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Abstract— This paper presents a new algorithm, termed trun-
cated amplitude flow (TAF), to recover an unknown vector x
from a system of quadratic equations of the form yi = |�ai, x�|2,
where ai ’s are given random measurement vectors. This problem
is known to be NP-hard in general. We prove that as soon
as the number of equations is on the order of the number of
unknowns, TAF recovers the solution exactly (up to a global
unimodular constant) with high probability and complexity
growing linearly with both the number of unknowns and the
number of equations. Our TAF approach adapts the amplitude-
based empirical loss function and proceeds in two stages. In the
first stage, we introduce an orthogonality-promoting initialization
that can be obtained with a few power iterations. Stage two
refines the initial estimate by successive updates of scalable
truncated generalized gradient iterations, which are able to handle
the rather challenging nonconvex and nonsmooth amplitude-
based objective function. In particular, when vectors x and ai ’s
are real valued, our gradient truncation rule provably eliminates
erroneously estimated signs with high probability to markedly
improve upon its untruncated version. Numerical tests using
synthetic data and real images demonstrate that our initialization
returns more accurate and robust estimates relative to spectral
initializations. Furthermore, even under the same initialization,
the proposed amplitude-based refinement outperforms existing
Wirtinger flow variants, corroborating the superior performance
of TAF over state-of-the-art algorithms.

Index Terms— Nonconvex optimization, phase retrieval,
amplitude-based cost function, orthogonality-promoting ini-
tialization, truncated gradient, linear convergence to global
minimum.

I. INTRODUCTION

CONSIDER a system of m quadratic equations

yi = |�ai , x�|2 , 1 ≤ i ≤ m (1)

where the data vector y := [y1 · · · ym]T and feature vectors
ai ∈ �n or �n are known, whereas the vector x ∈ �n or �n
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is the wanted unknown. When {ai }m
i=1 and/or x are complex,

the magnitudes of their inner-products {�ai , x�}m
i=1 are given

but phase information is lacking; in the real case only the
signs of {�ai , x�}m

i=1 are unknown. Assuming that the system
of quadratic equations in (1) admits a unique solution x (up to
a global unimodular constant), our objective is to reconstruct
x from m phaseless quadratic equations, or equivalently,
to recover the missing signs or phases of {�ai , x�}m

i=1 under
real- or complex-valued settings. It has been established that
m ≥ 2n−1 or m ≥ 4n−4 generic measurements {(ai ; yi )}m

i=1
as in (1) suffice for uniquely determining an n-dimensional
real-valued or complex-valued vector x [1], [2], respectively,
while the former with m = 2n − 1 has also been shown to be
necessary [1], [3].

The problem in (1) constitutes an instance of noncon-
vex quadratic programming, that is generally known to be
NP-hard [4]. Specifically for real-valued vectors {ai } and x,
problem (1) can be understood as a combinatorial optimization
since one seeks a series of signs {si = ±1}m

i=1, such that the
solution to the system of linear equations �ai , x� = siψi ,
where ψi := √

yi , obeys the given quadratic system. Evidently,
there are a total of 2m different combinations of {si }m

i=1, among
which only two lead to x up to a global sign. The complex
case becomes even more complicated, where instead of a set of
signs {si }m

i=1, one must determine a collection of unimodular
complex scalars {σi ∈ �}m

i=1. Special cases with ai > 0 (entry-
wise inequality), x2

i = 1, and yi = 0, 1 ≤ i ≤ m correspond
to the so-called stone problem [5, Section 3.4.1], [6].

In many fields of physical sciences and engineering,
the problem of recovering the phase from intensity- or
magnitude-only measurements is commonly referred to as
phase retrieval [7]–[9]. Relevant application domains include
X-ray crystallography [10], optics [11], array and high-power
coherent diffractive imaging [12], [13], astronomy [14], and
microscopy [15]. In these settings, due to physical limita-
tions, optical sensors and detectors such as charge-coupled
device (CCD) cameras, photosensitive films, and human eyes
can record only the (squared) modulus of the Fresnel or
Fraunhofer diffraction pattern, while losing the phase of
the incident light striking the object. It has been shown
that reconstructing a discrete, finite-duration signal from its
Fourier transform magnitudes is generally NP-complete [16].
Even checking quadratic feasibility (i.e., whether a solu-
tion to a given quadratic system exists or not) is itself an
NP-hard problem [17, Theorem 2.6]. Thus, despite its simple
form and practical relevance across various fields, tackling
the quadratic system in (1) is challenging and NP-hard
in general.
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A. Prior Art

Adopting the least-squares criterion, the task of recov-
ering x from data yi observed in additive white Gaussian
noise (AWGN) can be recast as that of minimizing the
intensity-based empirical loss [18]

minimize
z∈�n/�n

f (z) := 1

2m

m∑

i=1

(
yi − |�ai , z�|2

)2
. (2)

An alternative is to consider an amplitude-based loss, in which
ψi is observed instead of yi in AWGN [7], [19]

minimize
z∈�n/�n

h(z) := 1

2m

m∑

i=1

(
ψi − |�ai , z�|)2. (3)

Unfortunately, the presence of quadratic terms in (2) or the
modulus in (3) renders the corresponding objective function
nonconvex. Minimizing nonconvex objectives, which may
exhibit many stationary points, is in general NP-hard [20].
In fact, even checking whether a given point is a local
minimum or establishing convergence to a local minimum
turns out to be NP-complete [20].

In the classical discretized one-dimensional (1D) phase
retrieval, the amplitude vector ψ corresponds to the n-point
Fourier transform of the n-dimensional signal x [21]. It has
been shown based on spectral factorization that in general there
is no unique solution to 1D phase retrieval, even if we disre-
gard trivial ambiguities [22]. To overcome this ill-posedness,
several approaches have been suggested. One possibility is
to assume additional constraints on the unknown signal such
as sparsity [13], [23]–[25]. Other approaches rely on intro-
ducing redundancy into the measurements using for exam-
ple, the short-time Fourier transform, or masks [26], [27].
Finally, recent works assume random measurements (e.g.,
Gaussian {ai } designs) [6], [8], [18], [25], [28]–[30]. Hence-
forth, this paper focuses on random measurements {ψi }
obtained from independently and identically distributed (i.i.d.)
Gaussian {ai } designs.

Existing approaches to solving (2) (or related ones using
the Poisson likelihood; see, e.g., [6]) or (3) fall under two
categories: nonconvex and convex ones. Popular nonconvex
solvers include alternating projection such as Gerchberg-
Saxton [31] and Fineup [7], AltMinPhase [28], (Truncated)
Wirtinger flow (WF/TWF) [6], [18], [32], and Karzmarz vari-
ants [33] as well as trust-region methods [34]. Inspired by WF,
other relevant judiciously initialized counterparts have also
been developed for faster semidefinite optimization [35], [36],
blind deconvolution [37], and matrix completion [38]. Convex
counterparts on the other hand rely on the so-called matrix-
lifting technique or Shor’s semidefinite relaxation to obtain
the solvers abbreviated as PhaseLift [29], PhaseCut [39], and
CoRK [40]. Further approaches dealing with noisy or sparse
phase retrieval are discussed in [24], [31], and [42]–[45].

In terms of sample complexity, it has been proven that1

O(n) noise-free random measurements suffice for uniquely
determining a general signal [25]. It is also self-evident

1The notation φ(n) = O(g(n)) means that there is a constant c > 0 such
that |φ(n)| ≤ c|g(n)|.

that recovering a general n-dimensional x requires at least
O(n) measurements. Convex approaches enable exact recovery
from the optimal bound O(n) of noiseless Gaussian mea-
surements [45]; they are based on solving a semidefinite
program with a matrix variable of size n × n, thus incur-
ring worst-case computational complexity on the order of
O(n4.5) [39] that does not scale well with the dimension n.
Upon exploiting the underlying problem structure, O(n4.5)
can be reduced to O(n3) [39]. Solving for vector variables,
nonconvex approaches achieve significantly improved compu-
tational performance. Using formulation (3) and adopting a
spectral initialization commonly employed in matrix comple-
tion [46], AltMinPhase establishes exact recovery with sample
complexity O(n log3 n) under i.i.d. Gaussian {ai } designs with
resampling [28].

Concerning formulation (2), WF iteratively refines the spec-
tral initial estimate by means of a gradient-like update, which
can be approximately interpreted as a stochastic gradient
descent variant [18], [32]. The follow-up TWF improves
upon WF through a truncation procedure to separate gradient
components of excessively extreme (large or small) sizes.
Likewise, due to the heavy tails present in the initialization
stage, data {yi }m

i=1 are pre-screened to yield improved ini-
tial estimates in the so-termed truncated spectral initializa-
tion method [6]. WF allows exact recovery from O(n log n)
measurements in O(mn2 log(1/�)) time or flops to yield an
�-accurate solution for any given � > 0 [18], while TWF
advances these to O(n) measurements and O(mn log(1/�))
time [6]. Interestingly, the truncation procedure in the gradient
stage turns out to be useful in avoiding spurious stationary
points in the context of nonconvex optimization, as will be
justified in Section IV by the numerical comparison between
our amplitude flow (AF) algorithms with or without the
judiciously designed truncation rule. It is also worth men-
tioning that when m ≥ Cn log3 n for some sufficiently
large positive constant C , the objective function in (3) is
shown to admit benign geometric structure that allows certain
iterative algorithms (e.g., trust-region methods) to efficiently
find a global minimizer with random initializations [34].
Hence, the challenge of solving systems of random quadratic
equations lies in the case where a near-optimal number of
equations are involved, e.g., m = 2n − 1 in the real-valued
setting.

Although achieving a linear (in the number of unknowns
n) sample and computational complexity, the state-of-the-art
TWF approach still requires at least 4n ∼ 5n equations to yield
stable empirical success rate (e.g., ≥ 99%) under the noiseless
real-valued Gaussian model [6, Section 3], which is more
than twice the known information-limit of m = 2n − 1 [1].
Similar though less obvious results hold in the complex-valued
scenario. While the truncated spectral initialization in [6]
improves upon the “plain-vanilla” spectral initialization, its
performance still suffers when the number of measurements
is relatively small and its advantage (over the untruncated
one) diminishes as the number of measurements grows; see
more details in Figure 4 and Section II. Furthermore, exten-
sive numerical and experimental validation confirms that the
amplitude-based cost function performs significantly better



WANG et al.: SOLVING SYSTEMS OF RANDOM QUADRATIC EQUATIONS VIA TRUNCATED AMPLITUDE FLOW 775

than the intensity-based one [47]; that is, formulation (3)
is superior to (2). Hence, besides enhancing initialization,
markedly improved performance in the gradient stage can be
expected by re-examining the amplitude-based cost function
and incorporating judiciously designed gradient regularization
rules.

B. This Paper

Along the lines of suitably initialized nonconvex
schemes [6], [18] and inspired by [47], the present paper
develops a linear-time (i.e., the computational time linearly
in both dimensions m and n) algorithm to minimize the
amplitude-based cost function, referred to as truncated
amplitude flow (TAF). Our approach provably recovers an
n-dimensional unknown signal x exactly from a near-optimal
number of noiseless random measurements, while also
featuring near-perfect statistical performance in the noisy
setting. TAF operates in two stages: In the first stage,
we introduce an orthogonality-promoting initialization that
is computable using a few power iterations. Stage two
refines the initial estimate by successive updates of truncated
generalized gradient iterations.

Our initialization is built upon the hidden orthogonal-
ity characteristics of high-dimensional random vectors [48],
which is in contrast to spectral alternatives originating from
the strong law of large numbers (SLLN) [6], [13], [18].
Furthermore, one challenge of phase retrieval lies in recon-
structing the signs/phases of �ai , x� in the real- or complex-
valued settings. Our TAF’s refinement stage leverages a simple
yet effective regularization rule to eliminate the erroneously
estimated phases in the generalized gradient components with
high probability. Simulated tests corroborate that the pro-
posed initialization returns more accurate and robust initial
estimates than its spectral counterparts in the noiseless and
noisy settings. In addition, our TAF (with gradient trunca-
tion) markedly improves upon its “plain-vanilla” version AF.
Empirical results demonstrate the advantage of TAF over its
competing alternatives.

Focusing on the same amplitude-based cost function,
an independent work develops the so-termed reshaped
Wirtinger flow (RWF) algorithm [49], which coincides
with amplitude flow (AF). A slightly modified vari-
ant of spectral initialization [18] is used to obtain an
initial guess, followed by a sequence of non-truncated
generalized gradient iterations [49]. Numerical compar-
isons show that the proposed TAF method performs bet-
ter than RWF especially when the number of equations
approaches the information-theoretic limit (2n − 1 in the real
case).

The remainder of this paper is organized as follows. The
amplitude-based cost function, as well as the two algorithmic
stages is described and analyzed in Section II. Section III
summarizes the TAF algorithm and establishes its theoret-
ical performance. Extensive simulated tests comparing TAF
with Wirtinger-based approaches are presented in Section IV.
Finally, main proofs are given in Section V, while technical
details are deferred to the Appendix.

II. TRUNCATED AMPLITUDE FLOW

In this section, the two stages of our TAF algorithm are
detailed. First, the challenge of handling the nonconvex and
nonsmooth amplitude-based cost function is analyzed, and
addressed by a carefully designed gradient regularization
rule. Limitations of (truncated) spectral initializations are
then pointed out, followed by a simple motivating example
to inspire our orthogonality-promoting initialization method.
For concreteness, the analysis will focus on the real-valued
Gaussian model with x ∈ �

n and i.i.d. design vectors
ai ∈ �n ∼ N (0, In). Numerical experiments using the
complex-valued Gaussian model with x ∈ �n and i.i.d. ai ∼
CN (0, In) := N (0, In/2) + jN (0, In/2) will be discussed
briefly.

To start, let us define the Euclidean distance of any estimate
z to the solution set: dist(z, x) := min {	z + x	 , 	z − x	} for
real-valued signals, and dist(z, x) := minimizeφ∈[0,2π)	z −
xeiφ	 for complex-valued ones [18], where 	·	 denotes the
Euclidean norm. Define also the indistinguishable global phase
constant in the real-valued setting as

φ(z) :=
{

0, 	z − x	 ≤ 	z + x	,
π, otherwise.

(4)

Henceforth, fixing x to be any solution of the given quadratic
system (1), we always assume that φ (z) = 0; otherwise,
z is replaced by e− jφ(z) z, but for simplicity of presentation,
the constant phase adaptation term e− jφ(z) will be dropped
whenever it is clear from the context.

A. Truncated Generalized Gradient Stage

For brevity, collect all vectors {ai }m
i=1 in the m × n matrix

A := [a1 · · · am]T , and all amplitudes {ψi }m
i=1 to form the

vector ψ := [ψ1 · · · ψm ]T . One can rewrite the amplitude-
based cost function in matrix-vector representation as

minimize
z∈�n

�(z) := 1

m

m∑

i=1

�i (z) = 1

2m

∥∥ψ − |Az|∥∥2
(5)

where �i (z) := 1
2 (ψi − |aTi z|)2 with the superscript T (H)

denoting (Hermitian) transpose; and with a slight abuse of
notation, |Az| := [|aT1 z| · · · |aTm z|]T . Apart from being
nonconvex, �(z) is also nondiffentiable, hence challenging
the algorithmic design and analysis. In the presence of
smoothness or convexity, convergence analysis of iterative
algorithms relies either on continuity of the gradient (ordinary
gradient methods) [50], or, on the convexity of the objective
functional (subgradient methods) [51]. Although subgradient
methods have found widespread applicability in nonsmooth
optimization, they are limited to the class of convex func-
tions [52, Page 4]. In nonconvex nonsmooth optimization
settings, the so-termed generalized gradient broadens the
scope of the (sub)gradient to the class of almost everywhere
differentiable functions [53].

Consider a continuous but not necessarily differentiable
function h(z) ∈ � defined over an open region S ⊆ �n .
We then have the following definition.
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Definition 1 [54, Definition 1.1]: The generalized gradient
of a function h at z, denoted by ∂h, is the convex hull of the set
of limits of the form lim ∇h(zk), where zk → z as k → +∞,
i.e.,

∂h(z) := conv
{

lim
k→+∞ ∇h(zk) : zk → z, zk /∈ G�

}

where the symbol ‘conv’ signifies the convex hull of a set,
and G� denotes the set of points in S at which h fails to be
differentiable.

Having introduced the notion of a generalized gradient,
and with t denoting the iteration count, our approach to
solving (5) amounts to iteratively refining the initial guess z0
(returned by the orthogonality-promoting initialization method
to be detailed shortly) by means of the ensuing truncated
generalized gradient iterations

zt+1 = zt − μt ∂�tr(zt). (6)

Here, μt > 0 is the step size, and the (truncated) generalized
gradient ∂�tr(zt ) is given by

∂� tr(zt ) := 1

m

∑

i∈It+1

(
aTi zt − ψi

aTi zt

|aTi zt |

)
ai (7)

for some index set It+1 ⊆ [m] := {1, 2, . . . ,m} to be designed

next. The convention
aTi zt

|aTi zt | := 0 is adopted, if aTi zt = 0. It is

easy to verify that the update in (6) with a full generalized
gradient in (7) monotonically decreases the objective function
value in (5).

Any stationary point z∗ of �(z) can be characterized by the
following fixed-point equation [55], [56]

AT
(

Az∗ − ψ � Az∗

|Az∗|
)

= 0 (8)

for entry-wise product �, which may have many solutions.
Clearly, if z∗ is a solution, then so is −z∗. Furthermore, both
solutions/global minimizers x and −x satisfy (8) due to the
fact that Ax −ψ� Ax

|Ax| = 0. Considering any stationary point
z∗ �= ±x that has been adapted such that φ(z∗) = 0, one can
write

z∗ = x + (AT A)−1 AT
[
ψ �

(
Az∗

|Az∗| − Ax
|Ax|
)]
. (9)

Thus, a necessary condition for z∗ �= x in (9) is Az∗
|Az∗| �= Ax

|Ax| .
Expressed differently, there must be sign differences between
Az∗ and Ax whenever one gets stuck with an undesirable
stationary point z∗. Inspired by this observation, it is reason-
able to devise algorithms that can detect and separate out the
generalized gradient components corresponding to mistakenly

estimated signs

{
aTi zt

|aTi zt |

}
along the iterates {zt}.

Precisely, if zt and x lie at different sides of the hyperplane
aTi z = 0, then the sign of aTi zt will be different than that of

aTi x; that is,
aTi x

|aTi x| �= aTi z

|aTi z| . Specifically, one can re-write the

Fig. 1. Geometric description of the proposed truncation rule on the i-th

gradient component involving aTi x = ψi , where the red dot denotes the
solution x and the black one is the origin. Hyperplanes aTi z = ψi and
aTi z = 0 (of z ∈ �n ) passing through points z = x and z = 0, respectively,
are shown.

i -th generalized gradient component as

∂�i (z) =
(

aTi z − ψi
aTi z

|aTi z|
)

ai

=
(

aTi z − |aTi x| aTi x

|aTi x|
)

ai +
( aTi x

|aTi x| − aTi z

|aTi z|
)
ψi ai

= ai aTi (z − x)+
( aTi x

|aTi x| − aTi z

|aTi z|
)
ψi ai

= ai aTi h +
( aTi x

|aTi x| − aTi z

|aTi z|
)
ψi ai

︸ ︷︷ ︸
�= ri

, (10)

where h := z − x. Intuitively, the SLLN asserts that aver-
aging the first term ai aTi h over m instances approaches
h, which qualifies it as a desirable search direction. How-
ever, certain generalized gradient entries involve erroneously
estimated signs of aTi x; hence, nonzero ri terms exert
a negative influence on the search direction h by drag-
ging the iterate away from x, and they typically have siz-
able magnitudes as will be further elaborated in Remark 2
shortly.

Figure 1 demonstrates this from a geometric perspective,
where the black dot denotes the origin, and the red dot
the solution x; here, −x is omitted for ease of exposition.
Assume without loss of generality that the i -th missing sign
is positive, i.e., aTi x = ψi . As will be demonstrated in
Theorem 1, with high probability, the initial estimate returned
by our orthogonality-promoting method obeys 	h	 ≤ ρ	x	
for some sufficiently small constant ρ > 0. Therefore, all
points lying on or within the circle (or sphere in high-
dimensional spaces) in Fig. 1 satisfy 	h	 ≤ ρ	x	. If aTi z = 0
does not intersect with the circle, then all points within the

circle satisfy
aTi z

|aTi z| = aTi x

|aTi x| qualifying the i -th generalized

gradient as a desirable search (descent) direction in (10).
If, on the other hand, aTi z = 0 intersects the circle, then points
lying on the same side of aTi z = 0 with x in Fig. 1 admit
correctly estimated signs, while points lying on different sides

of aTi z = 0 with x would have
aTi z

|aTi z| �= aTi x

|aTi x| . This gives

rise to a corrupted search direction in (10), implying that
the corresponding generalized gradient component should be
eliminated.
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Nevertheless, it is difficult or even impossible to check
whether the sign of aTi zt equals that of aTi x. Fortunately,
as demonstrated in Fig. 1, most spurious generalized gradient
components (those corrupted by nonzero ri terms) hover
around the watershed hyperplane aTi zt = 0. For this reason,
TAF includes only those components having zt sufficiently
away from its watershed, i.e.,

It+1 :=
{

1 ≤ i ≤ m

∣∣∣∣∣
|aTi zt |
|aTi x| ≥ 1

1 + γ

}
, t ≥ 0 (11)

for an appropriately preselected threshold γ > 0. To be
more specific, the light yellow color-coded area denoted by δ1

i
in Fig. 1 signifies the truncation region of z: if z ∈ δ1

i satisfies
the condition in (11), then the corresponding generalized
gradient component ∂�i (z;ψi ) will be thrown out. However,
the truncation rule may mis-reject certain ‘good’ gradients if zt

lies in the upper part of δ1
i ; ‘bad’ gradients may be missed as

well if zt belongs to the spherical cap δ2
i . Fortunately, as we

will show in Lemmas 5 and 6, the probabilities of misses
and mis-rejections are provably negligible, hence precluding
a noticeable influence on the descent direction. Although not
perfect, it turns out that such a regularization rule succeeds in
detecting and eliminating most corrupted generalized gradient
components with high probability, therefore maintaining a
well-behaved search direction.

Regarding our gradient truncation or regularization rule
in (11), two observations are in order.

Remark 1: The truncation rule in (11) includes only
relatively sizable aTi zt ’s, hence enforcing the smoothness
of the (truncated) objective function �tr(zt ) at zt . There-
fore, the truncated generalized gradient ∂�tr(z) employed
in (6) and (7) boils down to the ordinary gradient or
Wirtinger derivative ∇�tr(zt ) in the real- or complex-valued
case.

Remark 2: As will be elaborated in (80) and (82), the quan-
tities (1/m)

∑m
i=1 ψi and maxi∈[m] ψi in (10) have magnitudes

on the order of
√
π/2	x	 and

√
m	x	, respectively. In con-

trast, Proposition 1 asserts that the first term in (10) obeys
	ai aTi h	 ≈ 	h	 ≤ ρ	x	 for a sufficiently small ρ � √

π/2.
Thus, spurious generalized gradient components typically have
large magnitudes. It turns out that our gradient regularization
rule in (11) also throws out gradient components of large sizes.
To see this, for all z ∈ �n such that 	h	 ≤ ρ	x	 in (28), one
can re-express

m∑

i=1

∂�i (z) =
m∑

i=1

(
1 − |aTi x|

|aTi z|

)

︸ ︷︷ ︸
�= βi

ai aTi z (12)

for some weight βi ∈ [−∞, 1) assigned to the direction
ai aTi z ≈ z due to �[ai aTi ] = In . Then ∂�i (z) of an
excessively large size corresponds to a large |aTi x|/|aTi z|
in (12), or equivalently a small |aTi z|/|aTi x| in (11), thus
causing the corresponding ∂�i (z) to be eliminated according
to the truncation rule in (11).

Our truncation rule deviates from the intuition behind TWF,
which throws away gradient components corresponding to

large-size {|aTi zt |/|aTi x|} in (11). As demonstrated by our
analysis in Appendix VI-E, it rarely happens that a gradi-
ent component having large |aTi zt |/|aTi x| yields an incor-
rect sign of aTi x under a sufficiently accurate initialization.
Moreover, discarding too many samples (those for which
i /∈ Tt+1 in TWF [6, Section 2.1]) introduces large bias
into (1/m)

∑m
i∈Tt+1

ai aTi h, so that TWF does not work well
when m/n is close to the information-limit of m/n ≈ 2. In
sharp contrast, the motivation and objective of our trunca-
tion rule in (11) is to directly sense and eliminate gradient
components that involve mistakenly estimated signs with high
probability.

To demonstrate the power of TAF, numerical tests com-
paring all stages of (T)AF and (T)WF will be presented
throughout our analysis. The basic test settings used in this
paper are described next. For fairness, all pertinent algorithmic
parameters involved in all compared schemes were set to their
default values. Simulated estimates are averaged over 100
independent Monte Carlo (MC) realizations without mention-
ing this explicitly each time. Performance of different schemes
is evaluated in terms of the relative root mean-square error,
i.e.,

Relative error := dist(z, x)
	x	 , (13)

and the success rate among 100 trials, where a success is
claimed for a trial if the returned estimate incurs a relative
error less than 10−5 [6]. Simulated tests under both noiseless
and noisy Gaussian models are performed, corresponding to
ψi = ∣∣aHi x + ηi

∣∣ [28] with ηi = 0 and ηi ∼ N (0, σ 2),
respectively, with i.i.d. ai ∼ N (0, In) or ai ∼ CN (0, In).

Numerical comparison depicted in Fig. 2 using the noiseless
real-valued Gaussian model suggests that even when starting
with the same truncated spectral initialization, TAF’s refine-
ment outperforms those of TWF and WF, demonstrating the
merits of our gradient update rule over TWF/WF. Furthermore,
comparing TAF (gradient iterations in (6)-(7) with truncation
in (11) initialized by the truncated spectral estimate) and
AF (gradient iterations in (6)-(7) initialized by the truncated
spectral estimate) corroborates the power of the truncation rule
in (11).

B. Orthogonality-Promoting Initialization Stage

Leveraging the SLLN, spectral initialization methods esti-
mate x as the (appropriately scaled) leading eigenvector of
Y := 1

m

∑
i∈T0

yi ai aTi , where T0 is an index set accounting
for possible data truncation. As asserted in [6], each summand
(aTi x)2ai aTi follows a heavy-tail probability density function
lacking a moment generating function. This causes major
performance degradation especially when the number of mea-
surements is small. Instead of spectral initializations, we shall
take another route to bypass this hurdle. To gain intuition
into our initialization, a motivating example is presented first
that reveals fundamental characteristics of high-dimensional
random vectors.

Fixing any nonzero vector x ∈ �n , generate data ψi =
|�ai , x�| using i.i.d. ai ∼ N (0, In), 1 ≤ i ≤ m. Evaluate the
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Fig. 2. Empirical success rate for WF, TWF, AF, and TAF with the
same truncated spectral initialization under the noiseless real-valued Gaussian
model.

Fig. 3. Ordered squared normalized inner-product for pairs x and ai , ∀i ∈ [m]
with m/n varying by 2 from 2 to 10, and n = 1, 000.

following squared normalized inner-product

cos2 θi := |�ai , x�|2
	ai	2	x	2 = ψ2

i

	ai	2	x	2 , 1 ≤ i ≤ m (14)

where θi is the angle between vectors ai and x. Consider
ordering all {cos2 θi } in an ascending fashion, and collec-
tively denote them as ξ := [cos2 θ[m] · · · cos2 θ[1]]T with
cos2 θ[1] ≥ · · · ≥ cos2 θ[m]. Figure 3 plots the ordered entries
in ξ for m/n varying by 2 from 2 to 10 with n = 1, 000.
Observe that almost all {ai } vectors have a squared normalized
inner-product with x smaller than 10−2, while half of the
inner-products are less than 10−3, which implies that x is
nearly orthogonal to a large number of ai ’s.

This example corroborates the folklore that random vec-
tors in high-dimensional spaces are almost always nearly
orthogonal to each other [48]. This inspired us to pursue an
orthogonality-promoting initialization method. Our key idea
is to approximate x by a vector that is most orthogonal to
a subset of vectors {ai }i∈I0 , where I0 is an index set with
cardinality |I0| < m that includes indices of the smallest

squared normalized inner-products
{
cos2 θi

}
. Since 	x	

appears in all inner-products, its exact value does not influ-
ence their ordering. Henceforth, we assume with no loss of
generality that 	x	 = 1.

Using data {(ai ; ψi )}, evaluate cos2 θi according to (14) for
each pair x and ai . Instrumental for the ensuing derivations is
noticing from the inherent near-orthogonal property of high-
dimensional random vectors that the summation of cos2 θi over
all indices i ∈ I0 should be very small; rigorous justification
is deferred to Section V. Therefore, the sum

∑
i∈I0

cos2 θi is
also small, or according to (14), equivalently,

∑

i∈I0

|�ai , x�|2
	ai	2	x	2 = x

	x	
(∑

i∈I0

ai aTi
	ai	2

) x
	x	 (15)

is small. Therefore, a meaningful approximation of x can be
obtained by minimizing the former with x replaced by the
optimization variable z, namely

minimize	z	=1
zT

⎛

⎝ 1

|I0|
∑

i∈I0

ai aTi
	ai	2

⎞

⎠ z. (16)

This amounts to finding the smallest eigenvalue and the

associated eigenvector of Y0 := 1
|I0|
∑

i∈I0

ai aTi
	ai	2 � 0 (the

symbol � means positive semidefinite). Finding the smallest
eigenvalue calls for eigen-decomposition or matrix inversion,
each typically requiring computational complexity on the order
of O(n3). Such a computational burden may be intractable
when n grows large. Applying a standard concentration result,
we show how the computation can be significantly reduced.

Since ai/	ai	 has unit norm and is uniformly distributed
on the unit sphere, it is uniformly spherically distributed.2

Spherical symmetry implies that ai/	ai	 has zero mean and
covariance matrix In/n [57]. Appealing again to the SLLN,

the sample covariance matrix 1
m

∑m
i=1

ai aTi
	ai	2 approaches In/n

as m grows. Simple derivations lead to

∑

i∈I0

ai aTi
	ai	2 =

m∑

i=1

ai aTi
	ai	2 −

∑

i∈�I0

ai aTi
	ai	2 �

m

n
In −

∑

i∈�I0

ai aTi
	ai	2

(17)

where �I0 is the complement of I0 in the set [m]. Define
S := [a1/	a1	 · · · am/	am	]T ∈ �m×n , and form �S0 by
removing the rows of S whose indices belong to I0. Seeking
the smallest eigenvalue of Y0 = 1

|I0| ST
0 S0 then reduces to

computing the largest eigenvalue of the matrix

�Y0 := 1

|�I0|
�ST

0
�S0, (18)

namely,

z̃0 := arg max	z	=1
zT �Y0 z (19)

which can be efficiently solved via simple power iterations.

2A random vector z ∈ �n is said to be spherical (or spherically symmetric)
if its distribution does not change under rotations of the coordinate system;
that is, the distribution of P z coincides with that of z for any given orthogonal
n × n matrix P .
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When 	x	 �= 1, the estimate z̃0 from (19) is scaled so that
its norm matches approximately that of x, which is estimated

as
√

1
m

∑m
i=1 yi , or more accurately

√
n
∑m

i=1 yi∑m
i=1 	ai	2 . To motivate

these estimates, using the rotational invariance property of
normal distributions, it suffices to consider the case where
x = 	x	e1, with e1 denoting the first canonical vector of �n .
Indeed,

∣∣∣
〈
ai ,

x
	x	

〉∣∣∣
2 = |�ai ,Ue1�|2

=
∣∣∣
〈
UT ai , e1

〉∣∣∣
2 d= |�ai , e1�|2 (20)

where U ∈ �n×n is some unitary matrix, and
d= means that

terms on both sides of the equality have the same distribution.
It is then easily verified that

1

m

m∑

i=1

yi = 1

m

m∑

i=1

a2
i,1	x	2 ≈ 	x	2, (21)

where the last approximation arises from the following con-
centration result (1/m)

∑m
i=1 a2

i,1 ≈ �[a2
i,1] = 1 using again

the SLLN. Regarding the second estimate, one can rewrite its
square as

n
∑m

i=1 yi∑m
i=1 	ai	2 = 1

m

m∑

i=1

yi · n

(1/m) ·∑m
i=1 	ai	2 . (22)

It is clear from (21) that the first term on the right hand side
of (22) approximates 	x	2. The second term approaches 1
because the denominator (1/m) ·∑m

i=1 	ai	2 ≈ n appealing
to the SLLN again and the fact that ai ∼ N (0, In). For
simplicity, we choose to work with the first norm estimate

z0 =
√∑m

i=1 yi

m
z̃0. (23)

It is worth highlighting that, compared to the matrix

Y := 1
m

∑
i∈T0

yi ai aTi used in spectral methods, our con-
structed matrix �Y0 in (18) does not depend on the observed
data {yi } explicitly; the dependence is only through the
choice of the index set I0. The novel orthogonality-promoting
initialization thus enjoys two advantages over its spectral
alternatives: a1) it does not suffer from heavy-tails of the
fourth-order moments of Gaussian {ai } vectors common in
spectral initialization schemes; and, a2) it is less sensitive to
noisy and corrupted data.

Figure 4 compares three different initialization schemes
including spectral initialization [18], [28], truncated spectral
initialization [6], and the proposed orthogonality-promoting
initialization. The relative error of their returned initial esti-
mates versus the measurement/unknown ratio m/n is depicted
under the noiseless and noisy real-valued Gaussian models,
where x ∈ �1,000 was randomly generated and m/n increases
by 2 from 2 to 20. Clearly, all schemes enjoy improved
performance as m/n increases in both noiseless and noisy
settings. The orthogonality-promoting initialization achieves
consistently superior performance over its competing spectral
alternatives under both noiseless and noisy Gaussian data.
Interestingly, the spectral and truncated spectral schemes

Fig. 4. Relative error of initial estimates versus m/n for: i) the spectral
method [18]; ii) the truncated spectral method [6]; and iii) our orthogonality-
promoting method with n = 1, 000, and m/n varying by 2 from 2 to 20. Top:
Noiseless real-valued Gaussian model with x ∼ N (0, In), ai ∼ N (0, In),
and ηi = 0. Bottom: Noisy real-valued Gaussian model with x ∼ N (0, In),
ai ∼ N (0, In), and σ 2 = 0.22	x	2.

exhibit similar performance when m/n becomes sufficiently
large (e.g., m/n ≥ 14 in the noiseless setup or m/n ≥ 16
in the noisy one). This confirms that the truncation helps
only if m/n is relatively small. Indeed, the truncation discards
measurements of excessively large or small sizes emerging
from the heavy tails of the data distribution. Hence, its advan-
tage over the non-truncated spectral initialization diminishes
as the number of measurements increases, which gradually
straightens out the heavy tails.

III. MAIN RESULTS

The TAF algorithm is summarized in Algorithm 1. Default
values are set for pertinent algorithmic parameters. Assuming
independent data samples {(ai ;ψi )} drawn from the noiseless
real-valued Gaussian model, the following result establishes
the theoretical performance of TAF.

Theorem 1 (Exact recovery): Let x ∈ �
n be an arbitrary

signal vector, and consider (noise-free) measurements ψi =
|aTi x|, in which ai

i.i.d .∼ N (0, In), 1 ≤ i ≤ m. Then with
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Algorithm 1 Truncated Amplitude Flow (TAF)
1: Input: Amplitude data {ψi := |�ai , x�|}m

i=1 and design
vectors {ai }m

i=1; the maximum number of iterations T ;
by default, take constant step sizes μ = 0.6 or 1 for
the real- or complex-valued models, truncation thresholds
|�I0| = � 1

6 m�, and γ = 0.7.
2: Set �I0 as the set of indices corresponding to the |�I0| largest

values of {ψi/	ai	}.
3: Initialize z0 to

√∑m
i=1 ψ

2
i

m z̃0, where z̃0 is the normalized

leading eigenvector of �Y0 := 1
|�I0|
∑

i∈�I0

ai aTi
	ai	2 .

4: Loop: for t = 0 to T − 1

zt+1 = zt − μ

m

∑

i∈It+1

(
aTi zt − ψi

aTi zt

|aTi zt |

)
ai

where It+1 :=
{

1 ≤ i ≤ m
∣∣∣
∣∣aTi zt

∣∣ ≥ 1
1+γ ψi

}
.

5: Output: zT .

probability at least 1 − (m + 5)e−n/2 − e−c0m − 1/n2 for some
universal constant c0 > 0, the initialization z0 returned by the
orthogonality-promoting method in Algorithm 1 satisfies

dist(z0, x) ≤ ρ 	x	 (24)

with ρ = 1/10 (or any sufficiently small positive constant),
provided that m ≥ c1|�I0| ≥ c2n for some numerical constants
c1, c2 > 0, and sufficiently large n. Furthermore, choosing
a constant step size μ ≤ μ0 along with a truncation level
γ ≥ 1/2, and starting from any initial guess z0 satisfying (24),
successive estimates of the TAF solver (tabulated in Algo-
rithm 1) obey

dist (zt , x) ≤ ρ (1 − ν)t 	x	 , t = 0, 1, 2, . . . (25)

for some 0 < ν < 1, which holds with probability exceeding
1 − (m + 5)e−n/2 − 8e−c0m − 1/n2.

Typical parameter values for TAF in Algorithm 1 are
μ = 0.6, and γ = 0.7. The proof of Theorem 1 is relegated
to Section V. Theorem 1 asserts that: i) TAF reconstructs
the solution x exactly as soon as the number of equations
is about the number of unknowns, which is theoretically order
optimal. Our numerical tests demonstrate that for the real-
valued Gaussian model, TAF achieves a success rate of 100%
when m/n is as small as 3, which is slightly larger than the
information limit of m/n = 2 (Recall that m ≥ 2n − 1 is
necessary for the uniqueness.) This is a significant reduction
in the sample complexity ratio, which is 5 for TWF and 7 for
WF. Surprisingly, TAF also enjoys a success rate of over 50%
when m/n is the information limit 2, which has not yet been
presented for any existing algorithms. See further discussion
in Section IV; and, ii) TAF converges exponentially fast with
convergence rate independent of the dimension n. Specifically,
TAF requires at most O(log (1/�)) iterations to achieve any
given solution accuracy � > 0 (a.k.a., dist(zt , x) ≤ � 	x	),
with iteration cost O(mn). Since the truncation takes time

2The symbol �·� is the ceiling operation returning the smallest integer
greater than or equal to the given number.

Fig. 5. Average relative error of estimates obtained from 100 MC trials using:
i) the spectral method [18], [28]; ii) the truncated spectral method [6]; and
iii) the proposed orthogonality-promoting method on noise-free (solid lines)
and noisy (dotted lines) instances with m/n = 6, and n varying from 500/100
to 10, 000/5, 000 for real-/complex-valued vectors. Top: Real-valued Gaussian
model with x ∼ N (0, In), ai ∼ N (0, In), and σ 2 = 0.22 	x	2. Bottom:
Complex-valued Gaussian model with x ∼ CN (0, In), ai ∼ CN (0, In), and
σ 2 = 0.22 	x	2.

on the order of O(m), the computational burden of TAF per
iteration is dominated by the evaluation of the gradient com-
ponents. The latter involves two matrix-vector multiplications
that are computable in O(mn) flops, namely, Azt yields ut ,
and AT vt the gradient, where vt := ut − ψ � ut|ut | . Hence,
the total running time of TAF is O(mn log(1/�)), which is
proportional to the time taken to read the data O(mn).

In the noisy setting, TAF is stable under additive noise.
To be specific, consider the amplitude-based noisy data model
ψi = |aTi x|+ηi . It can be shown that the truncated amplitude
flow estimates in Algorithm 1 satisfy

dist (zt , x) � (1 − ν)t 	x	 + 1√
m

	η	 , t = 0, 1, . . . (26)

with high probability for all x ∈ �n , provided that m ≥
c1|�I0| ≥ c2n for sufficiently large n and the noise is bounded
	η	∞ ≤ c3 	x	 with η := [η1 · · · ηn]T , where 0 < ν < 1,
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Fig. 6. Relative initialization error of the initialization solving the minimum
eigenvalue problem in (16) via the Lanczos method and by solving the
maximum eigenvalue problem in (19).

and c1, c2, c3 > 0 are some universal constants. The proof
can be directly adapted from those of Theorem 1 above and
[6, Theorem 2].

IV. SIMULATED TESTS

In this section, we provide additional numerical tests evalu-
ating performance of the proposed scheme relative to (T)WF3

and AF. The initial estimate was found based on 50 power iter-
ations, and was subsequently refined by T = 1, 000 gradient-
type iterations in each scheme. The Matlab implementations
of TAF are available at https://gangwg.github.io/TAF/ for
reproducibility.

Top panel in Fig. 5 presents the average relative error
of three initialization methods on a series of noiseless/noisy
real-valued Gaussian problems with m/n = 6 fixed, and n
varying from 500 to 104, while those for the corresponding
complex-valued Gaussian instances are shown in the bot-
tom panel. Clearly, the proposed initialization method returns
more accurate and robust estimates than the spectral ones.
Under the same condition for the real-valued Gaussian model,
Fig. 6 compares the initialization implemented in Algorithm 1
obtained by solving the maximum eigenvalue problem in (19)
with the one obtained by tackling the minimum eigenvalue
problem in (16) via the Lanczos method [58]. When the
number of equations is relatively small (less than about 3n),
the former performs better than the latter. Interestingly though,
the latter works remarkably well and almost halves the error
incurred by the implemented initialization of Algorithm 1 as
soon as the number of equations becomes larger than 4.

To demonstrate the power of TAF, Fig. 7 plots the relative
error of recovering a real-valued signal in logarithmic scale
versus the iteration count under the information-limit of m =
2n−1 noiseless i.i.d. Gaussian measurements [1]. In this case,
since the returned initial estimate is relatively far from the

3Matlab codes directly downloaded from the authors’ websites:
http://statweb.stanford.edu/~candes/TWF/algorithm.html; http://www-bcf.usc.
edu/~soltanol/WFcode.html.

Fig. 7. Relative error versus iteration for TAF for a noiseless real-valued
Gaussian model under the information-limit of m = 2n − 1.

optimal solution (see Fig. 4), TAF converges slowly for the
first 200 iterations or so due to elimination of a significant
amount of ‘bad’ generalized gradient components (corrupted
by mistakenly estimated signs). As the iterate gets more
accurate and lands within a small-size neighborhood of x, TAF
converges exponentially fast to the globally optimal solution.
It is worth emphasizing that no existing method succeeds
in this case. Figure 8 compares the empirical success rate
of three schemes under both real-valued and complex-valued
Gaussian models with n = 103 and m/n varying by 0.1
from 1 to 7, where a success is claimed if the estimate has
a relative error less than 10−5. For real-valued vectors, TAF
achieves a success rate of over 50% when m/n = 2, and
guarantees perfect recovery from about 3n measurements;
while for complex-valued ones, TAF enjoys a success rate
of 95% when m/n = 3.4, and ensures perfect recovery from
about 4.5n measurements.

To demonstrate the stability of TAF, the relative mean-
squared error (MSE)

Relative MSE := dist2(zT , x)
	x	2

as a function of the signal-to-noise ratio (SNR) is plotted for
different m/n values. We consider the noisy model ψi =
|�ai , x�| + ηi with x ∼ N (0, I1,000) and real-valued inde-
pendent Gaussian sensing vectors ai ∼ N (0, I1,000), in which
m/n takes values {6, 8, 10}, and the SNR in dB, given by

SNR := 10 log10

∑m
i=1 |�ai , x�|2
∑m

i=1 η
2
i

is varied from 10 dB to 50 dB. Averaging over 100 inde-
pendent trials, Fig. 9 demonstrates that the relative MSE
for all m/n values scales inversely proportional to SNR,
hence justifying the stability of TAF under bounded additive
noise.

The next experiment evaluates the efficacy of the proposed
initialization method, simulating all schemes initialized by the
truncated spectral initial estimate [6] and the orthogonality-
promoting initial estimate. Evidently, all algorithms except
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Fig. 8. Empirical success rate for WF, TWF, AF, and TAF with n = 1, 000
and m/n varying by 0.1 from 1 to 7. Top: Noiseless real-valued Gaussian
model with x ∼ N (0, In) and ai ∼ N (0, In); Bottom: Noiseless complex-
valued Gaussian model with x ∼ CN (0, In) and ai ∼ CN (0, In).

Fig. 9. Relative MSE versus SNR for TAF when ψi ’s follow the amplitude-
based noisy data model.

WF admit a significant performance improvement when ini-
tialized by the proposed orthogonality-promoting initialization
relative to the truncated spectral initialization. Nevertheless,

Fig. 10. Empirical success rate for WF, TWF, AF, and TAF initialized
by the truncated spectral and the orthogonality-promoting initializations with
n = 1, 000 and m/n varying by 0.1 from 1 to 7.

TAF with our developed orthogonality-promoting initial-
ization enjoys superior performance over all simulated
approaches.

Finally, to examine the effectiveness and scalability of TAF
in real-world conditions, we simulate recovery of the Milky
Way Galaxy image4 X ∈ �1080×1920×3 shown in Fig. 11.
The first two indices encode the pixel locations, and the
third the RGB (red, green, blue) color bands. Consider the
coded diffraction pattern (CDP) measurements with random
masks [6], [18], [27]. Letting x ∈ �n be a vectorization of
a certain band of X and postulating a number K of random
masks, one can further write

ψ(k) = ∣∣F D(k)x
∣∣, 1 ≤ k ≤ K , (27)

where F denotes the n × n discrete Fourier transform matrix,
and D(k) is a diagonal matrix holding entries sampled uni-
formly at random from {1, −1, j, − j} (phase delays) on
its diagonal, with j denoting the imaginary unit. Each D(k)

represents a random mask placed after the object [27]. With
K = 6 masks implemented in our experiment, the total number
of quadratic measurements is m = 6n. Every algorithm was
run independently on each of the three bands. A number 100
of power iterations were used to obtain an initialization, which
was refined by 100 gradient-type iterations. The relative errors
after our orthogonality-promoting initialization and after 100
TAF iterations are 0.6807 and 9.8631 × 10−5, respectively,
and the recovered images are displayed in Fig. 11. In sharp
contrast, TWF reconstructs images of corresponding relative
errors 1.3801 and 1.3409, which are far away from the ground
truth.

Regarding running times in all performed experiments, TAF
converges slightly faster than TWF, while both are markedly
faster than WF. All experiments were implemented using
MATLAB on an Intel CPU @ 3.4 GHz (32 GB RAM)
computer.

4Downloaded from http://pics-about-space.com/milky-way-galaxy.
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Fig. 11. The recovered Milky Way Galaxy images after i) truncated spectral initialization (top); ii) orthogonality-promoting initialization (middle); and
iii) 100 TAF gradient iterations refining the orthogonality-promoting initialization (bottom).

V. PROOFS

This section presents the main ideas behind the proof of
Theorem 1, and establishes a few necessary lemmas. Technical
details are deferred to the Appendix. Relative to WF and
TWF, our objective function involves nonsmoothness and
nonconvexity, rendering the proof of exact recovery of TAF
nontrivial. In addition, our initialization method starts from a
rather different perspective than spectral alternatives, so that
the tools involved in proving performance of our initialization
deviate from those of spectral methods [6], [18], [28]. Part of
our proof is adapted from [6], [18], and [55].

The proof of Theorem 1 consists of two parts: Section V-A
justifies the performance of the proposed orthogonality-
promoting initialization, which essentially achieves any given
constant relative error as soon as the number of equations is
on the order of the number of unknowns, namely, m � n.5

5The notations φ(n) = O(g(n)) or φ(n) � g(n) (respectively, φ(n) � g(n))
means there exists a numerical constant c > 0 such that φ(n) ≤ cg(n), while
φ(n) � g(n) means φ(n) and g(n) are orderwise equivalent.

Section V-B demonstrates theoretical convergence of TAF to
the solution of the quadratic system in (1) at a geometric
rate provided that the initial estimate has a sufficiently small
constant relative error as in (24). The two stages of TAF
can be performed independently, meaning that better initial-
ization methods, if available, could be adopted to initialize
our truncated generalized gradient iterations; likewise, our
initialization may be applied to other iterative optimization
algorithms.

A. Constant Relative Error by Orthogonality-Promoting
Initialization

This section concentrates on proving guaranteed perfor-
mance of the proposed orthogonality-promoting initialization
method, as asserted in the following proposition. An alterna-
tive approach may be found in [59].

Proposition 1: Fix x ∈ �n arbitrarily, and consider the

noiseless case ψi = |aTi x|, where ai
i.i.d .∼ N (0, In), 1 ≤ i ≤

m. Then with probability at least 1− (m +5)e−n/2 − e−c0 m −
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1/n2 for some universal constant c0 > 0, the initialization z0
returned by the orthogonality-promoting method satisfies

dist(z0, x) ≤ ρ 	x	 (28)

for ρ = 1/10 or any positive constant, with the proviso that
m ≥ c1|�I0| ≥ c2n for some numerical constants c1, c2 > 0
and sufficiently large n.

Due to homogeneity in (28), it suffices to consider the case
	x	 = 1. Assume for the moment that 	x	 = 1 is known
and z0 has been scaled such that 	z0	 = 1 in (23). The error

between the employed x’s norm estimate
√

1
m

∑m
i=1 yi and

the unknown norm 	x	 = 1 will be accounted for at the end
of this section. Instrumental in proving Proposition 1 is the
following result, whose proof is provided in Appendix VI-A.

Lemma 1: Consider the noiseless data ψi = |aTi x|, where

ai
i.i.d .∼ N (0, In), 1 ≤ i ≤ m. For any unit vector x ∈ �n,

there exists a vector u ∈ �n with uT x = 0 and 	u	 = 1 such
that

1

2

∥∥∥xxT − z0zT0
∥∥∥

2

F
≤
∥∥�S0u

∥∥2

∥∥�S0x
∥∥2 (29)

for z0 = z̃0, where the unit vector z̃0 is given in (19),
and �S0 is formed by removing the rows of S :=[
a1/ 	a1	 · · · am/ 	am	 ]T ∈ �m×n if their indices do not

belong to the set �I0 specified in Algorithm 1.
We now turn to prove Proposition 1. The first step consists

in upper-bounding the term on the right-hand-side of (29).
Specifically, its numerator is upper bounded, and the denom-
inator lower bounded, as summarized in Lemma 2 and
Lemma 3 next; their proofs are provided in Appendix VI-B
and Appendix VI-C, respectively.

Lemma 2: In the setup of Lemma 1, if |�I0| ≥ c�
1n, then

∥∥�S0u
∥∥2 ≤ 1.01|�I0|/n (30)

holds with probability at least 1 − 2e−cK n, where c�
2 and cK

are some universal constants.
Lemma 3: In the setup of Lemma 1, the following holds

with probability at least 1 − (m + 1)e−n/2 − e−c0m − 1/n2,

∥∥�S0x
∥∥2 ≥ 0.99|�I0|

2.3n

[
1 + log

(
m
/|�I0|

)]
(31)

provided that |�I0| ≥ c�
1n, m ≥ c�

2|�I0|, and m ≥ c�
3n for some

absolute constants c�
1, c�

2, c�
3 > 0, and sufficiently large n.

Leveraging the upper and lower bounds in (30) and (31),
one arrives at

∥∥�S0u
∥∥2

∥∥�S0 x
∥∥2 ≤ 2.4

1 + log
(
m/|�I0|

) �= κ (32)

which holds with probability at least 1−(m+3)e−n/2−e−c0m−
1/n2, assuming that m ≥ c�

1|�I0|, and m ≥ c�
2n, |�I0| ≥ c�

3n
for some absolute constants c�

1, c�
2, c�

3 > 0, and sufficiently
large n.

The bound κ in (32) is meaningful only when the ratio
log(m/|�I0|) > 1.4, i.e., m/|�I0| > 4, because the left hand side
is expressible in terms of sin2 θ , and therefore, enjoys a trivial
upper bound of 1. Henceforth, we will assume m/|�I0| > 4.

Empirically, �m/|�I0|� = 6, or equivalently |�I0| = � 1
6 m� in

Algorithm 1 works well when m/n is relatively small. Note
further that the bound κ can be made arbitrarily small by
letting m/|�I0| be large enough. Without any loss of generality,
let us take κ := 0.001. An additional step leads to the wanted
bound on the distance between z̃0 and x; similar arguments
are found in [18, Section 7.8]. Recall that

|xT z̃0|2 = cos2 θ = 1 − sin2 θ ≥ 1 − κ. (33)

Therefore,

dist2( z̃0, x) ≤ 	z̃0	2 + 	x	2 − 2|xT z̃0|
≤
(

2 − 2
√

1 − κ
)

	x	2

≈ κ 	x	2 . (34)

Coming back to the case in which 	x	 is unknown stated
prior to Lemma 1, the unit eigenvector z̃0 is scaled by an

estimate of 	x	 to yield the initial guess z0 =
√

1
m

∑m
i=1 yi z̃0.

Using the results in [19, Lemma 7.8], the following holds with
high probability

	z0 − z̃0	 = |	z0	 − 1| ≤ (1/20) 	x	 . (35)

Summarizing the two inequalities, we conclude that

dist(z0, x) ≤ 	z0 − z̃0	 + dist( z̃0, x) ≤ (1/10) 	x	 . (36)

The initialization thus obeys dist(z0, x)/	x	 ≤ 1/10 for any
x ∈ �

n with high probability provided that m ≥ c1|�I0| ≥
c2n holds for some universal constants c1, c2 > 0 and a
sufficiently large n.

B. Exact Recovery From Noiseless Data

We now prove that with accurate enough initial estimates,
TAF converges at a geometric rate to x with high probabil-
ity (i.e., the second part of Theorem 1). To be specific, with
initialization obeying (28) in Proposition 1, TAF reconstructs
the solution x exactly in linear time. To start, it suffices
to demonstrate that the TAF’s update rule (i.e., Step 4 in
Algorithm 1) is locally contractive within a sufficiently small
neighborhood of x, as asserted in the following proposition.

Proposition 2 (Local error contraction): Consider the
noise-free measurements ψi = ∣∣aTi x

∣∣ with i.i.d. Gaussian
design vectors ai ∼ N (0, In), 1 ≤ i ≤ m, and fix any
γ ≥ 1/2. There exist universal constants c0, c1 > 0 and
0 < ν < 1 such that with probability at least 1 − 7e−c0m,
the following holds

dist2
(

z − μ

m
∇�tr(z), x

)
≤ (1 − ν)dist2 (z, x) (37)

for all x, z ∈ �n obeying (28) with the proviso that m ≥ c1 n
and that the constant step size μ satisfies 0 < μ ≤ μ0 for
some μ0 > 0.

Proposition 2 demonstrates that the distance of TAF’s
successive iterates to x is monotonically decreasing once
the algorithm enters a small-size neighborhood around x.
This neighborhood is commonly referred to as the basin of
attraction; see further discussions in [6], [19], [33], [37],
and [39]. In other words, as soon as one lands within the basin
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of attraction, TAF’s iterates remain in this region and will be
attracted to x exponentially fast. To substantiate Proposition 2,
recall the local regularity condition, which was first developed
in [18] and plays a fundamental role in establishing linear
convergence to global optimum of nonconvex optimization
approaches such as WF and TWF [6], [18], [30], [32].

Consider the update rule of TAF

zt+1 = zt − μ

m
∇�tr(zt ), t = 0, 1, 2, . . . (38)

where the truncated gradient ∇�tr(zt ) (as carefully justified in
Remark 1) evaluated at some point zt ∈ �n is given by

1

m
∇�tr(zt )

�= 1

m

∑

i∈I

(
aTi zt − ψi

aTi zt

|aTi zt |

)
ai .

The truncated gradient ∇�tr(z) is said to satisfy the local
regularity condition, or LRC(μ, λ, �) for some constant λ > 0,
provided that

〈
1

m
∇�tr(z), h

〉
≥ μ

2

∥∥∥∥
1

m
∇� tr(z)

∥∥∥∥
2

+ λ

2
	h	2 (39)

holds for all z ∈ �n such that 	h	 = 	z − x	 ≤ � 	x	 for
some constant 0 < � < 1, where the ball 	z − x	 ≤ � 	x	 is
the so-called basin of attraction. Simple linear algebra along
with the regularity condition in (39) leads to

dist2
(

z − μ

m
∇� tr(z), x

)

=
∥∥∥z − μ

m
∇�tr(z)− x

∥∥∥
2

= 	h	2 − 2μ

〈
h,

1

m
∇�tr(z)

〉
+
∥∥∥
μ

m
∇�tr(z)

∥∥∥
2

(40)

≤ 	h	2 − 2μ

(
μ

2

∥∥∥∥
1

m
∇� tr(z)

∥∥∥∥
2

+ λ

2
	h	2

)

+
∥∥∥
μ

m
∇�tr(z)

∥∥∥
2

= (1 − λμ) 	h	2 = (1 − λμ) dist2(z, x) (41)

for all z obeying 	h	 ≤ � 	x	. Evidently, if the LRC(μ, λ, �)
is proved for TAF, then (37) follows upon letting ν := λμ.

1) Proof of the Local Regularity Condition in (39): By def-
inition, justifying the local regularity condition in (39) entails
controlling the norm of the truncated gradient 1

m ∇�tr(z),
i.e., bounding the last term in (40). Recall that

1

m
∇� tr(z) = 1

m

∑

i∈I

(
aTi z − ψi

aTi z
∣∣aTi z

∣∣

)
ai

�= 1

m
Av (42)

where I := {1 ≤ i ≤ m||aTi z| ≥ |aTi x|/(1 + γ )},
and v := [v1 · · · vm ]T ∈ �m with vi :=

aTi z∣∣aTi z
∣∣
(|aTi z| − ψi

)
�{|aTi z|≥|aTi x|/(1+γ )}. Now, consider

|vi |2 =
∣∣∣
(∣∣∣aTi z

∣∣∣−
∣∣∣aTi x

∣∣∣
)
�{|aTi z|≥|aTi x|/(1+γ )}

∣∣∣
2

≤
∣∣∣
∣∣∣aTi z

∣∣∣−
∣∣∣aTi x

∣∣∣
∣∣∣
2 ≤

∣∣∣aTi h
∣∣∣
2

(43)

where h = z − x. Appealing to [29, Lemma 3.1], fixing any
δ� > 0, the following holds for any h ∈ �n with probability
at least 1 − e−mδ�2/2:

	v	2 =
m∑

i=1

v2
i ≤

m∑

i=1

∣∣∣aTi h
∣∣∣
2 ≤ (1 + δ�)m	h	2. (44)

On the other hand, standard matrix concentration results
confirm that the largest singular value of A = [a1 · · · am]T

with i.i.d. Gaussian {ai } satisfies σ1 := 	A	 ≤ (1+δ��)√m for
some δ�� > 0 with probability exceeding 1 − 2e−c0m as soon
as m ≥ c1n for sufficiently large c1 > 0, where c1 > 0
is a universal constant depending on δ�� [57, Remark 5.25].
Combining (42), (43), and (44) yields

∥∥∥∥
1

m
∇�tr(z)

∥∥∥∥ ≤ 1

m
	A	 · 	v	

≤ (1 + δ�)(1 + δ��)	h	
≤ (1 + δ)2 	h	 , δ := max{δ�, δ��} (45)

which holds with high probability. This condition essentially
asserts that the truncated gradient of the objective function �(z)
or the search direction is well behaved (the function value does
not vary too much).

We have related 	∇�tr(z)	2 to 	h	2 through (45). Therefore,
a more conservative lower bound for � 1

m ∇�tr(z), h� in LRC
can be given in terms of 	h	2. It is equivalent to show that the
truncated gradient 1

m ∇�tr(z) ensures sufficient descent [38],
i.e., it obeys a uniform lower bound along the search direction
h taking the form

〈
1

m
∇�tr(z), h

〉
� 	h	2 (46)

which occupies the remaining of this section. Formally, this
can be stated as follows.

Proposition 3: Consider the noiseless measurements ψi =
|aTi x|, and fix any sufficiently small constant � > 0. There
exist universal constants c0, c1 > 0 such that if m > c1n, then
the following holds with probability exceeding 1 − 4e−c0m:

〈
1

m
∇�tr(z), h

〉
≥ 2 (1 − ζ1 − ζ2 − 2�) 	h	2 (47)

for all x, z ∈ �
n such that 	h	 / 	x	 ≤ ρ for 0 < ρ ≤ 1/10

and any fixed γ ≥ 1/2.
Before justifying Proposition 3, we introduce the following

events.
Lemma 4: Fix any γ > 0. For each i ∈ [m], define

Ei :=
{

|aTi z|
|aTi x| ≥ 1

1 + γ

}
, (48)

Di :=
{∣∣aTi h

∣∣
∣∣aTi x

∣∣ ≥ 2 + γ

1 + γ

}
, (49)

and Ki :=
{

aTi z

|aTi z| �= aTi x

|aTi x|

}
(50)

where h = z − x. Under the condition 	h	 / 	x	 ≤ ρ,
the following inclusion holds for all nonzero z, h ∈ �n

Ei ∩ Ki ⊆ Di ∩ Ki . (51)
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Proof: From Fig. 1, it is clear that if z ∈ δ2
i , then the sign

of aTi z will be different than that of aTi x. The region δ2
i can

be readily specified by the conditions that

aTi z
∣∣aTi z

∣∣ �= aTi x
∣∣aTi x

∣∣

and
∣∣aTi h

∣∣
∣∣aTi x

∣∣ ≥ 1 + 1

1 + γ
= 2 + γ

1 + γ
.

Under our initialization condition 	h	 / 	x	 ≤ ρ, it is self-
evident that Di describes two symmetric spherical caps over
aTi x = ψi with one being δ2

i . Hence, it holds that Ei ∩ Ki =
δ2

i ⊆ Di ∩ Ki . �
To prove (47), consider rewriting the truncated gradient in

terms of the events defined in Lemma 4:

1

m
∇�tr(z)

= 1

m

m∑

i=1

(
aTi z −

∣∣∣aTi x
∣∣∣

aTi z

|aTi z|

)
ai�Ei

= 1

m

m∑

i=1

ai aTi h�Ei − 1

m

m∑

i=1

(
aTi z

|aTi z| − aTi x

|aTi x|

) ∣∣∣aTi x
∣∣∣ ai�Ei .

(52)

Using the definitions and properties in Lemma 4, one further
arrives at
〈

1

m
∇�tr(z), h

〉

≥ 1

m

m∑

i=1

(
aTi h

)2
�Ei − 1

m

m∑

i=1

∣∣∣aTi x
∣∣∣
∣∣∣aTi h

∣∣∣�Ei ∩Ki

≥ 1

m

m∑

i=1

(
aTi h

)2
�Ei − 2

m

m∑

i=1

∣∣∣aTi x
∣∣∣
∣∣∣aTi h

∣∣∣�Di ∩Ki

≥ 1

m

m∑

i=1

(
aTi h

)2
�Ei − 1 + γ

2 + γ
· 2

m

m∑

i=1

(
aTi h

)2
�Di∩Ki

(53)

where the last inequality arises from the property
∣∣aTi x

∣∣ ≤
1+γ
2+γ
∣∣aTi h

∣∣ by the definition of Di .
Establishing the regularity condition or Proposition 3, boils

down to lower bounding the right-hand side of (53), namely,
to lower bounding the first term and to upper bounding the sec-
ond one. By the SLLN, the first term in (53) approximately
gives 	h	2 as long as our truncation procedure does not
eliminate too many generalized gradient components (i.e.,
summands in the first term). Regarding the second, one would
expect its contribution to be small under our initialization
condition in (28) and as the relative error 	h	 / 	x	 decreases.
Specifically, under our initialization, Di is provably a rare
event, thus eliminating the possibility of the second term
exerting a noticeable influence on the first term. Rigorous
analyses concerning the two terms are elaborated in Lemma 5
and Lemma 6, whose proofs are provided in Appendix VI-D
and Appendix VI-E, respectively.

Lemma 5: Fix γ ≥ 1/2 and ρ ≤ 1/10, and let Ei be defined
in (48). For independent random variables W ∼ N (0, 1) and
Z ∼ N (0, 1), set

ζ1 := 1 − min

{
�

[
�{∣∣∣ 1−ρ

ρ + W
Z

∣∣∣≥
√

1.01
ρ(1+γ )

}
]
,

�

[
Z2
�{∣∣∣ 1−ρ

ρ + W
Z

∣∣∣≥
√

1.01
ρ(1+γ )

}
] }
. (54)

Then for any � > 0 and any vector h obeying 	h	 / 	x	 ≤ ρ,
the following holds with probability exceeding 1 − 2e−c5�

2 m:

1

m

m∑

i=1

(
aTi h

)2
�Ei ≥ (1 − ζ1 − �) 	h	2 (55)

provided that m > (c6 · �−2 log �−1)n for some universal
constants c5, c6 > 0.

To have a sense of how large the quantities involved in
Lemma 5 are,

when γ = 0.7 and ρ = 1/10, it holds that

�

[
�{∣∣∣ 1−ρ

ρ + W
Z

∣∣∣≥
√

1.01
ρ(1+γ )

}
]

≈ 0.92

and

�

[
Z2
�{∣∣∣ 1−ρ

ρ + W
Z

∣∣∣≥
√

1.01
ρ(1+γ )

}
]

≈ 0.99

hence leading to ζ1 ≈ 0.08.
Having derived a lower bound for the first term in the right-

hand side of (53), it remains to deal with the second one.
Lemma 6: Fix γ > 0 and ρ ≤ 1/10, and let Di , Ki be

defined in (49), (50), respectively. For any constant � > 0,
there exists some universal constants c5, c6 > 0 such that

1

m

m∑

i=1

(
aTi h

)2
�Di∩Ki ≤ (ζ �

2 + �
) 	h	2 (56)

holds with probability at least 1 − 2e−c5�
2 m provided that

m/n > c6 · �−2 log �−1 for some universal constants c5, c6 >
0, where ζ �

2 = 0.9748
√
ρτ/(0.99τ 2 − ρ2) with τ = (2 +

γ )/(1 + γ ).
With our TAF default parameters ρ = 1/10 and γ = 0.7,

we have ζ �
2 ≈ 0.2463. Using (53), (55), and (56), choosing

m/n exceeding some sufficiently large constant such that c0 ≤
c5�

2, and denoting ζ2 := 2ζ �
2(1 + γ )/(2 + γ ), the following

holds with probability exceeding 1 − 4e−c0m

〈
h,

1

m
∇�tr(z)

〉
≥ (1 − ζ1 − ζ2 − 2�) 	h	2 (57)

for all x and z such that 	h	 / 	x	 ≤ ρ for 0 < ρ ≤ 1/10 and
any fixed γ ≥ 1/2. This combined with (39) and (41) proves
Proposition 2 for appropriately chosen μ > 0 and λ > 0.

To conclude this section, an estimate for the working step
size is provided next. Plugging the results of (45) and (47)
into (40) suggests that

dist2
(

z − μ

m
∇�tr(z), x

)

= 	h	2 − 2μ

〈
h,

1

m
∇�tr(z)

〉
+
∥∥∥
μ

m
∇�tr(z)

∥∥∥
2

(58)

≤
{

1 − μ
[
2 (1 − ζ1 − ζ2 − 2�)− μ(1 + δ)4

]}
	h	2

�= (1 − ν) 	h	2 , (59)
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and also that λ = 2 (1 − ζ1 − ζ2 − 2�) − μ(1 + δ)4
�= λ0 in

the local regularity condition in (39). Clearly, it holds that
0 < λ < 2(1 − ζ1 − ζ2). Taking � and δ to be sufficiently
small, one obtains the feasible range of the step size for TAF

μ ≤ 2 (0.99 − ζ1 − ζ2)

1.054
�= μ0. (60)

In particular, under default parameters in Algorithm 1,
μ0 = 0.8388 and λ0 = 1.22, thus concluding the proof of
Theorem 1.

VI. CONCLUSION

This paper developed a linear-time algorithm termed
TAF for solving generally unstructured systems of random
quadratic equations. Our TAF algorithm builds on three key
ingredients: an orthogonality-promoting initialization, along
with a simple yet effective gradient truncation rule, as well
as scalable gradient-like iterations. Numerical tests using syn-
thetic data and real images corroborate the superior perfor-
mance of TAF over state-of-the-art solvers of the same type.

A few timely and pertinent future research directions are
worth pointing out. First, in parallel with spectral initialization
methods, the proposed orthogonality-promoting initialization
can be applied for semidefinite optimization [36], matrix
completion [38], [46], as well as blind deconvolution [37].
It is also interesting to investigate suitable gradient regular-
ization rules in more general nonconvex optimization settings.
Extending the theory to the more challenging case where ai ’s
are generated from the coded diffraction pattern model [27]
constitutes another meaningful direction.

APPENDIX A
PROOFS FOR SECTION V

A. Proof of Lemma 1

By homogeneity of (28), it suffices to work with the case
where 	x	 = 1. It is easy to check that

1

2

∥∥∥xxT − z̃0 z̃T0
∥∥∥

2

F
= 1

2
	x	4 + 1

2
	z̃0	4 − |xT z̃0|2

= 1 − |xT z̃0|2
= 1 − cos2 θ (61)

where 0 ≤ θ ≤ π/2 is the angle between the spaces spanned
by x and z̃0. Then one can write

x = cos θ z̃0 + sin θ z̃⊥
0 , (62)

where z̃⊥
0 ∈ �n is a unit vector that is orthogonal to z̃0 and

has a nonnegative inner product with x. Likewise,

x⊥ := − sin θ z̃0 + cos θ z̃⊥
0 , (63)

in which x⊥ ∈ �n is a unit vector orthogonal to x.
Since z̃0 is the solution to the maximum eigenvalue problem

z̃0 := arg max	z	=1
zT �Y0 z (64)

for �Y0 := 1
|�I0|

�ST
0

�S0, it is the leading eigenvector of �Y0,

i.e., �Y0 z̃0 = λ1 z̃0, where λ1 > 0 is the largest eigenvalue
of �Y0. Premultiplying (62) and (63) by �S0 yields

�S0x = cos θ �S0 z̃0 + sin θ �S0 z̃⊥
0 , (65a)

�S0x⊥ = − sin θ �S0 z̃0 + cos θ �S0 z̃⊥
0 . (65b)

Pythagoras’ relationship now gives
∥∥�S0 x

∥∥2 = cos2 θ
∥∥�S0 z̃0

∥∥2 + sin2 θ
∥∥�S0 z̃⊥

0

∥∥2
, (66a)

∥∥�S0x⊥∥∥2 = sin2 θ
∥∥�S0 z̃0

∥∥2 + cos2 θ
∥∥�S0 z̃⊥

0

∥∥2
, (66b)

where the cross-terms vanish because z̃T0 �ST
0

�S0 z̃⊥
0 =

|�I0| z̃T0 �Y0 z̃⊥
0 = λ1|�I0| z̃T0 z̃⊥

0 = 0 following from the definition
of z̃⊥

0 .
We next construct the following expression:

sin2 θ
∥∥�S0x

∥∥2 − ∥∥�S0 x⊥∥∥2

= sin2 θ
(

cos2 θ
∥∥�S0 z̃0

∥∥2 + sin2 θ
∥∥�S0 z̃⊥

0

∥∥2
)

−
(

sin2 θ
∥∥�S0 z̃0

∥∥2 + cos2 θ
∥∥�S0 z̃⊥

0

∥∥2
)

= sin2 θ
(

cos2 θ
∥∥�S0 z̃0

∥∥2 − ∥∥�S0 z̃0
∥∥2 + sin2 θ

∥∥�S0 z̃⊥
0

∥∥2
)

−
cos2 θ

∥∥�S0 z̃⊥
0

∥∥2

= sin4 θ
(∥∥�S0 z̃⊥

0

∥∥2−∥∥�S0 z̃0
∥∥2
)
−cos2 θ

∥∥�S0 z̃⊥
0

∥∥2 ≤ 0. (67)

Regarding the last inequality, since z̃0 maximizes the term
z̃T0 �Y0 z̃0 = 1

|�I0| z̃T0 �ST
0

�S0 z̃0 according to (64), then in (67) the

first term 	�S0 z̃⊥
0 	2 − 	�S0 z̃0	2 ≤ 0 holds for any unit vector

z̃⊥
0 ∈ �n . In addition, the second term − cos2 θ	�S0 z̃⊥

0 	2 ≤ 0,
thus yielding sin2 θ	�S0x	2 − 	�S0 x⊥	2 ≤ 0. For any nonzero
x ∈ �

n , it holds that

sin2 θ = 1 − cos2 θ ≤
∥∥�S0 x⊥∥∥2

∥∥�S0x
∥∥2 . (68)

Upon letting u = x⊥, the last inequality taken together
with (61) concludes the proof of (29).

B. Proof of Lemma 2
Assume 	x	 = 1. Let s ∈ �n be sampled uniformly

at random on the unit sphere, which has zero mean and
covariance matrix In/n. Let also U ∈ �n×n be a unitary matrix
such that U x = e1, where e1 is the first canonical vector in
�n . It is then easy to verify that the following holds for any
fixed threshold 0 < τ < 1 [59]

�[ssT |(sT x)2 > τ ]
= U�[UT ssT U|(sT UUT x)2 > τ ]UT

(i)= U�[s̃s̃T |(s̃T e1)
2 > τ ]UT

= U�[s̃s̃T |s̃2
1 > τ ]UT

= U

[
�[s̃2

1 |s̃2
1 > τ ]�[s̃1 s̃T\1|s̃2

1 > τ ]
�[s̃1 s̃\1|s̃2

1 > τ ] �[s̃\1 s̃T\1|s̃2
1 > τ ]

]
UT

(ii)= U
[
�[s̃2

1 |s̃2
1 > τ ] 0T

0 �[s̃\1 s̃T\1|s̃2
1 > τ ]

]
UT

(iii)= �[s̃2
2 |s̃2

1 > τ ]In + (�[s̃2
1 |s̃2

1 > τ ] − �[s̃2
2 |s̃2

1 > τ ])xxT

�= C1 In + C2xxT (69)
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with the constants C1 := �[s̃2
2 |s̃2

1 > τ ] < 1−τ
n−1 , C2 :=

�[s̃2
1 |s̃2

1 > τ ] − C1 > 0, and s\1 ∈ �n−1 denoting the
subvector of s ∈ �n after removing the first entry from s. Here,
the result (i) follows upon defining s̃ := UT s, which obeys
the uniformly spherical distribution too using the rotational
invariance. The equality (i i) is due to the zero-mean and
symmetrical properties of the uniformly spherical distribution.
Finally, to derive (i i i), we have used the fact x = Ue1 = u1,
the first column of U , which arises from UT x = e1 and
UUT = In .

By the argument above, assume without loss of gen-
erality that x = e1. Consider now the truncated vector
s\1|(sT x)2 > τ , or equivalently, s\1|s2

1 > τ . It is then clear
that s\1|s2

1 > τ is bounded, and thus subgaussian; furthermore,
the next hold

�[s\1|s2
1 > τ ] = 0 (70a)

�
[(

s\1|s2
1 > τ

)(
s\1|s2

1 > τ
)T ] = C1 In−1 (70b)

where (70b) is obtained as a submatrix of the first term in (69)
since the second term C2e1eT1 is removed.

Considering a unit vector x⊥ such that xT x⊥ = eT1 x⊥ = 0,

there exists a unit vector d ∈ �n−1 such that x⊥ = [0 dT ]T .
Thus, it holds that

∥∥�S0x⊥∥∥2 =
∥∥∥�S0
[
0 dT ]T

∥∥∥
2 = ∥∥�S0,\1d

∥∥2 (71)

where �S0,\1 ∈ �|�I0|× (n−1) is obtained through deleting the
first column in �S0, which is denoted by �S0,1; that is, �S0 =[�S0,1 �S0,\1

]
.

The rows of �S0,\1 may therefore be viewed as independent
realizations of the conditional random vector sT\1|s2

1 > τ , with
the threshold τ being the |�I0|-largest value in {yi/	ai	2}m

i=1.
Standard concentration inequalities on the sum of random
positive semi-definite matrices composed of independent non-
isotropic subgaussian rows [57, Remark 5.40] confirm that

∥∥∥ 1
|�I0|

�ST
0,\1

�S0,\1 − C1 In−1

∥∥∥ ≤ σC1 ≤ (1 − τ )σ

n − 1
(72)

holds with probability at least 1 − 2e−cK n as long as |�I0|/n is
sufficiently large, where σ is a numerical constant that can take
arbitrarily small values, and cK > 0 is a universal constant.
Without loss of generality, let us work with σ := 0.005 in (72).
Then for any unit vector d ∈ �n−1, the following inequality
holds with probability at least 1 − 2e−cK n:

∣∣∣ 1
|�I0| d

T �ST
0,\1

�S0,\1d − C1

∣∣∣ ≤ 0.01

n
(73)

for n ≥ 3. Therefore, one readily concludes that

∥∥�S0 x⊥∥∥2 =
∣∣∣(x⊥)T ST Sx⊥

∣∣∣ ≤ 1.01|�I0|
/

n (74)

holds with probability at least 1−2e−cK n , provided that |�I0|
/

n
exceeds some constant. Note that cK depends on the maximum
subgaussian norm of rows of S, and we assume without loss of
generality cK ≥ 1/2. Hence, 	�S0u	2 in (29) is upper bounded
simply by letting u = x⊥ in (74).

C. Proof of Lemma 3

We next pursue a meaningful lower bound for 	�S0 x	2

in (31). When x = e1, one has 	�S0x	2 = 	�S0e1	2 =∑|�I0|
i=1 s̄2

i,1, where {s̄i,1}|�I0|
i=1 are entries of the first column of

�S0. It is further worth mentioning that all squared entries of
any spherical random vector obey the Beta distribution with
parameters α = 1

2 , and β = n−1
2 , i.e., s̄2

i, j ∼ Beta
( 1

2 ,
n−1

2

)

for all i, j , [60, Lemma 2]. Although they have closed-form
probability density functions (pdfs) that may facilitate deriving
a lower bound, we take another route detailed as follows.
A simple yet useful inequality is established first.

Lemma 7: Given m fractions obeying 1 > p1
q1

≥ p2
q2

≥ · · · ≥
pm
qm

> 0, in which pi , qi > 0, ∀i ∈ [m], the following holds
for all 1 ≤ k ≤ m

k∑

i=1

pi

qi
≥

k∑

i=1

p[i]
q[1]

(75)

where p[i] denotes the i -th largest one among {pi}m
i=1, and

hence, q[1] is the maximum in {qi }m
i=1.

Proof: For any k ∈ [m], according to the definition of q[i],
it holds that p[1] ≥ p[2] ≥ · · · ≥ p[k], so p[1]

q[1] ≥ p[2]
q[1] ≥ · · · ≥

p[k]
q[1] . Considering q[1] ≥ qi , ∀i ∈ [m], and letting ji ∈ [m] be

the index such that p ji = p[i], then
p ji
q ji

= p[i]
q ji

≥ p[i]
q[1] holds for

any i ∈ [k]. Therefore,
∑k

i=1
p ji
q ji

= ∑k
i=1

p[i]
q ji

≥ ∑k
i=1

p[i]
q[1] .

Note that
{

p[i]
q ji

}k

i=1
comprise a subset of terms in

{
pi
qi

}m

i=1
.

On the other hand, according to our assumption,
∑k

i=1
pi
qi

is

the largest among all sums of k summands; hence,
∑k

i=1
pi
qi

≥
∑k

i=1
p[i]
q ji

yields
∑k

i=1
pi
qi

≥ ∑k
i=1

p[i]
q[1] concluding the

proof. �
Without loss of generality and for simplicity of exposition,

let us assume that indices of ai ’s have been re-ordered such
that

a2
1,1

	a1	2 ≥ a2
2,1

	a2	2 ≥ · · · ≥ a2
m,1

	am	2 , (76)

where ai,1 denotes the first element of ai . Therefore, writing

	�S0e1	2 =∑|�I0|
i=1 a2

i,1/	ai	2, the next task amounts to finding
the sum of the |�I0| largest out of all m entities in (76).
Applying the result (75) in Lemma 7 gives

|�I0|∑

i=1

a2
i,1

	ai	2 ≥
|�I0|∑

i=1

a2[i],1
maxi∈[m] 	ai	2 , (77)

in which a2[i],1 stands for the i -th largest entity in
{

a2
i,1

}m

i=1
.

Observe that for i.i.d. random vectors ai ∼ N
(
0, In

)
,

the property �(	ai	2 ≥ 2.3n) ≤ e−n/2 holds for large enough
n (e.g., n ≥ 20), which can be understood upon substituting
δ := n/2 into the following standard result [61, Lemma 1]

�

(
	ai	2 − n ≥ 2

√
δ + 2δ

)
≤ e−δ . (78)

In addition, one readily deduces that
�

(
maxi∈[m] 	ai	 ≤ √

2.3n
)

≥ 1 − me−n/2. We will
henceforth build our subsequent proofs on this event
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without stating this explicitly each time encountering it.
Therefore, (77) can be lower bounded by

∥∥�Sx
∥∥2 =

|�I0|∑

i=1

a2
i,1

	ai	2 ≥
|�I0|∑

i=1

a2[i],1
maxi∈[m] 	ai	2 ≥ 1

2.3n

|�I0|∑

i=1

∣∣a[i],1
∣∣2

(79)

which holds with probability at least 1 − me−n/2. The task
left for bounding 	�Sx	2 is to derive a meaningful lower

bound for
∑|�I0|

i=1 a2[i],1. Roughly speaking, because the ratio
|�I0|/m is small, e.g., |�I0|/m ≤ 1/5, a trivial result con-

sists of bounding (1/|�I0|)∑|�I0|
i=1 a2[i],1 by its sample aver-

age (1/m)
∑m

i=1 a2[i],1. The latter can be bounded using its
ensemble mean, i.e., �[a2

i,1] = 1, ∀i ∈ [�I0], to yield
(1/m)

∑m
i=1 a2[i],1 ≥ (1 − �)�[a2

i,1] = 1 − �, which holds
with high probability for some numerical constant � > 0 [29,
Lemma 3.1]. Therefore, one has a candidate lower bound∑|�I0|

i=1 a2[i],1 ≥ (1−�)|�I0|. Nonetheless, this lower bound is in
general too loose, and it contributes to a relatively large upper
bound on the wanted term in (29).

To obtain an alternative bound, let us examine first the
typical size of the maximum in

{
a2

i,1

}m

i=1
. Observe obviously

that the modulus
∣∣ai,1

∣∣ follows the half-normal distribution
having the pdf p(r) = √

2/π · e−r2/2, r > 0, and it is easy to
verify that

�[|ai,1|] = √2/π. (80)

Then integrating the pdf from 0 to +∞ yields the corre-
sponding accumulative distribution function (cdf) expressible
in terms of the error function �

(∣∣ai,1
∣∣ > δ

) = 1 − erf (δ/2),
i.e., erf (δ) := 2/

√
π ·∫ δ0 e−r2

dr . Appealing to a lower bound
on the complimentary error function erfc (δ) := 1 − erf (δ)
from [62, Theorem 2], one establishes that �

(∣∣ai,1
∣∣ > δ

) =
1 − erf (δ/2) ≥ (3/5)e−δ2/2. Additionally, direct application
of probability theory and Taylor expansion confirms that

�
(

max
i∈[m]

∣∣ai,1
∣∣ ≥ δ

) = 1 − [� (∣∣ai,1
∣∣ ≤ δ

)]m

≥ 1 −
(

1 − 0.6e−δ2/2
)m

≥ 1 − e−0.6me−δ2/2
. (81)

Choosing now δ := √
2 log n leads to

�
(

max
i∈[m]

∣∣ai,1
∣∣ ≥ √2 log n

) ≥ 1 − e−0.6m/n ≥ 1 − o(1) (82)

which holds with the proviso that m/n is large enough, and
the symbol o(1) represents a small constant probability. Thus,
provided that m/n exceeds some large constant, the event
maxi∈[m] a2

i,1 ≥ 2 log n occurs with high probability. Hence,
one may expect a tighter lower bound than (1−�0)|�I0|, which
is on the same order of m under the assumption that |�I0|/m
is about a constant.

Although a2
i,1 obeys the Chi-square distribution with k = 1

degrees of freedom, its cdf is rather complicated and does not
admit a nice closed-form expression. A small trick is hence
taken in the sequel. Assume without loss of generality that

both m and |�I0| are even. Grouping two consecutive a2[i],1’s
together, introduce a new variable ϑ[i ] := a2[2k−1],1 + a2[2k],1,
∀k ∈ [m/2], hence yielding a sequence of ordered numbers,
i.e., ϑ[1] ≥ ϑ[2] ≥ · · · ≥ ϑ[m/2] > 0. Then, one can
equivalently write the wanted sum as

|�I0|∑

i=1

a2[i],1 =
|�I0|/2∑

i=1

ϑ[i]. (83)

On the other hand, for i.i.d. standard normal random vari-
ables

{
ai,1
}m

i=1, let us consider grouping randomly two of
them and denote the corresponding sum of their squares by
χk := a2

ki ,1
+ a2

k j ,1
, where ki �= k j ∈ [m], and k ∈ [m/2]. It is

self-evident that the χk’s are identically distributed obeying
the Chi-square distribution with k = 2 degrees of freedom,
having the pdf

p (r) = 1

2
e− r

2 , r ≥ 0, (84)

and the following complementary cdf (ccdf)

�(χk ≥ δ) :=
∫ ∞

δ

1

2
e− r

2 dr = e− δ
2 , ∀δ ≥ 0. (85)

Ordering all χk’s, summing the |�I0|/2 largest ones, and
comparing the resultant sum with the one in (83) confirms
that

|�I0|/2∑

i=1

χ[i] ≤
|�I0|/2∑

i=1

ϑ[i] =
|�I0|∑

i=1

a2[i],1, ∀|�I0| ∈ [m]. (86)

Upon setting �(χk ≥ δ) = |�I0|/m, one obtains an estimate
of χ|�I0|/2, the (|�I0|/2)-th largest value in {χk}m/2

k=1 as follows

χ̂|�I0|/2 := 2 log
(
m
/|�I0|

)
. (87)

Furthermore, applying the Hoeffding-type inequality [57,
Proposition 5.10] and leveraging the convexity of the ccdf
in (85), one readily establishes that

�

(
χ̂|�I0|/2 − χ|�I0|/2 > δ

)
≤ e− 1

4 mδ2e−δ (|�I0|/m)2, ∀δ >0.(88)

Taking without loss of generality δ := 0.05χ̂|�I0|/2 =
0.1 log

(
m
/|�I0|

)
gives

�

(
χ|�I0|/2 < 0.95χ̂|�I0|/2

)
≤ e−c0m (89)

for some universal constants c0, cχ > 0, and sufficiently large
n such that |�I0|/m � cχ > 0. The remaining part in this
section assumes that this event occurs.

Choosing δ := 4 log n and substituting this into the ccdf
in (85) leads to

� (χ ≤ 4 log n) = 1 − 1/n2. (90)

Notice that each summand in
∑|�I0|/2

i=1 χ[i] ≥ ∑m/2
i=1 χi�Ẽi

is Chi-square distributed, and hence could be unbounded,
so we choose to work with the truncation

∑m/2
i=1 χi�Ẽi

, where
the �Ẽi

’s are independent copies of �Ẽ , and �Ẽ denotes the
indicator function for the ensuing events

Ẽ :=
{
χ ≥ χ̂|�I0|/2

}
∩ {χ ≤ 4 log n} . (91)
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Apparently, it holds that
∑|�I0|/2

i=1 χ[i] ≥ ∑m/2
i=1 χi�Ẽi

. One
further establishes that

�

[
χi�Ẽi

]
: =
∫ 4 log n

χ̂|�I0 |/2

1

2
re−r/2dr

=
(
χ̂|�I0|/2+ 2

)
e−χ̂|�I0 |/2/2− (4 log n + 2) e−2 log n

= 2|�I0|
m

[
1+log

(
m
/|�I0

)]− (4 log n+2)

n2 . (92)

The task of bounding
∑|�I0|

i=1 a2[i],1 in (86) now boils down

to bounding
∑m/2

i=1 χi�Ẽi
from its expectation in (92). A con-

venient way to accomplish this is using the Bernstein inequal-
ity [57, Proposition 5.16], that deals with bounded random
variables. That also justifies introducing the upper-bound trun-
cation on χ in (91). Specifically, define

ϑi := χi�Ẽi
− �

[
χi�Ẽi

]
, 1 ≤ i ≤ m/2. (93)

Thus, {ϑi }m/2
i=1 are i.i.d. centered and bounded random variables

following from the mean-subtraction and the upper-bound
truncation. Further, according to the ccdf (85) and the defini-
tion of sub-exponential random variables [57, Definition 5.13],
the terms {ϑi }m/2

i=1 are sub-exponential. Then, the following

∣∣∣
m/2∑

i=1

ϑi

∣∣∣ ≥ τ (94)

holds with probability at least 1 − 2e−cs min
(
τ/Ks ,τ

2/K 2
s
)
,

in which cs > 0 is a universal constant, and Ks :=
maxi∈[m/2] 	ϑi	ψ1 represents the maximum subexponential
norm of the ϑi ’s.

Indeed, Ks can be found as follows [57, Definition 5.13]:

Ks : = sup
p≥1

p−1 (
�
[|ϑi |p])1/p

≤ (4 log n − 2 log
(
m
/|�I0|

)) [|�I0|
/

m − 1/n2
]

≤ 2|�I0|
m

log
(

n2|�I0|
/

m
)

≤ 4|�I0|
m

log n. (95)

Choosing τ := 8|�I0|/(csm) · log2 n in (94) yields
m/2∑

i=1

χi�Ẽi
≥ |�I0|

[
1 + log

(
m
/|�I0|

)]− 8|�I0|/(csm) · log2 n

− m (2 log n + 1)/n2

≥ (1 − �s)|�I0|
[
1 + log

(
m
/|�I0|

)]
(96)

for some small constant �s > 0, which holds with probability
at least 1 − me−n/2 − e−c0m − 1/n2 as long as m/n exceeds
some numerical constant and n is sufficiently large. There-
fore, combining (79), (86), and (96), one concludes that the
following holds with high probability

∥∥�S0x
∥∥2 =

|�I0|∑

i=1

a2
i,1

	ai	2 ≥ (1−�s)
|�I0|
2.3n

[
1+log

(
m
/|�I0|

)]
. (97)

Taking �s := 0.01 without loss of generality concludes the
proof of Lemma 3.

D. Proof of Lemma 5

Let us first prove the argument for a fixed pair h and
x, such that h and z are independent of {ai }m

i=1, and then
apply a covering argument. To start, introduce a Lipschitz-
continuous counterpart for the discontinuous indicator function
[6, Appendix A.2]

χE (θ) :=

⎧
⎪⎪⎨

⎪⎪⎩

1, |θ | ≥
√

1.01
1+γ ,

100(1 + γ )2θ2 − 100, 1
1+γ ≤ |θ | <

√
1.01

1+γ ,
0, |θ | < 1

1+γ
(98)

with Lipschitz constant O(1). Recall that Ei ={∣∣∣∣
aTi z

aTi x

∣∣∣∣ ≥ 1
1+γ
}

, so it holds that 0 ≤ χE

(∣∣∣∣
aTi z

aTi x

∣∣∣∣
)

≤ �Ei for

any x ∈ �n and h ∈ �n , thus yielding

1

m

m∑

i=1

(
aTi h

)2
�Ei ≥ 1

m

m∑

i=1

(
aTi h

)2
χE

(∣∣∣∣∣
aTi z

aTi x

∣∣∣∣∣

)

= 1

m

m∑

i=1

(
aTi h

)2
χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)
.

(99)

By homogeneity and rotational invariance of normal dis-
tributions, it suffices to prove the case where x = e1 and
	h	/	x	 = 	h	 ≤ ρ. According to (99), lower bounding
the first term in (53) can be achieved by lower bounding
∑m

i=1(a
T
i h)2χE

(∣∣∣∣1 + aTi h

aTi x

∣∣∣∣
)

instead. To that end, let us find

the mean of
(
aTi h

)2
χE

(∣∣∣∣1 + aTi h

aTi x

∣∣∣∣

)
. Note that

(
aTi h

)2
and

χE

(∣∣∣∣1 + aTi h

aTi x

∣∣∣∣

)
are dependent. Introduce an orthonormal

matrix Uh that contains hT /	h	 as its first row, i.e.,

Uh :=
[

hT /	h	
Ũh

]
(100)

for some orthogonal matrix Ũh ∈ �(n−1)×n such that Uh is
orthonormal. Moreover, define h̃ := Uhh, and ãi := Uhai ;
and let ãi,1 and ãi,\1 denote the first entry and the remaining
entries in the vector ãi ; likewise for h̃. Then, for any h such
that 	h	 ≤ ρ, we have

�

[
(aTi h)2χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)]

= �

[
(ãi,1h̃1)

2χE

(∣∣∣∣∣1+ aTi h

aTi x

∣∣∣∣∣

)]

+�

[
(ãTi,\1 h̃\1)

2χE

(∣∣∣∣∣1+ aTi h

aTi x

∣∣∣∣∣

)]

= h̃2
1 �

[
ã2

i,1 χE

(∣∣∣∣∣1 + aTi h

ai,1

∣∣∣∣∣

)]

+�

[
(ãTi,\1 h̃\1)

2
]
�

[
χE

(∣∣∣∣∣1 + aTi h

ai,1

∣∣∣∣∣

)]
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= h̃2
1�

[
ã2

i,1χE

(∣∣∣∣∣1 + aTi h

ai,1

∣∣∣∣∣

)]

+ ∥∥h̃\1
∥∥2
�

[
χE

(∣∣∣∣∣1+ aTi h

ai,1

∣∣∣∣∣

)]

≥
(

h̃2
1+	h̃\1	2

)
min

{
�

[
a2

i,1χE

(∣∣∣∣∣1 + h1+ aTi,\1h\1

ai,1

∣∣∣∣∣

)]
,

�

[
χE

(∣∣∣∣∣1 + h1 + aTi,\1h\1

ai,1

∣∣∣∣∣

)]}

≥ 	h	2 min

{
�

[
a2

i,1χE

(∣∣∣∣1 − ρ + ai,2

ai,1
ρ

∣∣∣∣

)]
,

�

[
χE

(
1 − ρ + ai,2

ai,1
ρ

)]}
= (1 − ζ1)	h	2 (101)

where the second equality follows from the independence
between ãTi,\1 h̃\1 and aTi h, the second inequality holds
for ρ ≤ 1/10 and γ ≥ 1/2, and the last equality
comes from the definition of ζ1 in (93). Notice that � :=
(aTi h)2χE

(∣∣∣∣1 + aTi h

aTi x

∣∣∣∣
)

≤ (aTi h)2 d= 	h	2a2
i,1 is a subexpo-

nential variable, and thus its subexponential norm 	�	ψ1 :=
supp≥1

[
�(|�|p)

]1/p
is finite.

Direct application of the Berstein-type inequality
[57, Proposition 5.16] confirms that for any � > 0,
the following

1

m

m∑

i=1

(
aTi h

)2
χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)

≥ �

[(
aTi h

)2
χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)]
− �	h	2

≥ (1 − ζ1 − �) 	h	2 (102)

holds with probability at least 1 − e−c5m�2
for some numer-

ical constant c5 > 0 provided that � ≤ 	�	ψ1 by
assumption.

To obtain uniform control over all vectors z and x such
that 	z − x	 ≤ ρ, the net covering argument is applied
[57, Definition 5.1]. Let S� be an �-net of the unit sphere,
L� be an �-net of [0, ρ], and define

N� := {(z, h, t) : (z0, h0, t0) ∈ S� × S� × L�} . (103)

Since the cardinality |S� | ≤ (1 + 2/�)n [57, Lemma 5.2],
then

|N� | ≤ (1 + 2/�)2n ρ/� ≤ (1 + 2/�)2n+1 (104)

due to the fact that ρ/� < 2/� < 1 + 2/� for 0 < ρ < 1.
Consider now any (z, h, t) obeying 	h	 = t ≤ ρ. There

exists a pair (z0, h0, t0) ∈ N� such that 	z − z0	, 	h − h0	,
and |t − t0| are each at most �. Taking the union bound yields

1

m

m∑

i=1

(
aTi h0

)2
χE

(∣∣∣∣∣1 + aTi h0

aTi x

∣∣∣∣∣

)

≥ 1

m

m∑

i=1

(
aTi h0

)2
χE

(∣∣∣∣1 − t0 + ai,2

ai,1
t0

∣∣∣∣

)

≥ (1 − ζ1 − �) 	h0	2, ∀ (z0, h0, t0) ∈ N� (105)

with probability at least 1 − (1 + 2/�)2n+1 e−c5�
2m ≥ 1 −

e−c0m , which follows by choosing m such that m ≥(
c6 · �−2 log �−1

)
n for some constant c6 > 0.

Recall that χE (τ ) is Lipschitz continuous, thus
∣∣∣∣

1

m

m∑

i=1

(
aTi h

)2
χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)

−
(

aTi h0

)2
χE

(∣∣∣∣∣1 + aT h0

aTi x

∣∣∣∣∣

) ∣∣∣∣

� 1

m

m∑

i=1

∣∣∣∣
(

aTi h
)2 −

(
aTi h0

)2
∣∣∣∣

= 1

m

m∑

i=1

∣∣∣aTi
(

hhT − h0hT
0

)
ai

∣∣∣

� c7

m∑

i=1

∣∣∣hhT − h0hT
0

∣∣∣ ≤ 2.5c7 	h − h0	 	h	

≤ 2.5c7ρ� (106)

for some numerical constant c7 and provided that � <
1/2 and m ≥ (

c6 · �−2 log �−1
)

n, where the first inequal-
ity arises from the Lipschitz property of χE (τ ), the sec-
ond uses the results in [6, Lemma 1], and the third from
[6, Lemma 2].

Putting all results together confirms that with probability
exceeding 1 − 2e−c0m , we have

1

m

m∑

i=1

(
aTi h

)2
χE

(∣∣∣∣∣1 + aTi h

aTi x

∣∣∣∣∣

)

≥ [1 − ζ1 − (1 + 2.5c7ρ) �] 	h	2 (107)

for all vectors 	h	 / 	x	 ≤ ρ, concluding the proof.

E. Proof of Lemma 6

Similar to the proof in Section VI-D, it is convenient to
work with the following auxiliary function instead of the
discontinuous indicator function

χD(θ) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, |θ | ≥ 2 + γ

1 + γ

−100

(
1 + γ

2 + γ

)2

θ2 + 100,

√
0.99 · 2 + γ

1+γ ≤|θ | < 2+γ
1 + γ

0, |θ | < √
0.99 · 2 + γ

1 + γ
(108)

which is Lipschitz continuous in θ with Lipschitz constant

O(1). For Di =
{∣∣∣∣

aTi h

aTi x

∣∣∣∣ ≥ 2+γ
1+γ
}

, it holds that 0 ≤ �Di ≤

χD

(∣∣∣∣
aTi h

aTi x

∣∣∣∣

)
for any x ∈ �n and h ∈ �n . Assume without

loss of generality that x = e1. Then for γ > 0 and ρ ≤ 1/10,
it holds that

1

m

m∑

i=1

�{ |aTi h|
|aTi x| ≥

2+γ
1+γ
} ≤ 1

m

m∑

i=1

χD

(∣∣∣∣∣
aTi h

aTi x

∣∣∣∣∣

)
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= 1

m

m∑

i=1

χD

(∣∣∣∣∣
aTi h

ai,1

∣∣∣∣∣

)

= 1

m

m∑

i=1

χD

(∣∣∣∣∣h1 + aTi,\1h\1

ai,1

∣∣∣∣∣

)

= 1

m

m∑

i=1

χD

(∣∣∣∣h1 + ai,2

ai,1

∥∥h\1
∥∥
∣∣∣∣

)

(i)≤ 1

m

m∑

i=1

�{∣∣∣h1+ ai,2
ai,1

	h\1	
∣∣∣≥√

0.99· 2+γ
1+γ

} (109)

where the last inequality arises from the definition of χD .
Note that ai,2/ai,1 obeys the standard Cauchy distribution,
i.e., ai,2/ai,1 ∼ Cauchy(0, 1) [63]. Transformation proper-
ties of Cauchy distributions assert that h1 + ai,2

ai,1
	h\1	 ∼

Cauchy(h1, 	h\1	) [64]. Recall that the cdf of a Cauchy
distributed random variable w ∼ Cauchy (μ0, α) is given
by [63]

F(w;μ0, α) = 1

π
arctan

(
w − μ0

α

)
+ 1

2
. (110)

It is easy to check that when 	h\1	 = 0, the indicator
function �Di = 0 due to |h1| ≤ ρ <

√
0.99(2 + γ )/(1 + γ ).

Consider only 	h\1	 �= 0 next. Define for notational brevity
w := ai,2/ai,1, α := 	h\1	, as well as μ0 := h1/α and
w0 := √

0.99 2+γ
α(1+γ ) . Then,

�[�{|μ0+w|≥w0}] = 1 − [F(w0;μ0, 1)− F(−w0;μ0, 1)
]

= 1 − 1

π

[
arctan(w0 − μ0)− arctan(−w0 − μ0)

]

(i)= 1

π
arctan

(
2w0

w2
0 − μ2

0 − 1

)

(ii)≤ 1

π
· 2w0

w2
0 − μ2

0 − 1

(iii)≤ 1

π
· 2

√
0.99ρ(2 + γ )/(1 + γ )

0.99(2 + γ )2/(1 + γ )2 − ρ2

≤ 0.0646 (111)

for all γ > 0 and ρ ≤ 1/10. In deriving (i), we used the
property arctan(u) + arctan(v) = arctan

(
u+v

1−uv

)
(mod π) for

any uv �= 1. Concerning (ii), the inequality arctan(x) ≤ x
for x ≥ 0 is employed. Plugging given parameter values and
using 	h\1	 ≤ 	h	 ≤ ρ confirms (iii). Next, �{|μ0+w|≥w0} is
bounded; and it is known that all bounded random variables
are subexponential. Thus, upon applying the Bernstein-type
inequality [57, Corollary 5.17], the next holds with probability
at least 1 − e−c5m�2

for some numerical constant c5 > 0 and
any sufficiently small � > 0:

1

m

m∑

i=1

�{ ∣∣∣aTi h
∣∣∣

∣∣∣aTi x
∣∣∣
≥ 2+γ

1+γ

} ≤ 1

m

m∑

i=1

�{∣∣∣h1+ ai,2
ai,1

	h\1	
∣∣∣≥√

0.99 2+γ
1+γ

}

≤ (1 + �)�
[
�{∣∣∣h1+ ai,2

ai,1
	h\1	

∣∣∣≥√
0.99 2+γ

1+γ
}
]

≤ 1 + �

π
· 2

√
0.99ρ(2 + γ )/(1 + γ )

0.99(2 + γ )2/(1 + γ )2 − ρ2 .

(112)

On the other hand, it is easy to establish that the following
holds true for any fixed h ∈ �n :

�

[
(aTi h)4

]
= �

[
a4

i,1

]
	h	4 = 3 	h	4 (113)

which has also been used in Lemma 1 [6] and Lemma 6.1 [34].
Furthermore, recalling our working assumption 	ai	 ≤ √

2.3n
and 	h	 ≤ ρ	x	, the random variables (aTi h)4 are bounded,
and thus they are subexponential [57]. Appealing again to the
Bernstein-type inequality for subexponential random variables
[57, Proposition 5.16] and provided that m/n > c6·�−2 log �−1

for some numerical constant c6 > 0, we have

1

m

m∑

i=1

(
aTi h

)4 ≤ 3(1 + �) 	h	4 (114)

which holds with probability exceeding 1 − e−c5m�2
for some

universal constant c5 > 0 and any sufficiently small � > 0.
Combining results (112), (114), leveraging the Cauchy-

Schwartz inequality, and considering Di ∩ Ki only consisting
of a spherical cap, the following holds for any ρ ≤ 1/10 and
γ > 0:

1

m

m∑

i=1

(
aTi h

)2
�Di ∩Ki

≤
√√√√ 1

m

m∑

i=1

(
aTi h

)4
√√√√√

1

2
· 1

m

m∑

i=1

�{ ∣∣∣aTi h
∣∣∣

∣∣∣aTi x
∣∣∣
≥ 2+γ

1+γ

}

≤
√

3(1 + �) 	h	4

√
1 + �

π
·

√
0.99ρ(2 + γ )/(1 + γ )

0.99(2 + γ )2/(1 + γ )2 − ρ2

�= (ζ �
2 + ��) 	h	2 (115)

where ζ �
2 := 0.9748

√
ρτ/(0.99τ 2 − ρ2) with τ := (2 +

γ )/(1 + γ ), which holds with probability at least 1 − 2e−c0m .
The latter arises upon choosing c0 ≤ c5�

2 in 1 − 2e−c5m�2
,

which can be accomplished by taking the ratio m/n suffi-
ciently large.
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