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Sub-Nyquist SAR via Fourier Domain
Range-Doppler Processing
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Abstract— Conventional synthetic aperture radar (SAR) sys-
tems are limited in their ability to satisfy the increasing
requirement for improved spatial resolution and wider coverage.
The demand for high resolution requires high sampling rates,
while coverage is limited by the pulse repetition frequency.
Consequently, sampling rate reduction is of high practical value
in SAR imaging. In this paper, we introduce a new algorithm,
equivalent to the well-known range-Doppler method, to process
SAR data using the Fourier series coefficients of the raw signals.
We then demonstrate how to exploit the algorithm features
to reduce sampling rate in both range and azimuth axes and
process the signals at sub-Nyquist rates, by using compressive
sensing (CS) tools. In particular, we demonstrate recovery of an
image using only a portion of the received signal’s bandwidth
and also while dropping a large percentage of the transmitted
pulses. The complementary pulses may be used to capture other
scenes within the same coherent processing interval. In addition,
we propose exploiting the ability to reconstruct the image from
narrow bands in order to dynamically adapt the transmitted
waveform energy to vacant spectral bands, paving the way to
cognitive SAR. The proposed recovery algorithms form a new
CS-SAR imaging method that can be applied to high-resolution
SAR data acquired at sub-Nyquist rates in range and azimuth.
The performance of our method is assessed using simulated and
real data sets. Finally, our approach is implemented in hardware
using a previously suggested Xampling radar prototype.

Index Terms— Cognitive radar (CR), compressive sensing,
sparse recovery, sub-Nyquist sampling, synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is a well proven radar
imaging technology that enables the production of high-

resolution images of targets and terrain. SAR can be operated
at night and in adverse weather conditions, overcoming limi-
tations of optical and infrared systems. The basic idea of SAR
is that a single monostatic radar transmits pulses at microwave
frequencies at a uniform pulse repetition interval (PRI) as it
moves along a path. The echoes coming from ground scatterers
are then collected and processed in order to generate a focused
image. The coherent information recorded at the different
positions is used to synthesize a long antenna in order to
improve resolution.
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Processing of SAR data requires 2-D space-variant cor-
relation of the raw data with the point scatter response
of the SAR data acquisition system [1]. A full 2-D time-
domain correlation can handle the space variance, but is
computationally inefficient. In order to accelerate computation
time, various algorithms have been developed that impose
different approximations on the correlation kernel [2], [3].
The range-Doppler algorithm (RDA) is the most widely used
approach for high-resolution processing of SAR data. It is
conceptually the simplest, can accommodate range varying
parameters, and is independent of the transmitted pulse shape.
An important part of RDA is the range cell migration cor-
rection (RCMC) operation, which is aimed at decoupling the
dependence between the two dimensions of the system, range
and azimuth, which are also known as fast time and slow time,
respectively. This step requires fine delay resolution in the
range-Doppler domain, which is typically obtained by digital
interpolation [4]. Interpolation allows to reduce the sampling
rate at the cost of additional digital computations, which
effectively increase the rate in the digital domain. In practice,
oversampling is often employed to eliminate artifacts caused
by the digital implementation of standard RDA processing.

According to the Shannon–Nyquist theorem, the minimal
sampling rate at the SAR receiver should be at least twice the
bandwidth of the detected signal in order to avoid aliasing [5].
In addition, the need to avoid azimuth ambiguities in the
resulting image is translated into a minimal pulse repetition
frequency (PRF) requirement. The PRF has to be greater
than the Doppler bandwidth of the received signals, which is
dictated by several system parameters, i.e., platform velocity,
carrier frequency, and the real antenna aperture. This, in fact,
limits the maximal swath of the system [6]. Consequently,
this 2-D dense sampling results in large data rates, requiring
large on-board memory which may be restricted by downlink
throughput requirements, especially for orbital missions.

The emerging theory of compressive sensing (CS) states that
a signal which is sparse in some basis can be reconstructed
from highly incomplete samples or measurements [7], [8].
Since an SAR image is a map of a spatial distribution of
the reflectivity function of stationary targets and terrain, many
SAR images are sparse or compressible under an appropri-
ate basis, such as wavelet, curvelet, or total variation [9].
In this paper, we show that CS can be applied on both
dimensions of SAR. Rate reduction in range is realized by
low-rate analog-to-digital conversion (ADC) at the receiver,
and azimuth subsampling is expressed by the transmission
of a smaller number of pulses during a coherent processing
interval (CPI).
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A. Related Work

CS theory has shown promising results in the field of sub-
Nyquist sampling in radar applications. The use of Fourier
series coefficients in pulse-Doppler radar enables practical
sub-Nyquist sampling when the illuminated scene consists
of moving targets that correspond to a sparse range-Doppler
map [10]–[12]. CS has also been explored in a wide range of
radar imaging applications [13]. Alonso et al. [14] applied
CS on SAR images by separating the processing into two
decoupled 1-D operations. They showed that CS theory can
then be applied in order to reduce the rate in azimuth.
However, since RCMC is ignored, this method does not con-
sider system setups with range varying parameters, potentially
degrading image quality in some cases.

Fang et al. [15] and Dong and Zhang [16] used CS in
order to reduce the rate in both dimensions. In [15], RDA
and CS were combined in order to exploit RDA benefits;
however, only linear interpolation was considered. To achieve
accurate results, the data are typically oversampled and the
interpolator kernel may span many samples, which comes
at the expense of efficiency and computational load. Due to
its simplicity, Dong and Zhang [16] suggest a CS approach
based on the chirp scaling algorithm (CSA). This processing
technique does not require interpolation [3]. Unlike RDA,
CSA is based on the assumption that the transmitted sig-
nal has a chirp form and is known to be less robust to
noise. Both methods apply random sampling in time without
proposing a practical sampling mechanism, which enables the
extraction of the low-rate samples directly from the analog
signals.

Following subsampling, most of the existing CS imaging
schemes stack the entire 2-D reflectivity map into a vector in
order to apply CS recovery methods. For real SAR images, this
vectorization operation results in large memory requirements
and long reconstruction times. Alternatively, Yang et al. [17]
suggested to split the image into segments and use several
computing units to process the data in parallel and solve
the vectorized CS problem. This approach achieves better
run time, but does not utilize the 2-D structure of the SAR
sampling problem.

B. Contributions

Our contribution is divided into three parts. First, we present
a new algorithm, equivalent to RDA, which handles the
burden of time interpolation via Fourier series coefficients. Our
approach is based on a technique recently developed for ultra-
sound imaging, called beamforming in frequency [18], [19].
This method shows that conventional beamforming in time
which is used to process ultrasound signals can be equiva-
lently performed in the Fourier domain. Adapting this con-
cept to SAR, the required noninteger nonconstant shifts in
the RCMC stage are performed in frequency using similar
techniques. This leads to a new approach of Fourier domain
RDA which is completely equivalent to conventional RDA
processing and preserves image integrity. An advantage of
this method is that it allows to bypass oversampling, which
is dictated by digital implementation of conventional RDA.

The second contribution is a 2-D sub-Nyquist SAR
system. Relying on Fourier domain RDA and CS, our archi-
tecture enables sampling both range and azimuth below the
Nyquist rate. In the range direction, using the Xampling
approach [20], [21], we develop an SAR system that samples
with practical low-rate ADCs. The Xampling (“compressed
sampling”) methodology uses an architecture that includes an
ADC which performs analog prefiltering of the signal before
taking pointwise low-rate samples in order to generate sub-
Nyquist Fourier coefficients within certain bands instead of the
entire wideband [22]. In the azimuth direction, the reduction
allows to process the data and reconstruct the image when the
number of processed pulses during a CPI is lower than that
required by Nyquist. When one is interested only in range
subsampling, we offer a simplified method with better run
time [23].

Our sparse recovery algorithm is performed without the
use of vectorization, by exploiting the natural 2-D structure
of SAR data. The core of the method is based on the fast
iterative shrinkage-thresholding algorithm (FISTA) [24], [25],
which allows to handle practical limitations of real SAR data.
Using various sparsifying transforms, simulations provided
in Section VI show that following reduction of 24% of the
Nyquist samples in range, our sub-Nyquist sampling and
recovery methods preserve classic RDA processing quality.
Moreover, a reduction of more than 50% of the transmitted
pulses is presented via simulation for the azimuth axis sub-
Nyquist sampling. Simultaneous 2-D sub-Nyquist sampling is
applied on real SAR data of RADARSAT-1 satellite, leading
to a total reduction of about 50% of the original samples
processed by conventional systems. Along with software
simulations, our hardware prototype demonstrates that our
technique can cope with practical limitations and fits real radar
imaging systems.

Finally, we show how the sub-Nyquist property of our
system can be exploited for cognitive SAR and reduced time
on scene. Specifically, we rely on the basic idea that if we are
able to reconstruct the image while sampling only part of the
data, then only this part should be transmitted. Thus, we do not
have to transmit the whole signal’s bandwidth nor the num-
ber of pulses required by Nyquist. Consequently, time gaps
(during CPI) and frequency holes (within the signal’s energy)
exist in our system. For azimuth subsampling, analogously to
the reduced time-on-target concept applied to radar signals
in [26], we propose exploiting these time gaps to transmit
pulses to another zone, using electronic beam steering. This
enables capturing several scenes during the same CPI. For
range subsampling, we focus on adaptive transmission and
reception by modifying the emitted signal to transmit only
over a small number of narrow frequency bands and use
our sparse recovery method. Complying with the concept
of cognitive radar (CR) [27], which is defined as a radar
system in which both the transmitter and receiver are able to
dynamically adjust to the environment conditions, the band’s
support may vary with time to allow for dynamic and flexible
adaptation to the existing spectrum. Such a system allows to
cope with overloaded spectrum by using a smaller portion
of it. In addition, by concentrating all the available power in
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TABLE I

LIST OF NOTATION

the transmitted narrow bands rather than over a wide spectral
band, we increase the signal-to-noise ratio (SNR) [26]. The
fact that we earn higher coverage and better SNR by exploiting
the missing data leads to a sub-Nyquist SAR system, which
outperforms conventional systems.

The remainder of this paper is organized as follows.
In Section II, we describe the SAR model and the assumptions
we use for its simplification, and review the classic RDA.
In Section III, we introduce the Fourier domain range-Doppler
method. Our 2-D sub-Nyquist system using Fourier domain
RDA is described in Section IV, along with an analysis of
noiseless recovery. In Section V, we introduce our cognitive
and reduced time-on-scene SAR systems. Simulation results
on simulated and real data are presented in Section VI. Finally,
we show how our approach is integrated into a stand-alone
system, using National Instruments (NI) hardware. Table I
summarizes the important notation used throughout this
paper.

II. SAR MODEL AND THE RANGE-DOPPLER ALGORITHM

SAR spaceborne and airborne systems are based on a
radar which travels along a well-defined path with velocity �v
and transmits every PRI, T , a time-limited pulse h(t) with
negligible energy at frequencies beyond Bh/2. The transmitted
pulses are sent from M different locations, {xm}M−1

m=0 , where
x0 is the origin and ‖xm − x0‖ = m|�v|T is the platform
displacement at the mth location. The pulses are transmitted
into a scene with a stationary terrain reflectivity, σ(r), where
r = (x, r) is the scene spatial vector consisting of azimuth
and range axes, respectively.

The pulse h(t) is modulated by a pure tone with carrier
frequency fc, so that the transmitted signal is h(t)e j2π fct . The
received signal from the mth transmitted pulse, after coherent

demodulation, is given by

dm(t) =
∫

σ(r)h(t − 2‖r − xm‖/c)wa(xm, r)

×e− j4π fc‖r−xm‖/cdr (1)

where ‖r − xm‖ is the distance from the radar at position
xm to a scatter point at position r (no sensor movement is
assumed between transmission and reception of a pulse—the
“stop-and-hop” assumption) and wa(xm, r) is the antenna
beam pattern. The beam generally forms a spatial squared
sinc function with an angular aperture (main lobe) of �a that
is inversely proportional to the antenna length. Its steering
direction varies depending on the SAR operation mode (strip
map, spotlight, scan SAR, and so on), which is mainly
distinguished by resolution and coverage capabilities [4]. For
the strip-map mode, the beam pattern is

wa(xm, r) = sinc2
( |x − xm |

r
cot

�a

2

)
(2)

where xm denotes the azimuth coordinate, x̂ , of xm . An SAR
system model, for the strip-map mode, is shown in Fig. 1.
In practice, dm(t) will be contaminated by additive white
Gaussian noise (AWGN).

The goal of SAR imaging is to reconstruct the complex
scene reflectivity, σ(r), from the raw data returns in (1).
In order to perform processing, the analog signals are first
sampled. According to the Nyquist theorem, dm(t) should
be sampled at least at Bh , creating d[n, m] = dm(nTs),
with 0 ≤ n < N = �T fs�, where fs = 1/Ts is the
sampling rate at the receiver. In addition, the need to avoid
azimuth ambiguities in the resulting radar image leads to the
requirement of dense spatial sampling of the entire scene.
This dense sampling results in a minimum PRF requirement,
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Fig. 1. SAR system model for the strip-map mode. The coherent information
is recorded at different positions, spaced by a displacement of �vτ . At every
position, the radar, which has an angular aperture of �a , captures a part of
the scene reflectivity, σ(r).

which spatially samples the scene every PRI. In strip-map
mode, approximating the beam pattern in (2) to a time window
leads to a Doppler bandwidth of 2v/ la , where la is the actual
antenna length [4].

After sampling, the data are processed. Since the SAR
acquisition system is not space invariant, various algorithms
have been developed in order to approximate the reflec-
tivity I ≈ σ(r) and to accelerate processing time [3].
RDA is the most common approach and has one of the
best accuracy/generality/efficiency tradeoffs among existing
algorithms [2]. There are three main steps in implementing
RDA:

1) range compression;
2) RCMC;
3) azimuth compression.
In order to simplify the mathematical expressions, we use

the “low squint angle” assumption in our derivation, namely,
the angle between the normal of the antenna’s plane and the
direction of transmission is assumed to be small. This means
that secondary range compression (SRC) is not used in the
processing flow. For high-squint cases, we can incorporate
SRC as another linear operator and modify the azimuth
matched filter accordingly, in order to enhance the focusing
ability [4].

The range compression stage uses the pulse compression
property which states that h(t) ∗ h∗(−t) = δ(t), where δ(t) is
a narrow pulse with width 1/Bh . The raw data d[n, m] are,
therefore, compressed in the range direction to

d̃[n, m] = d[n, m] ∗ h∗[−n]. (3)

Next, the raw data are transformed to the range-Doppler
domain via the discrete Fourier transform (DFT) along the
azimuth axis

S[n, k] = DFTm{d̃[n, m]} =
M−1∑
m=0

d̃[n, m]e− j2πkm/M (4)

followed by RCMC. The purpose of RCMC is to compensate
for the effect of range cell migration, namely, cells which were
migrated from their original range due to the varied satellite-
scatterer distance. The hyperbolic behavior of the resulting
target trajectories is corrected by the RCMC operator which
is written as

C[n, k] = S[n + n · ak2, k]. (5)

For every Doppler frequency k, the range axis is scaled
by 1 + ak2. In strip-map mode, we have, for example,
a = ((λ2)/(8|�v|2T 2 M2)). As can be seen in (5), this range-
variant shift requires values which fall outside the discrete
grid.

There are two ways to implement RCMC. In the first
option, RCMC is performed by range interpolation in the
range-Doppler domain. However, this interpolation is time-
consuming and computationally demanding. The second
approach assumes that the range cell migration is range
invariant, at least over a finite range block. In this case,
RCMC is implemented using DFT, linear phase multiply, and
inverse DFT (IDFT) per block. However, this implementation
has the disadvantage that blocks have to overlap in range, and
the efficiency gain may not be worth the added complexity.

Following RCMC, the signal is compressed in the azimuth
direction. The low squint angle assumption enables compres-
sion by using a matched filter of a linear chirp [4]

Y [n, k] = C[n, k]e− jπ k2
Ka [n] (6)

where Ka[n] is the range-dependent azimuth chirp rate

Ka[n] = 4M2T 2|�v |2
λcnTS

. (7)

An IDFT in the azimuth direction results in the focused data

I [n, m] = IDFTk{Y [n, k]} = 1

M

M−1∑
k=0

Y [n, k]e j2πmk/M . (8)

Fig. 2 shows the RDA stages for equally spaced single-point
reflectors.

RDA is the preferred algorithm in most SAR operations
thanks to its high precision and generality. However, its main
disadvantage is the increase in processing due to the extra
interpolation. Thus, processing in the time domain imposes a
high sampling rate and considerable burden on the RCMC
block. We next show that the number of samples can be
reduced significantly by exploiting ideas of processing in the
Fourier domain, sub-Nyquist sampling, and CS-based signal
reconstruction.

III. RANGE-DOPPLER ALGORITHM VIA

FOURIER COEFFICIENTS

In this section, we show that RDA can be performed in
frequency, using the Fourier series coefficients of the raw data.
This paves the way to substantial reduction in the number of
samples needed to obtain the same image quality. In particular,
we adapt the idea of compressed beamforming in ultrasound
imaging [18], [19], to perform RCMC using Fourier series
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Fig. 2. RDA stages for equally spaced single-point reflectors. (a) Raw data (real component). (b) Range compression. (c) Azimuth DFT. (d) RCMC.
(e) Compressed image.

coefficients instead of the expensive time-domain interpola-
tion, without any assumptions on the signal structure or the
invariance of range blocks. This allows transferring the process
of RDA to the frequency domain, and eliminates the need for
oversampling.

A. Fourier Domain RCMC

Similar to [19], we begin by calculating the Fourier series
coefficients of the continuous version of (5)

Ck(t) = Sk(t (1+ ak2)) (9)

where Sk(nTs) = S[n, k]. Denote the Fourier series coeffi-
cients of Ck(t) with respect to the interval [0, T ) by

Ck [l] = 1

T

∫ T

0
I[0,Tk )(t)Ck(t)e

−i 2π
T lt dt (10)

where Tk = T/(1 + ak2) and I[a,b) is the indicator function
which equals 1 when a ≤ t < b and 0 otherwise. Substitut-
ing (9) into (10), we get

Ck [l] = 1

T

∫ T

0
Sk(t)qk,l(t)dt (11)

with

qk,l(t) = I[0,T )(t)
1

1 + ak2 exp

{
−i

2π

T
lt

(
1

1+ ak2

)}
. (12)

We next express Sk(t) in terms of its Fourier series coeffi-
cient representation

Sk(t) =
∞∑

n=−∞
Sk[n]ei 2π

T nt . (13)

Substituting into (11) leads to

Ck [l] = 1

T

∫ T

0

∞∑
n=−∞

Sk [n]ei 2π
T nt qk,l (t)dt

=
∞∑

n=−∞
Sk[n] 1

T

∫ T

0
qk,l(t)e

−i 2π
T (−n)t dt

=
∞∑

n=−∞
Sk[n]Qk,l [−n] (14)

where Qk,l [n] are the Fourier series coefficients of qk,l(t).
Using the relationship between the continuous time Fourier

Fig. 3. Fourier series coefficients {Qk,l [n]} of qk,l (t) are characterized by
a rapid decay, where most of the energy is concentrated around nk,l . Here,
k = 4, l = 4, and a = 2, so that nk,l = −2.

transform (CTFT) X (ω) and the Fourier series coeffi-
cients C[l] of a finitely supported function x(t), C[l] =
(1)/(T X ((2π)/(∗T l), we get

Qk,l [n] = 1

1+ ak2 e
− jπ

(
n+ l

1+ak2

)
sinc

(
n+ l

1+ ak2

)
. (15)

It is easy to see that most of the energy of the set
Qk,l [n] is concentrated around a specific component, nk,l =
round(−((l)/(1+ ak2))), where the round(·) operation rounds
the argument to its closest integer. This behavior is typical to
any choice of k or l. An example with k = 4, l = 4, and
a = 2 is shown in Fig. 3. Thus, for every Doppler frequency k,
the Fourier series coefficients of the scaled signal, Ck(t), can
be calculated as a linear combination (weighted sum) of a local
choice of Fourier series coefficients of Sk(t)

Ck[l] =
∑

n∈ν(k,l)

Sk[n]Qk,l [−n] (16)

where ν(k, l) is the set of indices, which is dictated by the
decay property of (15).

We conclude that given Sk[l], (16) provides the Fourier
series coefficients, Ck [l], of the corrected signal Ck(t)
defined in (9).
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TABLE II

FOURIER DOMAIN RDA COMPARED TO CONVENTIONAL RDA

B. Acquisition in Fourier Domain

Assuming that the samples can be extracted directly in the
Fourier domain, the samples are defined via

Dm [l] = 1

T

∫ T

0
dm(t)e−i 2π

T lt dt . (17)

We next show how the preliminary stages of RDA can be
performed in the Fourier domain as well.

Range compression is simply applied in the Fourier domain
by

D̃m [l] = T · Dm [l]H ∗[l] (18)

where H [l] is the lth Fourier series coefficient of the transmit-
ted pulse, h(t). Next, we perform azimuth DFT on the range
Fourier samples

Sk [l] = DFTm{D̃m [l]} =
M−1∑
m=0

D̃m [l]e−i2πkm/M . (19)

For every Doppler frequency, we then use (16) to apply
RCMC and calculate the (range) scaled signal Fourier series
coefficients. Applying an inverse Fourier transform on {Ck[l]}
reconstructs the corrected sampled signal after RCMC

C[n, k] =
∞∑

l=−∞
Ck[l]ei 2π

T lnTs . (20)

We then continue to the original procedure by applying
(6) and (8) to complete the processing. A comparison between
Fourier domain RDA and conventional RDA is introduced
in Table II.

C. Sampling and Processing at the Nyquist Rate

In practice, SAR signals are sampled at rates which are
higher than the Nyquist rate. Moreover, prior to RCMC,
a subsequent digital interpolation increases the effective rate
of the entire system even more. A typical oversampling
factor of 1.5 to 4 times the transmitted signal bandwidth is
usually used in order to eliminate artifacts caused by digital
implementation of RCMC. While achieving the same results,
we next show how our algorithm may be performed without
oversampling.

Denote by βm , |βm | = B , the set of Fourier series
coefficients of the detected signal, dm(t), that correspond to
its bandwidth, namely, the values of l for which Dm [l] is
nonzero (or larger than a threshold). The ratio between the
cardinality of the set βm and the overall number of samples
N = �T fs� required by standard RDA is dictated by the
oversampling factor.

The bandwidth of the returned signals in (1) is equal to
the bandwidth of the transmitted signal, H [l]. Thus, fol-
lowing range compression in (18), the bandwidth of the
signals remains the same. Moreover, it is easy to see that
the azimuth DFT stage in (19) preserves the bandwidth of
the range compressed signal, and that for every Doppler fre-
quency k, the cardinality of the nonzero {Sk[l]} equals B . Next,
(16) implies that the bandwidth of the corrected signals
following RCMC, βk , will contain at most B+|ν(k, l)| nonzero
frequency components. Due to the azimuth DFT operation,
to compute the elements in βk , all we need is the set βm from
each one of the detected signals. In a typical imaging setup,
B is on the order of thousands of coefficients, while ν(k, l),
defined by the decaying properties of {Qk,l [n]}, is typically
no larger than 10. This implies that B � |ν(k, l)|, so |βk| =
B + |ν(k, l)| ≈ B . Hence, the bandwidth of the corrected
signals is approximately equal to the bandwidth of the detected
signals, which means that sampling and processing can be
performed at the Nyquist rate and no oversampling is required.
In a typical system setup, this reduction leads to B/N = 2/3
to 1/4. Fig. 4 shows the Fourier series coefficients, which are
taken within the effective bandwidth.

D. Simulation and Validation

To demonstrate the equivalence of RDA in time and fre-
quency, we applied both methods on simulated SAR raw data.

First, we evaluate the required number of |ν(k, l)| by
measuring the reconstruction quality via the peak sidelobe
ratio (PSLR) of the point spread function (PSF) of the system.
Assuming that no windowing is applied to the range and
azimuth signals, the PSF can be approximately described as a
2-D sinc function. Its beam widths in range and azimuth are
inversely proportional to the transmitted signal bandwidth and
the Doppler bandwidth, respectively. PSLR is defined as the
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Fig. 4. Fourier series coefficients are taken within the effective bandwidth
of the returned signals. Since the signals are finite in time, the coherent
information within the discrete frequency samples is sufficient to handle
SAR processing.

ratio of the peak intensity of the most prominent sidelobe to
the peak intensity of the main lobe, i.e., the smaller the PSLR,
the better an image quality.

The PSF was generated by a single reflector in the scene
center as the input of the system, σ(r) = δ(r−rc). Results are
shown in Fig. 5. It can be seen that |ν(k, l)| = 5 components
of each Sk[n] are sufficient to achieve almost the same quality,
visually and quantitatively.

In addition, we examined the equivalence of both methods
on SAR raw data, which was simulated from a real SAR image
as a reflectivity map, σ(r). To verify the selection of |ν(k, l)|,
we compare the resulting image of conventional RDA process-
ing with Fourier domain RDA using a varied number of
|ν(k, l)|. We measured the similarity using a state-of-the-
art image quality assessment index called feature similarity
(FSIM) [28]. From Fig. 6, it is readily seen that the effect
of considering more than five coefficients is negligible. The
parameters of the system are described in Table III. The
ratio between the cardinality of the set βm and the overall
number of samples N , required by standard RDA rate fs ,
is dictated by the oversampling factor, αos. Since fs = αos N ,
the new rate leads to a reduction of B/N = (1/2). Fig. 7(a)
shows the image follows conventional RDA processing while
in Fig. 7(b), we use Fourier RDA processing with |ν(k, l)| = 5.
As can be readily seen, the images look identical. These results
verify that both signals and the resulting images are extremely
similar.

To conclude this section, we presented a new algorithm,
equivalent to RDA, that instead of time interpolation, cor-
rects the migration of range cells in the Fourier domain.
We exploited the effective bandwidth of SAR signals and
bypassed oversampling, dictated by digital implementation
of RCMC in time, without any assumption on the signal
structure or the invariance of range blocks.

IV. 2-D SUB-NYQUIST SAR

We now demonstrate how Fourier domain RDA allows
for sub-Nyquist sampling of the received signals, in both

TABLE III

SIMULATED SAR SYSTEM PARAMETERS

range and azimuth, when exploiting sparsity of SAR images.
This 2-D reduction enables perfect reconstruction using less
pulses and fewer samples from each individual return.

A. Sampling Rate Reduction via Compressed Sensing

Denote by D̃ = {D̃m [l]} ∈ CB×M , 0 ≤ m < Ml ∈ βk ,
the Fourier coefficients of the range compressed signals
in (18).

Having D̃ and using the processing stages in (4), (6), (8),
and (20), the relationship between the image and the processed
Fourier coefficients can be formulated as

D̃ = Q̃(Fs[B ◦ (IF)])F∗ (21)

where Fs = {(1/(B)e− j (2π)/(Blk)} ∈ CB×N is a partial
DFT matrix, B = {e jπ(k2)/(Ka[n])} ∈ CN×M is the azimuth
compression matrix from (6), F ∈ CM×M is the DFT matrix,
◦ is the Hadamard product, I = {I [n, m]} ∈ CN×M is the
desired image, and Q̃(·) is the inverse RCMC operator, which
should satisfy

Sk[l] =
∞∑

r=−∞
Ck[r ]Q̃k,l [−r ]. (22)

Under the low squint angle assumption (see Section IV-C),
the following proposition provides a simple expression
for Q̃k,l [r ].

Proposition: Suppose that ak2 
 1 for every 0 ≤ k < M .
Then, the inverse Fourier RCMC operator in (22) can be
approximated by

Q̃k,l [r ] = (1+ ak2)e− jπ(r+l(1+ak2))sinc(r + l(1+ ak2)).

(23)

Proof: To prove the result, we need to show that for integer
values of n and l

∞∑
r=−∞

Qk,r [−n]Q̃k,l [−r ] ≈ δ[n − l] (24)

where δ[n − l] is the Kronecker delta.
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Fig. 5. PSF of an SAR system simulated with different RDA techniques (range is the vertical axis and azimuth is the horizontal one). (a) Conventional
RDA, PSLR = 13.32 [dB]. (b) Fourier domain RDA, |ν(k, l)| = 3, PSLR = 11.7598 [dB]. (c) Fourier domain RDA, |ν(k, l)| = 5, PSLR = 13.29 [dB].

Fig. 6. Similarity measured by FSIM between conventional RDA and Fourier
domain RDA for a varied number of Fourier coefficients, which are considered
before RCMC, |ν(k, l)|.

For every n, l ∈ Z and 0 ≤ k < M , we have

∞∑
r=−∞

Qk,r [−n]Q̃k,l [−r ]

=
∞∑

r=−∞
e
− jπ

(
−r−n+ r

1+ak2 +l(1+ak2)
)

×sinc

(
−n + r

1+ ak2

)
sinc (−r + l(1+ ak2)). (25)

Using the fact that ak2 
 1 for every 0 ≤ k < M , the last
expression can be approximated by

∞∑
r=−∞

e− jπ(l−n)sinc(−n + r)sinc(−r + l)

= e− jπ(l−n)
∞∑

r=−∞
sinc(−n + r)sinc(−r + l). (26)

Finally, the result follows from the fact that sinc(−n + l) =
δ[n− l] for integer values of n and l. �

When there exists some basis in which I is sparsely repre-
sented, (21) becomes a CS problem that can be solved using
a smaller amount of rows and columns in D̃. Using �1 as a
sparsity measure, the resulting optimization problem is

min ‖�(I)‖1 s.t. ‖D̃p − Q̃p(Fs[B ◦ (IF)])F∗p‖2F < ε (27)

where D̃p is both a column and a row undersampled version
of D̃, Q̃p(·) is the partial RCMC operator which considers

only the subsampled Fourier coefficients, F∗p is a column
undersampled version of F∗, � is a sparsifying transform
operator, ‖ · ‖F is the Frobenius norm, and ε is an appropriate
noise level which controls the fidelity of the reconstruction to
the measured data. We denote the subsets of rows and columns
of Dp by M̃ ⊆ {1, 2, . . . , M} and κ̃ ⊆ βm , respectively.

There are various approaches to solve this optimiza-
tion problem. In the field of SAR, most of the existing
CS schemes stack the whole 2-D reflectivity map to a vec-
tor [14], [16], [29]. The vectorized form of (27) is

min ‖�(x)‖1 s.t. ‖y −Mx‖2 ≤ ε (28)

where x = vec(I), y = vec(C), and M = F̄∗pQ̄pF̄s B̄F̄
with F̄ = FT ⊗ Ĩ, B̄ = diag{vec(B)}, F̄s = Ĩ ⊗ Fs ,
Q̄p = diag{Q(k)}, and F̄∗p = F∗pT ⊗ Ĩ, where ⊗ is the
Kronecker product and Ĩ is the identity matrix. A variety of
CS techniques can then be employed to solve (28), such as
interior point methods [30] and alternating direction method
of multipliers (ADMMs) [31], [32]. Fast iterative shrinkage-
thresholding algorithms, such as FISTA [24], [25] or its
monotonic version MFISTA [33], are more favorable in deal-
ing with large dimensional data since they do not require
structure. Due to the long reconstruction time and large
memory requirements, it is difficult to reconstruct a moderate-
size scene using CS and vectorization in practice.

Instead, we next show how to solve (27) by extending
FISTA [24] to support 2-D matrix recovery which fits the
SAR problem without the use of vectorization. We apply the
same technique as in [34]. The proposed algorithm is coined
SAR FISTA.

In general, FISTA is aimed at minimizing an error function,
which in our case equals

G(I) =
∥∥∥D̃p − Q̃(Fs [B ◦ (IF)])F∗p

∥∥∥2

F
. (29)

It relies on soft thresholding and gradient decent. The soft
operator for a matrix X is defined via

soft(X, α) = Xij

|Xij| (|Xij| − α)+. (30)

The Lipschitz constant of G(I), L f , controls the gradient
decent step of the error function, which is given by

∇G(I) = 2
{

B ◦
[
Fs H Q̃H

p

(
EFT

p

)]}
FH (31)
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Fig. 7. Comparison between two reconstructed images. (a) Conventional
RDA using oversampled raw data. (b) Fourier RDA, |ν(k, l)| = 5, with no
oversampling.

where H is the adjoint operator and

E = D̃p − Q̃p(Fs[B ◦ (IF)])F∗p. (32)

Since reconstruction is performed using D̃p as the mea-
surements, range compression should be performed as a pre-
processing stage. For the given subsampled data, Dp , our
steps for reconstruction using SAR FISTA are summarized in
Algorithm 1. The run time of Algorithm 1 is dictated by step 4,
which considers the derivative of the RCMC operator. Since
the gradient decent step is repeated iteratively, this operation
is the heaviest part, in terms of run time, of Algorithm 1.
In Section IV-C, we show how to reduce run time in the case
in which only range subsampling is required.

Algorithm 1 enables reconstruction of an SAR image,
using less columns and rows of the raw data matrix, which

Algorithm 1 SAR FISTA Reconstruction for 2-D Sub-Nyquist
Sampling

Input: SAR raw data xamples Dp = {Dm [l]}l∈κ̃m∈M̃
,

measurement matrices Fs
p, B, F

Output: estimate for sparse coefficients of SAR image, X̂,
such that I = �−1(X̂)

1: Initialization: D̃p = {D̃m[l]}l∈κm∈M̃
← Dp via (18)

Initialize: X0 = 0, X1 = 0, t0 = 1, t1 = 1, k = 1
λ1, β ∈ (0, 1), λ̄ > 0

2: while not converged do
3: Zk = Xk + tk−1−1

tk
(Xk − Xk−1)

4: Uk = Zk − 1
L f
∇G(�−1(X̂)), via (31)

5: Xk+1 = soft(Uk, λk
L f

)

6: tk+1 = 1+
√

4t2
k+1

2
7: λk+1 = max(βλk, λ̄)
8: k = k + 1
9: end while

X̂ = X

correspond to the emission of pulses and Fourier samples,
respectively. We next explain how the reduction in Fourier
samples is equivalent to the reduction of time-domain samples
of the individual returns.

B. Analog-to-Digital Rate Reduction

In Section IV-A, we assumed that a subset of Fourier
coefficients are given. However, in order to construct a real
sub-Nyquist sampling system, these coefficients should be
derived from low-rate time-domain samples generated from
a low-rate ADC. We next explain how the required Fourier
coefficients can be extracted from the raw data samples in
time.

Similar to [18], we use the Xampling mechanism. The
Xampling philosophy ties together sub-Nyquist sampling
based on analog preprocessing with techniques of CS for
recovery. However, these approaches typically require sophisti-
cated sampling schemes, which acquire generalized measure-
ments of the analog signals [5], [35]. Baransky et al. [11]
presented a concrete ADC scheme and a recovery algorithm
for sampling radar signals at sub-Nyquist rates. The analog
input is split into channels, where in each channel it is mixed
with the selected harmonic signal, integrated over the PRI
duration, and then sampled. The matching Fourier coefficients
are then created digitally.

Using Xampling, the next question is which frequencies
should be selected, considering practical limitations. In CS,
the natural selection is to choose the coefficients randomly.
Unfortunately, this sampling strategy is not practical in hard-
ware. Some guidelines for choosing the frequencies were
suggested in [36], in order to treat the tradeoff between
noise robustness, which is increased by highly distributed
frequency samples and practical hardware implementation.
This tradeoff is also between high resolution, which requires a
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Fig. 8. Frequency bands selection. (a) Low pass (“PDF #1”). (b) Combination
of a low pass and a bandpass (“PDF #2”). (c) Random selection (“PDF #3”).

wide aperture, and avoiding ambiguities, which calls for close
frequencies. Coping with the practical limitations, similar
to [11], a multiple bandpass sampling approach was chosen,
where four groups of consecutive coefficients are selected. The
board can be seen in Fig. 14(a).

We next examine three different practical sampling scenar-
ios, each consisting of four frequency bands. We transmit a
linear chirp into a 1-D synthesized scene, where 30% of the
scene samples are zero in the time domain, as well as in
the wavelet domain, under the Daubechies-4 basis. The first
frequency samples selection (marked as “PDF #1”) includes
the lower half of the frequency samples, the second selec-
tion (“PDF #2”) includes a low pass and a narrower bandpass,
and the third selection (“PDF #3”) includes randomly selected
four bands of frequency samples. An illustration of the selected
frequency bands for each of the scenarios is shown in Fig. 8.

The reconstruction of the scene is performed using three
methods: direct reconstruction using matched filtering with
an appropriate subsampled chirp signal, reconstruction with
FISTA using Daubechies-4 wavelets as the sparsifying trans-
form, and reconstruction with FISTA using an identity
transform.

As seen in Fig. 9, the reconstruction quality using FISTA
surpasses direct reconstruction both qualitatively (the signals
recovered with FISTA show less ripple) as well as numerically:
with PDF #3, the error norm for direct reconstruction is
around 0.228 while it is 0.084 for reconstruction with FISTA
under wavelets, and 0.070 for reconstruction with FISTA
under an identity transform. The combination of CS recon-
struction (with an arbitrary sparsifying �), along with ran-
dom bands selection, which best copes with the mentioned
tradeoffs, provides the best performance for sub-Nyquist in
range. The randomness encourages dynamic changes, which
are not limited to certain bands. We will use this property in
Section V-B, when we present the cognitive SAR concept.

C. Performance Improvement

As mentioned in Section IV-A, the heaviest part in terms
of run time in Algorithm 1 is the gradient decent step, which
is performed in every iteration. Following [23], in the case
that only range subsampling is required and under certain
assumptions, we can simplify the algorithm. In particular,
we next present a method that exploits the structure of the
RCMC operator in (16), in order to take this operator out of
the gradient step and apply it only once.

Denote by C = {Ck[l]}l∈βk
0≤k<M ∈ CB×M the partial Fourier

coefficients matrix of the corrected signals and by Q(·) the
RCMC operator which is defined via (16). Since the DFT is

Fig. 9. 1-D signal reconstruction based on different subsampling strate-
gies (paired with zoomed-in-view part). (a) Direct reconstruction using
matched filtering. (b) Reconstruction with FISTA under the wavelet transform.
(c) Reconstruction with FISTA under an identity transform.

a unitary matrix, right multiplying by F and applying Q(·)
on (21) lead to

C = Fs [B ◦ (IF)] (33)

where C = Q(D̃F). Repeating the same steps as in
Section IV-A, the optimization problem in (27) becomes

min
∥∥∥�(I)

∥∥∥
1

s.t.
∥∥∥Cp − Fs

p[B ◦ (IF)]
∥∥∥

2

F
< ε (34)

where Cp and Fs
p are row undersampled versions of C and Fs .

In this case as well, we can reconstruct the image using
FISTA, where the gradient of the error function is

∇F(I) = 2{B ◦ [Fs H (Fs(B ◦ (IF))− C)]}FH . (35)

It can be seen that (22) is not part of the gradient step in (35).
The RCMC operator is performed only in the preprocessing
stage to create C. However, due to the fact that subsampling is
not performed on the raw data itself, we next have to figure out
how many Xamples, Dm [l], should be considered in order to
extract Cp . To answer this question, we examine κ ⊂ βm ,
a subset of Dm[l].
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Due to the decay property of (15), the relationship in
(16) implies that the calculation of a specific Fourier coef-
ficient Ck[l] requires only |ν(k, l)| coefficients of {Sk[l]}l .
The decay rate of (15) and, thus, the cardinality of ν(k, l)
are dictated by the behavior of the sinc function and are
independent of k or l. We denote the cardinality of ν(k, l)
by L. Thus, for a given Doppler frequency k, in order to
compute an arbitrary set of B coefficients from {Ck[l]}l , only
B + L coefficients {Sk[l]}l are needed.

Considering the azimuth DFT in (19), it is easy to see that in
order to extract a specific coefficient Sk [l] we need the entire
set of {Dm [l]}m . Therefore, to evaluate an individual coeffi-
cient, Ck[l], the indices of the coefficients which should be
xampled from each individual signal are ν(k, l). Generalizing
the concept for the entire matrix, in order to extract Cp =
{Ck[l]}l∈κ0≤k<M , where κ ⊂ βk , only Dp = {Dm [l]}l∈κ̃0≤m<M
should be xampled, where κ̃ ⊂ βm . We next show that κ and
κ̃ are of the same order of magnitude, which means that the
preprocessing stages do not influence the number of required
Xamples.

From the low squint angle assumption we have that when
the squint angle is low, the range cell migration is relatively
small. We may, therefore, assume that ak2 
 1 for every
0 ≤ k < M . To justify this assumption note that for
the strip-map mode, ak2 = (1/8)((λ/vT ))2((k/M)))2 <
(1/8)((λ/vT ))2 for every k. In the SEASAT-A satellite [37],
λ = 0.235 [m],v=7000[m/s], and T = 0.6 [msec], which
yields (1/8)((λ/vT ))2 = 3.8 × 10−4, justifying the approx-
imation. This assumption means that the most dominant
coefficient, Qk,l [−n], is nk,l ≈ l, a fact which implies
that ν(k, l) is approximately independent of k, and leads to
the approximation that the azimuth DFT operation does not
influence the number of required xamples

|κm | =
∣∣∣⋃

k,l

ν(k, l)
∣∣∣ ≈ B + L . (36)

As was shown in Section III-D, we selected L to be 5. This
means that when B � L, the preprocessing stages do not
drastically enlarge the number of required Xamples.

Algorithm 2 describes the modified version of FISTA, which
supports the structure of (34). Unlike Algorithm 1, it uses the
expensive 2-D operator in (16) only once at the initialization
stage while calculating Cp . For that reason, if we only want
to subsample in range, then Algorithm 2 is preferred.

V. EXPLOITING GAPS IN TIME AND FREQUENCY

In Section IV, we presented a sub-Nyquist framework which
allows 2-D subsampling along with reconstruction. As a result
of the missing pulses and the reduced number of Fourier coeffi-
cients, time gaps (during CPI) and frequency holes (within the
received signal’s spectrum) exist in our system. In this section,
we explain how to exploit these gaps in each dimension.

A. Reduced Time on Scene

Algorithm 1 enables reconstruction of a sparse scene with
a number of pulses, which is less than the Nyquist require-
ment. This sub-Nyquist sampling in the azimuth direction is,

Algorithm 2 SAR FISTA for Sub-Nyquist Sampling in Range

Input: Xamples Dp = {Dm[l]}l∈κ̃0≤m<M , measurement matrices
Fs

p, B and F
Output: estimate for sparse coefficients of SAR image, X̂,
such that I = �−1(X̂)

1: Initialization: Cp = {Ck[l]}l∈κ0≤k<M ← Dp via (16), (18)
and (19)
Initialize: X0 = 0, X1 = 0, t0 = 1, t1 = 1, k = 1
λ1, β ∈ (0, 1), λ̄ > 0

2: while not converged do
3: Zk = Xk + tk−1−1

tk
(Xk − Xk−1)

4: Uk = Zk − 1
L f
∇F(�−1(X̂)), via (35)

5: Xk+1 = soft(Uk, λk
L f

), via (30)

6: tk+1 = 1+
√

4t2
k+1

2
7: λk+1 = max(βλk, λ̄)
8: k = k + 1
9: end while

X̂ = X

in practice, a nonuniform transmission which results in time
gaps within the CPI where no echoes are recorded. This can be
interpreted as a reduced time-on-scene concept, which stands
for the reduction of time that the radar beam needs to steer at
the scatters within the scene. Similar to [26], which uses the
same concept for radar signals, we propose to exploit these
time gaps, for sending pulses to other scenes. This allows to
capture several different regions within the same CPI and,
therefore, using the same size of memory to form several
images instead of one. This memory reduction has significant
meaning in orbital missions, which are limited by on-board
memory and downlink throughput. The processing of each
image is performed separately, since every scene is processed
with its own partial Fourier IDFT matrix, F∗p in (27), with the
indices of the relevant pulses.

Although these time gaps are on the order of milliseconds,
phased array and electronic beam-steering techniques can aim
the beam to different directions within those time periods,
by controlling the phased array parameters [38]. In the sim-
ulations, we show that two different scenes can be captured
during a single CPI. Fig. 10 shows the reduced time on scene
and time gaps exploitation concept.

In Section VI, we will demonstrate via simulations, how
sub-Nyquist in azimuth is exploited in order to capture a wider
area within the same CPI.

B. Frequency Adaptive Transmitter

We next show how to exploit our sub-Nyquist range abilities
to allow for dynamic adaptation of both the transmitted and
the received signal spectrum, paving the way to cognitive
SAR. In particular, similar to [39], we modify the transmitter
of the radar prototype presented in [11] to adapt it to CR.
Combining the transmission of a few narrow bands and
using the reconstruction method described in Section IV-C,
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Fig. 10. Reduced time on scene. The transmitted pulses are nonuniformly
subsampled. The complementary pulses are exploited to capture another scene.

we propose to enable dynamic spectrum changes of the
transmitted SAR waveform. This will not affect any aspect
of our sub-Nyquist processing since the received signal is
preserved in the bands of interest. Let H̃(ω, t) be the CTFT
of the new transmitted radar pulse

H̃(ω, t) =
{

H (ω) ω ∈ Nb(t)

0 otherwise
(37)

where

Nb(t) =
⋃

1≤i≤N

[
f i
x (t)− Bx(t)/2, f i

x (t)+ Bx(t)/2
]

is the dynamic support of filtered N bands and Bi
x(t) and f i

x (t)
are the bandwidth and the carrier frequency of i th band at
time t , respectively. Obviously, the computation of the relevant
Fourier coefficients Dm [l] will not change.

To comply with CR requirements, the band parameters
Bi

x(t) and f i
x (t) vary with time allowing dynamic adaptation

to the environment. Moreover, in Section IV-B, it was shown
that the best practical sampling strategy consists of a random
selection of a group of bands. This strategy enhances the
ability to dynamically adapt the bands to vacant frequencies
and best fits our cognitive system.

This approach leads to two main advantages. First, since
we only use the received bands to transmit, the entire power
is concentrated in them. Therefore, the SNR in the sam-
pled bands is improved. Second, this technique allows for
a dynamic form of the transmitted signal spectrum, where
only a small portion of the whole bandwidth is used at
each transmission. In Section VI, we demonstrate how sub-
Nyquist in range is exploited in order to adapt cognition while
improving SNR.

VI. SOFTWARE AND HARDWARE SIMULATIONS

In this section, we examine the performance of Fourier
domain RDA sub-Nyquist sampling for both the range and
azimuth axes using simulated and real SAR data. We compare
our methods to conventional RDA with full-Nyquist samples.

Fig. 11. Sub-Nyquist range sampling and recovery comparison. (a) Conven-
tional RDA with full-Nyquist samples. (b) SAR FISTA (Algorithm 2), � = I ,
using 24% of the coefficients required in conventional RDA.

In addition, we present our hardware prototype and demon-
strate the advantages of the proposed cognitive SAR in terms
of SNR.

A. Simulated Data

In order to examine our methods, we generated SAR raw
data of two different scenes: a spatially sparse scene and an
image which is sparse under the Daubechies-4 wavelet basis.
The data were generated from real SAR images, using the
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Fig. 12. Reduced time on scene via sub-Nyquist azimuth sampling (range is the vertical axis and azimuth is the horizontal one). (a) Conventional RDA with
full-Nyquist samples, 600 pulses. (b) Sub-Nyquist reconstruction of a two times wider scene using 600 pulses. The 50% rate reduction enables to transmit
the missing pulses to another area. The reconstruction is performed by SAR FISTA (Algorithm 1), where � is the Daubechies-4 wavelet transform.

model in (1) where the reflectivity map was taken as the
original image, namely, each pixel in the image is treated as
a point reflector, σ(r) = I (r).

In the first simulation, we examined range subsampling,
where the scene includes a sea with several vessels. Since
there is nearly no back reflection from the water surface, large
areas in the scene have almost no reflectivity, rendering the
image spatially sparse. The number of transmitted pulses is
P = 1200 and the rest of the system parameters are described
in Table III. We processed the image using only 120 Fourier
coefficients from each received signal, instead of Fs T = 500
which are required in order to satisfy RDA with αos = 2.
We compared conventional range-Doppler processing with
full samples to Algorithm 2. The algorithm parameters are:
β = 0.9, λ = 1000, λ̄ = 1000, and L f = 1, and � is taken as
the identity transform. Fig. 11(a) shows the scene processed
with conventional RDA. Fig. 11(b) shows the result of our sub-
Nyquist sampling and processing approach using Algorithm 2.
Our CS algorithm outperforms conventional RDA with only
24% of the coefficients required in conventional RDA. The
reconstructed image is sharper due to the attenuation of PSF
sidelobes caused by the soft thresholding operation (30).

In the second simulation, we examined only azimuth sub-
sampling and demonstrated the reduced time-on-scene concept
using the same system parameters as in the previous simula-
tion, with full-Nyquist sampling in range. The image includes
two islands, and is not spatially sparse. Thus, we used the
Daubechies-4 wavelet transform as the sparsifying basis. The
PRF is dictated by the Nyquist theorem and should be higher
than 25 kHz for la = 6 m. Thus, for a PRF of 30 kHz,
the number of required pulses for a CPI of 20 ms is P = 600.
Fig. 12(a) shows the resulting image using conventional

RDA with full-Nyquist samples. In the second experi-
ment, we processed the data with Algorithm 1 where only
300 random pulses were chosen, instead of the required 600.
Following the reduced time-on-scene concept, we exploit the
other 300 pulses in order to catch a wider part of the original
scene, which means that using the same number of pulses
we doubled the area of the captured image. The algorithm
parameters are: β = 0.8, λ = 800, λ̄ = 800, and L f = 1. The
result is shown in Fig. 12(b). It can seen that using the same
amount of pulses, our CS algorithm achieves results which are
equivalent in terms of quality to the conventional RDA but the
coverage is two times the original area. This result proves the
concept of reduced time on scene.

B. Real Data

To further test the performance of our method and
to confirm our model, we conducted simulations on the
RADARSAT-1 raw data collected on June 16, 2002, in ascend-
ing orbit #34522. The illuminated target is Richmond,
Vancouver, Canada. The related key parameters of
RADARSAT-1 system can be found in [4]. In this simulation,
we prove the feasibility of our 2-D sub-Nyquist SAR system.

We simulated two geographically consecutive scenes. The
reference image which was taken from an electrooptic (EO)
satellite is shown in Fig. 13(a), where the two illuminated
scenes are marked in red boxes. In order to simulate the sub-
Nyquist system, we undersampled the original raw data of
each of the scenes. The 3072×4096 matrix was undersampled
in both axes. In the range axis, we reduced randomly 30%
of the coefficients and in the azimuth direction, we selected
randomly 70% of the columns, which is equivalent to the
omission of 30% of the pulses. This leads to a 2150× 2867
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Fig. 13. Real data simulations using RADARSAT-1 data. (a) Reference EO image with two marked areas (in red). (b) First area (North) processed with
full-Nyquist samples. (c) First area processed with Algorithm 1 using only 49% of the original samples, 0.7 rate reduction in each axis. (d) Second area (South)
processed with full-Nyquist samples. (e) Second area processed with Algorithm 1 using only 49% of the original samples, 0.7 rate reduction in each axis.

reduced matrix. Then, we apply Algorithm 1 in order to recon-
struct the images, using the Daubechies-4 wavelet transform as
the sparsifying basis. The algorithm parameters were chosen
as β = 0.9, λ = 0.01, λ̄ = 0.001, and L f = 1, and � is taken

as the Daubechies-4 wavelet transform. The results in Fig. 13
compare the original processing with full-Nyquist samples and
the sub-Nyquist recovery method using only 0.72 = 0.49 of
the original samples in each image. It can be readily seen
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that despite the missing samples, the detailed images are well
reconstructed. In practice, when we control the transmitted
signal, we can increase the signal’s power at the subsampled
bands and increase the effective SNR for better results, as seen
in Section VI-C.

C. Cognitive Radar on Hardware

In order to demonstrate our cognitive SAR abilities, we now
present a real experiment of our SAR hardware prototype.
We integrate our method into a stand-alone system and show
that such processing is feasible in practice using real hard-
ware. Our setup includes a custom made sub-Nyquist receiver
board, which implements sub-Nyquist Xampling and digital
recovery using Algorithm 1. The analog input signal (1) was
synthesized using NI hardware.

The experimental process consists of the following steps.
We begin by using the AWR software, which enables us
to simulate point reflectors with different amplitudes and
spatial distribution. With the AWR software, we simulate
the complete radar scenario, including the pulse transmis-
sion and accurate power loss due to wave propagation in
a realistic medium. The AWR also contains a model of a
realistic RF receiver, which simulates the demodulation of the
RF signal to IF frequencies, and saves the output to a file.
However, since AWR is operated only with stationary radars,
in order to simulate SAR signals, we created an equivalent
kinematic state. We simulated the targets with velocity v, but
in the opposite direction than the one that should be to the
radar. Our simulation is similar in some manners to inverse
SAR (ISAR). In ISAR, the radar is stationary and the targets
are moving. The angular motion of the target with respect to
the radar can be used to form an image of the moving targets.
Differential Doppler shifts of adjacent scatters on a target
are observed and the targets reflectivity function is obtained
through the Doppler frequency spectrum [40].

Next, the generated raw data are loaded to the AWG module,
which produces an analog signal. This signal is amplified using
the NI 5690 low noise amplifier and then routed to our radar
receiver board, which has four parallel input channels. Each
channel samples a different frequency band, in the following
manner: each channel is fed by a local oscillator (LO), which
modulates the desired frequency band of the channel to the
central frequency of a narrow 80-kHz bandwidth bandpass
filter (BPF). A fifth LO, common to all four channels, mod-
ulates the BPF output to a low frequency band. It is then
sampled with a standard low-rate ADC. The LOs are created
using three NI 5781 baseband transceivers, acting as trigger-
based signal generators with a constant and known phase,
controlled by NI Flex Rio FPGAs. The AWG also triggers
the ADC to sample 250 samples in each sampling cycle, per
channel. These samples are fed into the chassis controller and a
MATLAB function is launched that runs Algorithm 1. Pictures
of the system are shown in Fig. 14.

To demonstrate the advantage of our cognitive system in
terms of SNR using hardware, we simulated targets which
construct an ISAR frame of a moving car, which means that
only the car edges can be detected, and thus, the image
is spatially sparse and � is selected to be the identity.

Fig. 14. Sub-Nyquist system. (a) Analog front-end four-channel receiver
board. (b) NI system taken from [11].

We examined three scenarios with different SNRs: noise
free, −10 dB, and −20 dB. In each scenario, we ran two
simulations: a fully sampled signal, according to that required
by RDA, and a partially sampled signal with only 20% of
the coefficients, using our hardware. The algorithm parameters
are: β = 0.85, λ = 0.001, λ̄ = 0.0001, and L f = 25.
For every resulting image, we computed the FSIM index
compared with the original full-Nyquist reconstructed image
without noise. Fig. 15 compares the results. Due to the power
concentration in the sampled bands which helps increase the
effective SNR, the FSIM is larger in our method.

Next, we compared the quality of two images using FSIM:
the output of traditional processing and the image resulting
from our hardware implementing a cognitive system. The
image includes a few single-point reflectors which were ran-
domly located. At every measurement, each of the resulting
images was compared with a ground truth noiseless image
processed using conventional RDA. The received signals were
corrupted with AWGN n(t) with power spectral density N0/2,
bandlimited to Bh . The SNR for a single reflector located at
r0 is defined as

SNR =
1
T

∫ T
0 |σ(r0)h(t)|2dt

N0 Bh
. (38)

Fig. 16 plots the FSIM as a function of SNR. The index values
are in the range of 0 to 1, where 1 indicates perfect similarity.
Evidently, our cognitive system, with a lower number of
samples, outperforms traditional wideband radar transmission
and processing.

Our experimental prototype proves that the sub-Nyquist
methodology described in this paper is feasible in practice.
The proposed recovery method addresses the problem of low-
rate analog sampling, in a way which is feasible with standard
RF hardware. In addition, in terms of SNR, our algorithm
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Fig. 15. SAR experiment using real hardware. Comparing between con-
ventional RDA (full-Nyquist samples) and SAR FISTA (using only 20% of
the Nyquist samples). Each output is compared to the full-Nyquist, noise
free result, using FSIM. (a) Noise free, conventional RDA. FSIM = 1.
(b) Noise free, SAR FISTA. FSIM = 0.9992. (c) SNR = −10 dB, conventional
RDA. FSIM = 0.881. (d) SAR FISTA, FSIM = 0.994. (e) SNR = −20 dB.
Full-Nyquist samples, conventional RDA. FSIM = 0.852. (f) SAR FISTA,
FSIM = 0.982.

Fig. 16. Comparison between traditional and cognitive SAR images using
the FSIM index.

outperforms conventional RDA while using only a portion of
the original samples due to the fact the we concentrated the
energy only in the sampled bands.

VII. CONCLUSION

We presented a new SAR signal processing algorithm which
is equivalent to RDA and showed that the resulting images
are equivalent to those of conventional processing. The new
algorithm exploits the advantages of RDA without the heavy
interpolation stage. This allows to perform processing at the
Nyquist rate, defined with respect to the effective bandwidth
of the signal, which is impossible when interpolation is
performed in time.

Next, we introduced 2-D sub-Nyquist sampling and recov-
ery methods, which employ the techniques of Xampling.
We showed that an image can be reconstructed while sam-
pling only a portion of its bandwidth and after dropping
a large percentage of the transmitted pulses. The gaps in
time and frequency may be exploited in order to achieve
wider coverage during the same CPI, to increase SNR and
to adapt the transmitted signal to the environment, paving
the way to cognitive SAR. Using simulated and real data
sets and a Xampling prototype in hardware, we demonstrated
that our system outperforms conventional SAR and can cope
with practical limitations of computational load and limited
bandwidth.
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