
that, while this rule deviates from the theoretical convergence
Theorem 2, Propositon 1 and the remarks following it remain
applicable.)

Finally, we consider nonoverlapping 8 × 8 patches and run
DOLPHIn (Algorithm 1) with K1 = 25 and K2 = 50; the
regularization/penalty parameter values can be read from Table I
(there, mY is the number of elements of Y). We remark
that these parameter values were empirically benchmarked to
work well for the measurement setups and instances considered
here; a discussion about the stability of our approach with
respect to these parameter choices is presented below in
Section IV-D. Further experiments with a sparsity-constrained
DOLPHIn variant and using overlapping patches are discussed
in Section IV-G.

4http://spams-devel.gforge.inria.fr/

http://spams-devel.gforge.inria.fr/
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Fig. 1. Test images. (a)–(c): cameraman, house and peppers (size 256 × 256). (d)–(h): lena, barbara, boat, fingerprint and mandrill (size 512 × 512).

Our DOLPHIn code is available online on the first author’s
webpage.5

C. Computational Experiments

We test our method on a collection of typical (grayscale) test
images used in the literature, see Fig. 1. All experiments were
carried out on a Linux 64-bit quad-core machine (2.8 GHz, 8 GB
RAM) running Matlab R2016a (single-thread).

We evaluate our approach with the following question in
mind: Can we improve upon the quality of reconstruction
compared to standard phase retrieval algorithms? Standard
methods cannot exploit sparsity if the underlying basis or
dictionary is unknown; as we will see, the introduced (patch-)
sparsity indeed allows for better recovery results (at least in the
oversampling and noise regimes considered here).

To evaluate the achievable sparsity, we look at the average
number of nonzeros in the columns of A after running our
algorithm. Generally, smaller values indicate an improved
suitability of the learned dictionary for sparse patch coding (high
values often occur if the regularization parameter λ is too small
and the dictionary is learning the noise, which is something
we would like to avoid). To assess the quality of the image
reconstructions, we consider two standard measures, namely
the peak signal-to-noise ratio (PSNR) of a reconstruction as
well as its structural similarity index (SSIM) [36]. For PSNR,
larger values are better, and SSIM-values closer to 1 (always
ranging between 0 and 1) indicate better visual quality.

Table I displays the CPU times, PSNR- and SSIM-values and
mean patch representation vector sparsity levels obtained for the

5http://www.mathematik.tu-darmstadt.de/∼tillmann/

various measurement types, averaged over the instance groups
of the same size. The concrete examples in Figs. 2 and 3 show
the results from DOLPHIn and plain Wirtinger Flow (WF; the
real-valued, [0, 1]-box constrained variant, which corresponds
to running Algorithm 1 with μ = 0 and omitting the updates of
A and D). In all tests, we let the Wirtinger Flow method run
for the same number of iterations (75) and use the same starting
points as for the DOLPHIn runs. Note that instead of random
X(0) , we could also use a spectral initialization similar to the
one proposed for the (unconstrained) Wirtinger Flow algorithm,
see [12]. Such initialization can improve WF reconstruction (at
least in the noiseless case), and may also provide better initial
estimates for DOLPHIn. We have experimented with such a
spectral approach and found the results comparable to what
is achievable with random X(0) , both for WF and DOLPHIn.
Therefore, we do not report these experiments in the paper.

The DOLPHIn method consistently provides better image
reconstructions than WF, which clearly shows that our approach
successfully introduces sparsity into the phase retrieval problem
and exploits it for estimating the solution. As can be seen
from Table I, the obtained dictionaries allow for rather sparse
representation vectors, with the effect of making better use of the
information provided by the measurements, and also denoising
the image along the way. The latter fact can be seen in the
examples (Figs. 2 and 3, see also Fig. 4) and also inferred from
the significantly higher PSNR and SSIM values for the estimates
XDOLPHIn and R(DA) (or PX (R(DA)), resp.) obtained from
DOLPHIn compared to the reconstruction XWF of the WF
algorithm (which cannot make use of hidden sparsity). The
gain in reconstruction quality is more visible in the example of
Fig. 3 (cf. Fig. 4) than for that in Fig. 2, though both cases assert
higher quantitative measures. Furthermore, note that DOLPHIn

http://www.mathematik.tu-darmstadt.de/tillmann/
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Fig. 2. DOLPHIn example: Image original is the 512 × 512 “fingerprint” picture, measurements are noisy Gaussian GX̂ (M1 = 4N1 , noise-SNR 10 dB),
(μ, λ) = (0.5, 0.105)mY . (a) final dictionary (excerpt, magnified), (b) image reconstruction XDOLPHIn, (c) image reconstruction R(DA) from sparsely coded
patches, (d) reconstruction XWF after 75 WF iterations. Final PSNR values: 22.37 dB for R(DA), 23.74 dB for XDOLPHIn, 18.19 dB for XWF; final SSIM values:
0.7903 for R(DA), 0.8152 for XDOLPHIn, 0.5924 for XWF; average ‖ai‖0 is 10.06.

Fig. 3. DOLPHIn example: Image original is a 2816 × 2112 photo of the “Waldspirale” building in Darmstadt, Germany; measurements are noisy CDPs
(obtained using two ternary masks), noise-SNR 20 dB, (μ, λ) = (0.05, 0.007)mY . (a) image reconstruction XDOLPHIn, (b) image reconstruction R(DA) from
sparsely coded patches, (c) reconstruction XWF after 75 WF iterations. Final PSNR values: 23.40 dB for R(DA), 24.72 dB for XDOLPHIn, 12.63 dB for XWF;
final SSIM values: 0.6675 for R(DA), 0.6071 for XDOLPHIn, 0.0986 for XWF; average ‖ai‖0 is 12.82. (Total reconstruction time roughly 30 min (DOLPHIn)
and 20 min (WF), resp.) Original image taken from Wikimedia Commons, under Creative Commons Attribution-Share Alike 3.0 Unported license.

Fig. 4. DOLPHIn example “Waldspirale” image, zoomed-in 100 × 100 pixel parts (magnified). (a) original image, (b) image reconstruction XDOLPHIn,
(b) reconstruction R(DA) from sparsely coded patches, (c) reconstruction XWF after 75 WF iterations. The slight block artefacts visible in (b) and (c) are due to
the nonoverlapping patch approach in experiments and could easily be mitigated by introducing some patch overlap (cf., e.g., Fig. 6).

naturally has higher running times than WF, since it performs
more work per iteration (also, different types of measurement
operators require different amounts of time to evaluate). Note
also that storing A and D instead of an actual image X (such as
the WF reconstruction) requires saving only about half as many
numbers (including integer index pairs for the nonzero entries
in A).

As indicated earlier, the reconstruction R(DA) is quite often
better than XDOLPHIn w.r.t. at least one of either PSNR or SSIM
value. Nonetheless, XDOLPHIn may be visually more appealing
than R(DA) even if the latter exhibits a higher quantitative

quality measure (as is the case, for instance, in the example
of Figs. 3 and 4); Furthermore, occasionally XDOLPHIn achieves
notably better (quantitative) measures thanR(DA); an intuitive
explanation may be that if, while the sparse coding of patches
served well to eliminate the noise and—by means of the patch-
fit objective term—to successfully “push” the X-update steps
toward a solution of good quality, that solution eventually
becomes “so good”, then the fact that R(DA) is designed to be
only an approximation (of X) predominates.

On the other hand, XDOLPHIn is sometimes very close to XWF,
which indicates a suboptimal setting of the parameters μ and λ
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that control how much “feedback” the patch-fitting objective
term introduces into the Wirtinger-Flow-like X-update in the
DOLPHIn algorithm. We discuss parameter choices in more
detail in the following section.

D. Hyperparameter Choices and Sensitivity

The DOLPHIn algorithm requires several parameters to be
specified a priori. Most can be referred to as design parameters;
the most prominent ones are the size of image patches (s1 × s2),
whether patches should overlap or not (not given a name here),
and the number n of dictionary atoms to learn. Furthermore,
there are certain algorithmic parameters (in a broad sense) that
need to be fixed, e.g., the iteration limits K1 and K2 or the initial
dictionary D(0) and image estimate X(0) . The arguably most
important parameters, however, are the model or regularization
parameters μ and λ. For any fixed combination of design
and algorithmic parameters in a certain measurement setup
(fixed measurement type/model and (assumed) noise level), it
is conceivable that one can find some values for μ and λ that
work well for most instances, while the converse—choosing,
say, iteration limits for fixed μ, λ and other parameters—is
clearly not a very practical approach.

As is common for regularization parameters, a good “general-
purpose” way to choose μ and λ a priori is unfortunately not
known. To obtain the specific choices used in our experiments,
we fixed all the other parameters (including noise SNR and
oversampling ratios), then (for each measurement model) ran
preliminary tests to identify values μ for which good results
could be produced with some λ, and finally fixed μ at such
values and ran extensive benchmark tests to find λ values that
give the best results.

For DOLPHIn, μ offers some control over how much
“feedback” from the current sparse approximation of the current
image estimate is taken into account in the update step to
produce the next image iterate—overly large values hinder
the progress made by the Wirtinger-Flow-like part of the X-
update, while too small values marginalize the influence of the
approximation R(DA), with one consequence being that the
automatic denoising feature is essentially lost. Nevertheless,
in our experiments we found that DOLPHIn is not strongly
sensitive to the specific choice of μ once a certain regime has
been identified in which one is able to produce meaningful
results (for some choice of λ). Hence, λ may be considered the
most important parameter; note that this intuitively makes sense,
as λ controls how strongly sparsity of the patch representations
is actually promoted, the exploitation of which to obtain
improved reconstructions being the driving purpose behind our
development of DOLPHIn.

Fig. 5 illustrates the sensitivity of DOLPHIn with respect
to λ, in terms of reconstruction quality and achievable patch-
sparsity, for different noise levels, and examplary measurement
types and problem sizes. (In this figure, image quality is
measured by SSIM values alone; the plots using PSNR instead
look very similar and were thus omitted. Note, however, that
the parameters λ yielding the best SSIM and PSNR values,
respectively, need not be the same.) As shown by (a) and
(d), there is a clear correlation between the best reconstruction

quality that can be achieved (in noisy settings) and the average
sparsity of the patch representation vectors ai . For larger noise,
clearly a larger λ is needed to achieve good results—see (b) and
(e)—which shows that a stronger promotion of patch-sparsity
is an adequate response to increased noise, as is known for
linear sparsity-based denoising as well. Similarly, increasing the
number of measurements allows to pick a smaller λ whatever the
noise level actually is, as can be seen in (c) and (f), respectively.
The dependence of the best λ on the noise level appears to
follow an exponential curve (w.r.t. the reciprocal SNR) which is
“dampened” by the sampling ratio, i.e., becoming less steep and
pronounced the more measurements are available, cf. (b) and
(e). Indeed, again referring to the subplots (c) and (f), at a fixed
noise level the best λ values seem to decrease exponentially
with growing number of measurements. It remains subject of
future research to investigate these dependencies in more detail,
e.g., to come up with more or less general (functional) rules for
choosing λ.

E. Impact of Increased Inner Iteration Counts

It is worth considering whether more inner iterations—i.e.,
consecutive update steps for the different variable blocks—
lead to further improvements of the results and / or faster
convergence. In general, this is an open question for block-
coordinate descent algorithms, so the choices are typically made
empirically. Our default choices of a = 1 ISTA iterations for
the A-update (Step 2 in Algorithm 1), x = 1 projected gradient
descent steps for the X-update (Step 2) and d = 1 iterations
of the BCD scheme for the D-update (Steps 4–13) primarily
reflect the desire to keep the overall iteration cost low. To assess
whether another choice might yield significant improvements,
we evaluated the DOLPHIn performance for all combinations
of a ∈ {1, 3, 5} and d ∈ {1, 3, 5}, keeping all other parameters
equal to the settings from the experiments reported on above.
(We also tried these combinations together with an increased
iteration count for the X-update, but already for x = 2 or
x = 3 the results were far worse than with just 1 projected
gradient descent step; the reason can likely be found in the
fact that without adapting A and D to a modified X-iterate,
the patch-fitting term of the objective tries to keep X close to
a then-unsuitable estimate R(DA) based on older X-iterates,
which apparently has a quite notable negative influence on the
achievable progress in the X-update loop.)

The results are summarized in condensed format in Table II,
from which we can read off the spread of the best and
worst results (among the best ones achievable with either X
or PX (R(DA))) for each measurement-instance combination
among all combinations (a, d) ∈ {1, 3, 5}2 . (Full tables for each
test run can be found alongside our DOLPHIn code on the first
author’s webpage.) As the table shows, the results are all quite
close; while some settings lead to sparser patch representations,
the overall quality of the best reconstructions for the various
combinations usually differ only slightly, and no particular
combination stands out clearly as being better than all others.
In particular, comparing the results with those in Table I, we
find that our default settings provide consistently good results;
they may be improved upon with some other combination of



TILLMANN et al.: DOLPHIN—DICTIONARY LEARNING FOR PHASE RETRIEVAL 6495

Fig. 5. Influence of parameter λ on best achievable SSIM values for reconstructed images and sensitivity w.r.t. sampling ratios and noise levels, for different
measurement types. Fixed other parameters: μ = 0.1mY , K1 = 25, K2 = 50, s1 = s2 = 8 (nonoverlapping patches), D(0) = (I, FD ), X(0) ∈ X random.
(a)–(c): Averages over reconstructions from ternary CDP measurements of the three 256 × 256 images. The plots show (a) the best achievable SSIM for
λ/mY ∈ {0.0001, 0.0002, . . . , 0.01} (left vertical axis, solid lines) and average patch-sparsity of corresponding solutions (right vertical axis, dashed lines) for
noise level SNR (Y , |F(X̂)|2 ) = 20 dB and (b) choice of λ yielding best SSIM for different noise levels, for number of masks 2 (black), 5 (blue), 10 (red) or 20
(green), respectively; (c) choice of λ to achieve best SSIM for different number of masks, for noise-SNRs 10 (black), 15 (blue), 20 (red), 30 (yellow), 50 (light
blue) and ∞ (green), respectively. (d)–(f): Averages over reconstructions from Gaussian measurements (Y = |GX̂|2 ) of the five 512 × 512 images. The plots
display the same kind of information as (a)–(c), but in (d) with λ/mY ∈ {0.0001, 0.0051, 0.0101, . . . , 0.0951} for noise-SNR 15 dB and in (e) for different
noise levels, for sampling ratios M1 /N1 = 2 (black), 4 (blue) and 8 (red), respectively; and in (f) with M1 /N1 = 2 for noise-SNRs 10 (black), 15 (blue), 20
(red), 30 (green) and ∞ (yellow).

TABLE II
TEST RESULTS FOR DOLPHIN VARIANTS WITH DIFFERENT COMBINATIONS OF INNER ITERATION NUMBERS a AND d FOR THE A- AND D-UPDATES, RESP

a and d, but at least with the same total iteration horizon
(K1 + K2 = 75), the improvements are often only marginal.
Since the overall runtime reductions (if any) obtained with other
choices for (a, d) are also very small, there does not seem to be
a clear advantage to using more than a single iteration for either
update problem.

F. Influence of the First DOLPHIn Phase

Our algorithm keeps the dictionary fixed at its initialization
for the first K1 iterations in order to prevent the dictionary from
training on relatively useless first reconstruction iterates. Indeed,
if all variables including D are updated right from the beginning
(i.e., K1 = 0, K2 = 75), then we end up with inferior results
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(keeping all other parameters unchanged): The obtained patch
representations are much less sparse, the quality of the image
estimate R(DA) decreases drastically, and also the quality of
the reconstruction X becomes notably worse. This demonstrates
that the dictionary apparently “learns too much noise” when
updated from the beginning, and the positive effect of filtering
out quite a lot of noise in the first phase by regularizing with
sparsely coded patches using a fixed initial dictionary is almost
completely lost. To give an example, for the CDP testset on
256 × 256 images, the average values obtained by DOLPHIn
when updating also the dictionary from the first iteration onward
are: 9.24 seconds runtime (versus 8.56 for default DOLPHIn,
cf. Table I), mean patch sparsity ∅‖ai‖0 ≈ 20.09 (vs. 7.85),
PSNR 26.80 dB and 8.88 dB (vs. 27.15 and 26.58) and SSIM-
values 0.6931 and 0.0098 (vs. 0.7416 and 0.7654) for the
reconstructions X and PX (R(DA)), respectively.

On the other hand, one might argue that if the first iterates
are relatively worthless, the effort of updating A in the first
DOLPHIn phase (i.e., the first K1 iterations) could be saved as
well. However, the influence of the objective terms involving D
and A should then be completely removed from the algorithm
for the first K1 iterations; otherwise, the patch-fitting term will
certainly hinder progress made by the X-update because it
then amounts to trying to keep X close to the initial estimate
R(DA), which obviously needs not bear any resemblance
to the sought solution at all. Thus, if both D and A are to
be unused in the first phase, then one should temporarily set
μ = 0, with the consequence that the first phase reduces to
pure projected gradient descent for X with respect to the phase
retrieval objective—i.e., essentially, Wirtinger Flow. Therefore,
proceeding like this simply amounts to a different initialization
of X. Experiments with this DOLPHIn variant (K1 = 25 initial
WF iterations followed by K2 = 50 full DOLPHIn iterations
including A and D; all other parameters again left unchanged)
showed that the achievable patch-sparsities remain about the
same for the Gaussian measurement types but become much
worse for the CDP setup, and that the average PSNR and SSIM
values become (often clearly) worse in virtually all cases. In the
example of measurements GX̂ of the 512 × 512 test images,
the above-described DOLPHIn variant runs 62.34 seconds on
average (as less effort is spent in the first phase, this is naturally
lower than the 68.62 seconds default DOLPHIn takes), produces
slightly lower average patch-sparsity (5.88 vs. 6.30 for default
DOLPHIn), but for both X and PX (R(DA)), the PSNR and
SSIM values are notably worse (22.32 dB and 20.55 dB vs.
24.42 dB and 22.66 dB, and 0.6165 and 0.5921 vs. 0.6547
and 0.6807, resp.). The reason for the observed behavior can
be found in the inferior performance of WF without exploiting
patch-sparsity (cf. also Table I); note that the results also further
demonstrate DOLPHIn’s robustness w.r.t. the initial point—
apparently, the initial point obtained from some WF iterations
is not more helpful for DOLPHIn than a random first guess.

Finally, it is also worth considering what happens if the
dictionary updates are turned off completely, i.e., K2 = 0. Then,
DOLPHIn reduces to patch-sparsity regularized Wirtinger Flow,
a WF variant that apparently was not considered previously.
Additional experiments with K1 = 75, K2 = 0 and D =

D(0) = (I,FD ) (other parameters left unchanged) showed that
this variant consistently produces higher sparsity (i.e., smaller
average number of nonzero entries) of the patch representation
coefficient vectors, but that the best reconstruction (X or
PX (R(DA))) is always significantly inferior to the best
one produced by our default version of DOLPHIn. The first
observation is explained by the fact that withDfixed throughout,
the patch coding (A-update) only needs to adapt w.r.t. new X-
iterates but not a new D; at least if the new X is not too different
from the previous one, the former representation coefficient
vectors still yield an acceptable approximation, which no
longer holds true if the dictionary was also modified. While
it should also me mentioned that the patch-sparsity regularized
version performs much better than plain WF already, the second
observation clearly indicates the additional benefit of working
with trained dictionaries, i.e., superiority of DOLPHIn also over
the regularized WF variant.

Full tables containing results for all testruns reported on in
this section are again available online along with our DOLPHIn
code on the first author’s website.

G. Sparsity-Constrained DOLPHIn Variant

From Table I and Fig. 5(a) and (d), it becomes apparent that a
sparsity level of 8 ± 4 accompanies the good reconstructions by
DOLPHIn. This suggests use in a DOLPHIn variant we already
briefly hinted at: Instead of using �1-norm regularization, we
could incorporate explicit sparsity constraints on the ai . The
corresponding DOLPHIn model then reads

min
X ,D ,A

1
4

∥∥Y − |F(X)|2
∥∥2

F + μ
2

∥∥E(X) − DA
∥∥2

F

s.t. X ∈ [0, 1]N1 ×N2 , D ∈ D, ‖ai‖0 ≤ k ∀ i = 1, . . . , p,
(10)

where k is the target sparsity level. We no longer need to tune the
λ parameter, and can let our previous experimental results guide
the choice of k. Note that the only modification to Algorithm 1
concerns the update of A (Step 2), which now requires solving
or approximating

min 1
2

∥∥E(X) − DA
∥∥2

F s.t. ‖ai‖0 ≤ k ∀ i = 1, . . . , p.

In our implementation, we do so by running Orthogonal
Matching Pursuit (OMP) [37] for each column ai of A
separately until either the sparsity bound is reached or
‖xi − Dai‖2 ≤ ε, where we set a default of ε := 0.1. (The
value of ε is again a parameter that might need thorough
benchmarking; obviously, it is related to the amount of noise
one wants to filter out by sparsely representing the patches—
higher noise levels will require larger ε values. The 0.1 default
worked quite well in our experiments, but could probably be
improved by benchmarking as well.) The OMP code we used is
also part of the SPAMS package.

The effect of the parameter μ is more pronounced in the
sparsity-constrained DOLPHIn than in Algorithm 1; however, it
appears its choice is less dependent on the measurement model
used. By just a few experimental runs, we found that good
results in all our test cases can be achieved using K1 = K2 = 25
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TABLE III
TEST RESULTS FOR SPARSITY-CONSTRAINED DOLPHIN, USING OVERLAPPING PATCHES, FOR mY GAUSSIAN-TYPE AND

CODED DIFFRACTION PATTERN (CDP) MEASUREMENTS

Fig. 6. Sparsity-Constrained DOLPHIn example: Image original is the 512 × 512 RGB “mandrill” picture, measurements are noisy CDPs (obtained using two
complex-valued octanary masks, noise-SNR 10 dB, per color channel), μ1 = 0.003mY , μ2 = 0.00504mY (other parameters as described in Section IV-G).
D(0) = (I, FD ) for R-channel, final dictionary then served as initial dictionary for G-channel, whose final dictionary in turn was initial dictionary for B-channel;
X(0) ∈ X random for each channel. (a) final dictionary (excerpt) for B-channel (b) image reconstruction XDOLPHIn, (c) image reconstruction R(DA) from
sparsely coded patches, (d) reconstruction XWF after 50 WF iterations. Final PSNR values: 20.53 dB for R(DA), 20.79 dB for XDOLPHIn, 14.47 dB for XWF;
final SSIM values: 0.4780 for R(DA), 0.5242 for XDOLPHIn, 0.2961 for XWF; average ‖ai‖0 is 5.30. (Means over all color channels.) (e)–(h): zoomed-in
100 × 100 pixel parts (magnified) of (e) original image, (f) XDOLPHIn, (g) R(DA) and (h) XWF.

iterations, where in the first K1 (with fixed dictionary), we use
a value of μ = μ1 = 0.005mY along with a sparsity bound k =
k1 = 4, and in the final K2 iterations (in which the dictionary
is updated), μ = μ2 = 1.68μ1 = 0.0084mY and k = k2 = 8.
Results on the same instances considered before (using the same
D(0)) are presented in Table III, with the exception that for the
CDP case, we used 2 complex-valued octanary masks (cf. [12])
here; the initial image estimates and measurement noise were
again chosen randomly. Note also that for these test, we used
complete sets of overlapping patches. This greatly increases p
and hence the number of subproblems to be solved in the A-
update step, which is the main reason for the increased running

times compared to Table I for the standard DOLPHIn method.
(It should however also be mentioned that OMP requires up to
k iterations per subproblem, while in Algorithm 1 we explicitly
restricted the number of ISTA iterations in the A-update to just
a single one.)

A concrete example is given in Fig. 6; here, we consider the
color “mandrill” image, for which the reconstruction algorithms
(given just two quite heavily noise-corrupted octanary CDP
measurements) were run on each of the three RGB channels
separately. The sparsity-constrained DOLPHIn reconstructions
appear superior to the plain WF solution both visually and in
terms of the quality measures PSNR and SSIM.
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V. DISCUSSION AND CONCLUSION

In this paper, we introduced a new method, called
DOLPHIn, for dictionary learning from noisy nonlinear
measurements without phase information. In the context of
image reconstruction, the algorithm fuses a variant of the recent
Wirtinger Flow method for phase retrieval with a patch-based
dictionary learning model to obtain sparse representations of
image patches, and yields monotonic objective decrease or (with
appropriate step size selection) convergence to a stationary point
for the nonconvex combined DOLPHIn model.

Our experiments demonstrate that dictionary learning for
phase retrieval with a patch-based sparsity is a promising
direction, especially for cases in which the original Wirtinger
Flow approach fails (due to high noise levels and/or relatively
low sampling rates).

Several aspects remain open for future research. For instance,
regarding the generally difficult task of parameter tuning,
additional benchmarking for to-be-identified instance settings
of special interest could give further insights on how to choose,
e.g., the regularization parameters in relation to varying noise
levels.

It may also be worth developing further variants of our
algorithm; the successful use of �0-constraints instead of the �1-
penalty, combining OMP with our framework, is just one
example. Perhaps most importantly, future research will be
directed towards the “classic” phase retrieval problem in which
one is given the (squared) magnitudes of Fourier measurements,
see, e.g., [1], [2], [5]. Here, the WF method fails, and existing
other (projection-based) methods are not always reliable either.
The hope is that introducing sparsity via a learned dictionary
will also enable improved reconstructions in the Fourier setting.

To evaluate the quality of the learned dictionary, one might
also ask how DOLPHIn compares to the straightforward
approach to first run (standard) phase retrieval and then learn
dictionary and sparse patch representations from the result.
Some preliminary experiments (see also those in Section IV-F
pertaining to keeping both A and D fixed in the first DOLPHIn
phase) indicate that both approaches produce comparable results
in the noisefree setting, while our numerical results demonstrate
a denoising feature of our algorithm that the simple approach
obviously lacks.

Similary, it will be of interest to see if the dictionaries learned
by DOLPHIn can be used successfully within sparsity-aware
methods (e.g., the Thresholded WF proposed in [13], if that
were modified to handle local (patch-based) sparsity instead
of global priors). In particular, learning dictionaries for patch
representations of images from a whole class of images would
then be an interesting point to consider. To that end, note that
the DOLPHIn model and algorithm can easily be extended to
multiple input images whose patches are all to be represented
using a single dictionary by summing up the objectives for each
separate image, but with the same D throughout.

Another interesting aspect to evaluate is by how much
reconstruction quality and achievable sparsity degrade due to the
loss of phase (or, more generally, measurement nonlinearity),
compared to the linear measurement case.

APPENDIX

In the following, we derive the DOLPHIn algorithm for
the one-dimensional setting (1). In particular, the (gradient)
formulas for the 2D-case can be obtained by applying the
ones given below to the vectorized image x = vec(X) (stacking
columns of X on top of each other to form the vector x), the
vectorized matrix a = vec(A), and interpreting the matrix F ∈
CM ×N as describing the linear transformation corresponding to
F in terms of the vectorized variables.

We now have a patch-extraction matrix Pe ∈ Rps×N which
gives us Pex = ((x1)�, . . . , (xp)�)� (in the vectorized 2D-
case, xi then is the vectorized i-th patch of X, i.e., Pe

corresponds to E). Similarly, we have a patch-reassembly
matrix Pa ∈ RN ×ps ; then, the reassembled signal vector will be
Pa((a1)�D�, . . . , (ap)�D�)� (so Pa corresponds to R). Note
that Pa = P†

e =
(
P�

e Pe

)−1P�
e ; in particular, x = PaPex, and

P�
e Pe is a diagonal matrix for which each diagonal entry

is associated to a specific vector component and gives the
number of patches this component is contained in. (Thus, if
x = vec(X) is a vectorized 2D-image, P�

e Pex = vec(R � X)
withR as defined in Section III-B.) Note that for nonoverlapping
patches, Pe is simply a permutation matrix, and Pa = P�

e

(so PaPe = I). Also, applying just P�
e actually reassembles

a signal from patches by simply adding the component’s values
without averaging.

We wish to represent each patch as xi ≈ Dai with sparse
coefficient vectors ai ; with a := ((a1)�, . . . , (ap)�)� and D̂ :=
Ip ⊗ D, this sparse-approximation relation can be written as
Pex ≈ D̂a. Our model to tackle the 1D-problem (1) reads

min
x,D ,α

1
4

∥∥y − |Fx|2
∥∥2

2 + μ
2

∥∥Pex − D̂a
∥∥2

2 + λ‖a‖1

s.t. x ∈ X := [0, 1]N , D ∈ D; (11)

here, y := |Fx̂|2 + n, with x̂ the original signal we wish to
recover and n a noise vector.

The update formulas for a (separately for a1 , . . . ,ap ) and
D remain the same as described before, see Sections III-A
and III-C, respectively. However, the update problem for the
phase retrieval solution—now derived from (11), with D and a
fixed at their current values—becomes decreasing the objective

1
4

∥∥y − |Fx|2
∥∥2

2 + μ
2

∥∥Pex − D̂a
∥∥2

2 with x ∈ X . (12)

We approach this by means of a projected gradient descent
step; since we consider real-valued x-variables, this essentially
amounts to (one iteration of) the Wirtinger Flow method [12],
accommodating the [0, 1]-box constraints via projection onto
them after the (Wirtinger) gradient step. The step size will be
chosen to achieve a reduction of the objective w.r.t. its value at
the previous x.

The objective function (12) can be rewritten as

ξ(x) := ϕ(x) + ψ(x)

:= 1
4

N∑

j=1

(
yj − x�F∗

j ·Fj ·x
)2 + μ

2 ‖Pex − D̂a‖2
2 .



TILLMANN et al.: DOLPHIN—DICTIONARY LEARNING FOR PHASE RETRIEVAL 6499

The gradient of ψ(x) is straightforwardly found to be

∇ψ(x) = μP�
e

(
Pex − D̂a

)
.

Regarding ∇ϕ(x) = 1
2

∑N
j=1(yj − x�Mjx) · ∇(yj −

x�Mjx), where Mj := F∗
j ·Fj · (Fj · is the j-th row of F), we

first note that (Mj )∗ = Mj and hence, in particular, Mj
ik = Mj

ki

(i.e., �(Mj
ik ) = �(Mj

ki) and �(Mj
ik ) = −�(Mj

ki)). Thus,
it is easily seen that for each i = 1, . . . , N , the terms in the
double-sum x�Mjx =

∑N
�=1

∑N
k=1 Mj

�kx�xk that contain xi

are precisely

Mj
iix

2
i + xi

N∑

k=1,k �=i

Mj
ikxk + xi

N∑

�=1,� �=i

Mj
�ix�

= Mj
iix

2
i +

(
2

N∑

k=1,k �=i

�
(
Mj

ik

)
xk

)
xi.

Hence, ∂
∂xi

(
yj − x�Mjx

)
= −2

∑N
k=1 �(Mj

ik )xk = −2�
(Mj

i·)x, and therefore ∇ϕ(x) is equal to

−1
2

N∑

j=1

(
yj − x�Mjx

)
·
(
2�(Mj

1·)x, . . . , 2�(Mj
N ·)x

)�

= −
N∑

j=1

(
yj − x�F∗

j ·Fj ·x
)
�(F∗

j ·Fj ·)x.

Consequently,

∇ξ(x) = ∇ϕ(x) + ∇ψ(x)

= μP�
e

(
Pex − D̂a

)
−

N∑

j=1

(
yj − x�F∗

j ·Fj ·x
)
�(F∗

j ·Fj ·)x.

(13)

Thus, with the projection PX (x) = max{0,min{1,x}}
(component-wise) and a step size γX

(�) > 0, the update of the
phase retrieval solution estimate in the �-th DOLPHIn iteration
for the 1D-case sets x(l+1) to the value

PX
(
x(�) − γX

(�)

( N∑

j=1

(
(x(�))�F∗

j ·Fj ·x(�) − yj

)
�(F∗

j ·Fj ·)x(�)

+ μP�
e

(
Pex(�) − D̂(�)a(�))))

.

The expression (13) can be further simplified by rewriting
∇ϕ(x): Since the only complex-valued part within ∇ϕ(x) is
F∗

j ·Fj ·, we can take the real part of the whole expression instead
of just this product, i.e.,

∇ϕ(x) = −
N∑

j=1

(
yj − x�F∗

j ·Fj ·x
)
�(F∗

j ·Fj ·)x

= �
(
−

N∑

j=1

(
yj − x�F∗

j ·Fj ·x
)
F∗

j ·Fj ·x
)
.

Further, using F∗
j · = (Fj ·)∗ = (F∗)·j and rearranging terms,

this becomes

∇ϕ(x) = �
( N∑

j=1

(F∗)·j
(
|Fx|2 − y

)
j
Fj ·x

)

= �
(
F∗((|Fx|2 − y

)
� Fx

))
.

From this last form, it is particularly easy to obtain the
gradient matrix ∇ϕ(X) in the 2D-case, which corresponds
precisely to the gradient ∇ϕ(x) with x the vectorized matrix
variable X and F representing the linear operator F(X) (in
terms of x), reshaped to match the size of X (i.e., reversing
the vectorization process afterwards). Similarly, the expression
for ∇ψ(X) can be derived from ∇ψ(x) w.r.t. the vectorized
variable; here, the product with P�

e then needs to be replaced
by an application of the adjoint E∗, which can be recognized as
E∗(·) = R �R(·) by translating the effect of multiplying byP�

e

to the vectorized variable back to matrix form. (Analogously,
one obtains R∗(Z) = E((1/R) � Z), where 1/R has entries
1/rij , i.e., is the entry-wise reciprocal of R.)
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