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T
he radio spectrum is the radio-frequency (RF) portion of 
the electromagnetic spectrum. These spectral resources are 
traditionally allocated to licensed or primary users (PUs) 
by governmental organizations. As discussed in “Radio-

Frequency Spectral Resources,” most of the frequency bands are 

already allocated to one or more PUs. Consequently, new users 
cannot easily find free frequency bands. Spurred by the ever-
increasing demand from new wireless communication applica-
tions, this issue has become critical over the past few years.

Various studies [1]–[3] have shown that this overcrowded 
spectrum is usually significantly underutilized in frequency, 
time, and space. A 2002 Federal Communications Commis-
sion report shows large temporal and geographic variations in 
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terms of the spectrum usage, ranging from 15% to 85% uti-
lization. Figure 1 presents the spectrum occupancy measure-
ments for two major metropolitan areas, New York City and 
Chicago, Illinois, as conducted by the Shared Spectrum Com-
pany (SSC). We observe that the occupancy of most frequency 
bands does not exceed 50%, and half of them are even below 
10% [4]. This shows that spectrum shortage is often due to 
the inflexibility of the frequency allocation, resulting in low 
utilization efficiency.

To bridge spectrum scarcity and sparsity and make bet-
ter use of spectral resources, the cognitive radio (CR) [6]–[8] 

paradigm has been proposed. The idea of adaptive learn-
ing for spectrum sensing can be traced back to Shannon [9]. 
This technology, which is under development, allows the 
spectrum to be used more efficiently by granting secondary 
users opportunistic access to licensed spectral bands when 
the corresponding PU is not active. A CR transceiver scans 
for unused bands and changes its transmission and reception 
parameters to different frequencies depending on the spec-
trum utilization.

CR faces many issues at various levels, and it challenges 
traditional analog, digital, and network processing techniques to 

Spectral resources are managed by governmental organi­
zations that allocate them to fixed users. In the United 
States, regulatory responsibility for the radio spectrum 
is divided between the Federal Communications Com­
mission, which administers the spectrum for nonfederal use, 
and the National Telecommunications and Information 
Administration, which is responsible for federal use.

In Europe, the European Telecommunications Standards 
Institute and the Electronic Communications Committee 

cooperate on aspects related to the regulatory environ­
ment for the radio spectrum. Figure S1 shows the U.S. fre­
quency allocation chart. As can be seen, all of the bands 
spanning the very-high-frequency, ultrahigh-frequency,  
and superhigh-frequency ranges (0.003–30 GHz) are  
preallocated to one or even several licensed primary 
users. This poses inherent difficulties in introducing new 
technologies that require the occasional usage of this 
spectral range.

Radio-Frequency Spectral Resources

FIGURE S1. The U.S. frequency allocation chart. (Image courtesy of the U.S. Department of Commerce, National Telecommunications and Informa-
tion Administration, Office of Spectrum Management, January 2016.)
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meet its specific radio-sensitivity requirements and wide-band 
frequency agility [10]. The CR cycle includes two major func-
tionalities: spectrum sensing and spectrum access. Through 
spectrum sensing, CRs collect information about the sta-
tus of the surrounding spectrum’s occupancy, i.e., the PUs’ 
activity, allowing for the adapted exploitation of the vacant 
spectral bands. To minimize the interference caused to PUs, 
the spectrum-sensing task performed by a CR should be 
reliable and fast [11]–[13] and obey the requirements of the 
IEEE 802.22 protocol, which is described in “IEEE 802.22 
Standard for WRAN.”

For the past ten years, CR and its challenges have been thor-
oughly reviewed in the literature. Several works [14]–[19] focus 
on spectrum-sensing and survey-sensing techniques, along with 
their performance and limitations. These techniques are essen-

tially energy detection, matched filter, and cyclostationary 
detection. Collaborative CR networks, where different users 
share their sensing results and cooperatively decide on the 
licensed spectrum occupancy, have also been proposed to over-
come practical propagation issues, such as path loss, channel 
fading, and shadowing. Other works [17], [20] deal with spec-
trum access, which uses the information gathered from spec-
trum sensing to plan the spectrum exploitation by unlicensed 
users. This functionality includes spectrum analysis, spectrum 
access, and spectrum mobility [21]. It ensures coexistence with 
PUs and other CRs by minimizing interference for  the former 
and sharing the spectrum with the latter.

In this article, we focus on the issue of spectrum sensing from 
the analog-to-digital interface point of view, which has so far 
received little attention. Our motivation stems from one of the 
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FIGURE 1. The spectrum occupancy measurements in New York City from 30 August to 3 September 2004 and Chicago, Illinois, from 16 to 18 November 
2005. (Image courtesy of SSC [5].) 
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main challenges of spectrum sensing in the context of CR, which 
is the sampling-rate bottleneck. This issue arises because CRs 
typically deal with wide-band signals with prohibitively high 
Nyquist rates. Sampling at this rate requires very sophisticated 
and expensive analog-to-digital converters (ADCs), leading to a 
torrent of samples. Therefore, the classic spectrum-sensing meth-
ods described previously in this section, which are traditionally 
performed on Nyquist rate samples, are difficult to implement 
in practice on wide-band signals. Our main goal is to provide 
an analog-to-digital CR framework, including an analog prepro-

cessing and sub-Nyquist sampling front end and subsequent low-
rate digital processing.

We first survey recent methods for spectrum sensing at 
sub-Nyquist rates, paving the way to efficient sensing with low 
computational and power requirements. We then review spec-
trum-sensing strategies that aim at overcoming other diverse 
challenges in the context of CR, such as coping with low signal-
to-noise ratio (SNR) regimes, channel fading, and shadowing 
effects. Throughout this article, we consider both theoretical 
and practical aspects and present the hardware implementation 

During the past decade, the use of analog TV radio bands 
has been slowly decaying, mainly due to the introduction of 
digital TV broadcasts based on new transmission infrastruc­
ture, such as cable and satellites. The once-crowded, very-
high-frequency (VHF) and ultrahigh-frequency (UHF) range 
(between 54–860 MHz) is less occupied today, particularly 
in remote rural areas. Concurrently, a new need has 
emerged in these areas for fast wireless data networks with 
long-range capabilities of up to 30 km. For these operating 
range requirements, the VHF/UHF radio spectrum, able to 
traverse these distances with relatively low transmitting 
power, is a natural choice. Combining the need for available 
frequencies in this range with the fact that it is mostly under­
utilized today has laid the foundation for designing efficient 
spectrum-sharing techniques, including cognitive radio (CR). 

IEEE 802.22 is the first international standard that is 
especially designed to achieve this goal. It describes a 
wireless regional area network (WRAN) that relies on new 
CR technologies and exploits the vacant white space in 
the VHF/UHF range while still being reserved to licensed 
TV bands. Managing the spectrum and transmitting broad-
band communications only in vacant frequency slots 
enables fast Internet access in hard-to-reach areas with 
low population density and, therefore, has high potential 
for extensive worldwide usage.

To exploit analog TV bands’ white spaces, an opportu­
nistic approach is selected. Both base stations (BSs) and 
clients, referred to as customer-premises equipment (CPE), 
are spread apart geographically, as seen in Figure S2. To 
enable a true CR network, the standard defines necessary 
capabilities from both the BSs and CPEs to enable cogni­
tive sensing and adapt to possible rapid changes incurred 
by incumbent users.

The physical (PHY) layer is the lowest network layer. It 
contains the circuitry used to transmit and receive analog 
communication signals. For implementing CR technologies, 
the PHY has to rapidly adapt to spectral changes and be 
both agile and flexible enough to jump between carrier 
frequencies without losing information. It is required to 
constantly listen to the operating band during designated 

quiet times to ensure that the incumbent user does not 
wake up and require its use. The media access control, 
situated above the PHY layer in the network hierarchy, 
is responsible for CR communication management. Its 
specifications include fast and dynamic adaptation to 
changes in the environment by constantly sensing the 
spectrum. The requirements for each of the different 
network layers are particularly demanding when com­
pared to other radio-frequency standards from the 
802.xx family.

To conclude, the 802.22 WRAN standard holds great 
promise in delivering fast broad-band connections to 
remote rural areas, with broadcast ranges of up to 30 km, 
by smartly sharing the already allocated VHF and UHF 
spectrum. Spectrum coexistence is made possible by CR 
tools, which require advanced technologies. These intro­
duce tremendous challenges in terms of the necessary 
hardware to meet such harsh demands while preserving 
small form factors and low power levels. Sub-Nyquist 
methods for spectral sensing and reconstruction offer a 
way to alleviate part of this burden by exploiting the sig­
nals’ spectral structure, effectively making CR technology 
more accessible.

IEEE 802.22 Standard for WRAN

FIGURE S2. The CR network illustration, including BSs and CPE.

BS

BS

CPE

CPE
CPE

CPE

CPE

CPE

~30 km

~100 km

Backbone
Network



141IEEE Signal Processing Magazine   |   January 2018   |

of theoretical concepts, demonstrating real-time wide-band 
spectrum sensing for CR from low-rate samples.

CR challenges
In this article, we focus on CR spectrum sensing. In practice, 
the information gathered from spectrum sensing is used to 
plan spectrum access by the unlicensed users. For completeness, 
we first briefly review the main components and challenges of 
this topic.

Spectrum analysis or management, which directly follows 
spectrum sensing, ensures coexistence with PUs and other CRs. 
The ambient RF environment is analyzed 
to characterize the behavior of PUs and the 
properties of the detected spectrum holes in 
terms of interference, duration of availabil-
ity, and more. Then, spectrum access can be 
optimized to maximize the CR throughput 
while maintaining interference caused to the 
licensed users below a target threshold [20]. 
Several techniques have been proposed to minimize interfer-
ence to PUs as well as ensure the proper reception of secondary 
signals, such as waveform design and multicarrier approaches 
[17], [20]. These are regrouped under the term spectrum sculpt-
ing [17]. Besides minimizing interference for the PUs, spectrum 
sharing needs to be coordinated within the CR network. Vari-
ous power control and resource allocation schemes that deal 
with this issue are reviewed in [16] and [20]. Spectrum access 
further requires synchronization between the CR transmitter 
and receiver [20].

The function of spectrum mobility ensures an adaptation 
to changes in the spectrum occupancy. When a licensed user 
starts accessing the channel currently being used by a CR, 
then the latter has to vacate the band and switch to another 
free channel. This operation is referred to as a handoff [16], 
[20]. The multicarrier transmission approach described previ-
ously in this section maintains uninterrupted communication 
in such scenarios [17]. Additional issues of security against 
malicious users and various attacks to the network are dis-
cussed in [16], [19], and [20].

We now focus on spectrum sensing, which is the fundamen-
tal enabler to spectrum access. To increase the chance of find-
ing an unoccupied spectral band, CRs must sense a wide band 
of the spectrum. Nyquist rates of wide-band signals are high 
and can even exceed today’s best ADC front-end bandwidths. 
Apart from that, such high sampling rates generate a large 
number of samples to process, which consequently affects 
speed and power consumption. To overcome the rate bottle-
neck, several sampling methods have been proposed that lever-
age the a priori known received signal’s structure, enabling 
sampling reduction. These include the random demodulator 
[22], [23], multirate sampling [24], multicoset sampling, and 
the modulated wide-band converter (MWC) [13], [25]–[27].

The CR then performs spectrum sensing on the acquired 
samples to detect PU transmissions. The simplest and most 
common spectrum-sensing approach is energy detection [28], 
which does not require any a priori knowledge on the input 

signal. Unfortunately, energy detection is very sensitive to 
noise and performs poorly in low SNRs. This becomes even 
more critical in sub-Nyquist regimes because the sensitivity of 
energy detection is amplified due to noise aliasing [29]. There-
fore, this scheme fails to meet CR performance requirements 
in low SNRs. In contrast, matched-filter (MF) detection [30], 
[31], which correlates a known waveform with the input signal 
to detect the presence of a transmission, is the optimal linear 
filter for maximizing SNR in the presence of additive stochas-
tic noise. However, this technique requires perfect knowledge 
of the potentially received transmission. When no a priori 

knowledge can be assumed on the received 
signals’ waveform, MF is difficult to imple-
ment. A compromise between both meth-
ods is cyclostationary detection [32], [33]. 
This strategy is more robust for noise than 
energy detection but, at the same time, only 
assumes that the signal of interest exhibits 
cyclostationarity, which is a typical charac-

teristic of communication signals. Consequently, cyclostation-
ary detection is a natural candidate for spectrum sensing from 
sub-Nyquist samples in low SNRs.

Besides noise, the task of spectrum sensing for CRs is fur-
ther complicated as a result of path loss, fading, and shadowing 
[34]–[36]. These phenomena are due to the signal’s propaga-
tion, which can be affected by obstacles and multipath and 
result in the attenuation of the signal’s power. To overcome 
these practical issues, collaborative CR networks have been 
considered, where different users share their sensing results 
and cooperatively decide on the licensed spectrum occupancy. 
Cooperative spectrum sensing may be classified into three 
catagories based on the way the data is shared by the CRs in 
the network: centralized, distributed, and relay assisted. In 
each of these settings, two options of data fusion arise. The 
first is decision fusion, or hard decision, where the CRs only 
report their binary local decisions. The second is measurement 
fusion, or soft decision, where they share their samples [34]. 
Cooperation has been shown to improve detection performance 
and relax sensitivity requirements by exploiting spatial diver-
sity [36], [37]. At the medium-access control level, coopera-
tion introduces the need for a tailored communication protocol 
and a control channel [14], [15], which can be implemented as 
a dedicated frequency channel or as an underlay ultrawide-band 
channel [10]. These CR communication challenges are outside 
the scope of this article.

Finally, CRs may require, or at least benefit from, joint spec-
trum sensing and direction-of-arrival (DOA) estimation. DOA 
recovery enhances CR performance by allowing exploitation 
of vacant bands in space in addition to the frequency domain. 
For example, a spectral band occupied by a PU situated in a 
certain direction with respect to the CR may be used by the 
latter for transmission to the opposite direction, where receiv-
ers do not sense the PU’s signal. To jointly estimate the carrier 
frequencies and DOAs of the received transmissions, arrays of 
sensors have been considered, and DOA recovery techniques, 
such as multiple signal classification (MUSIC) [38], [39], the 

In practice, the 
information gathered from 
spectrum sensing is used 
to plan spectrum access 
by the unlicensed users.
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estimation of signal parameters via rotational invariance tech-
niques (ESPRIT) [40], or compressed-sensing (CS)-based [41] 
approaches, may then be adapted to the joint carrier and DOA 
estimation problem. We review several algorithms that jointly 
estimate the carrier frequencies and DOAs of the received 
transmissions from the same low-rate samples obtained from 
an array of sensors.

This article focuses on the previously discussed spec-
trum-sensing challenges for CR. We first review sub-
Nyquist sampling methods for multiband signals and then 
consider the different aspects of spectrum sensing that are 
performed on low-rate samples, including cyclostationary 
detection, collaborative-spectrum sensing, and joint-carrier 
frequency and DOA estimation. Our emphasis is on practi-
cal low-rate acquisition schemes and tailored recovery that 
can be implemented in real CR settings. In particular, we 
examine the analog-to-digital interface of CRs, as opposed 
to the review in [42], which is concerned with the digital 
implications of compressive spectrum sensing. This allows 
for a demonstration of the theoretical concepts on hardware 
prototypes. In particular, we focus on the implementation of 
one sampling scheme reviewed here, the MWC, and show 
how the same low-rate samples can be used in the different 
extensions of spectrum sensing described in the first section 
of this article.

We note that CRs face additional fundamental dif-
ficulties, such as the hidden-node problem and potential 
interference from secondary users to existing primary com-
munication links [17], [20], [21]. These are beyond the scope 
of this article but need to be addressed as well for CRs to 
become practical.

Sub-Nyquist sampling for CR
CR receivers sense signals composed of several transmissions 
with unknown support that are spread over a wide spectrum. 
Such sparse wide-band signals belong to the so-called multi-
band model [25], [26], [43]. An example of a multiband signal 
( )x t  with K  bands is illustrated in Figure 2, with individual 

bandwidths not greater than ,B  centered around unknown 
carrier frequencies ,f f 2i Nyq#  where fNyq  denotes the sig-
nals’ Nyquist rate and  i  indexes the transmissions. Note that, 
for real-valued signals, K  is an even integer due to spectral 
conjugate symmetry, and the number of transmissions is 

.N K 2sig =

When the frequency support of ( )x t  is known, classic sam-
pling methods, such as demodulation, undersampling ADCs, 
and interleaved ADCs (see [43], [46], and references therein), 
reduce the sampling rate below Nyquist. Here, because the fre-
quency location of the transmissions is unknown, classic pro-
cessing first samples ( )x t  at its Nyquist rate ,fNyq  which may 
be prohibitively high. Sensing such wide-band signals may be 
performed by splitting them into several frequency bands and 
processing each band separately. This can be done either in 
series or in parallel. However, this increases the latency in the 
first case and the hardware complexity in the second.

To overcome the sampling-rate bottleneck, several blind sub-
Nyquist sampling and recovery schemes have been proposed 
that exploit the signal’s structure and, in particular, its sparsity in 
the frequency domain, but they do not require knowledge of the 
carrier frequencies. It has been shown in [25] that the minimal 
sampling rate for perfect blind recovery in multiband settings is 
twice the Landau rate [47], i.e., twice the occupied bandwidth. 
This rate can be orders of magnitude lower than Nyquist. In the 
remainder of this section, we survey several sub-Nyquist meth-
ods that theoretically achieve the minimal sampling rate. Two 
main limitations of sub-Nyquist sampling are noise enhance-
ment [29] and the inherent assumption that the channel is sparse 
and contains spectral holes. The former issue is discussed later 
in the “Statistics Detection” and “Collaborative-Spectrum Sens-
ing” sections and may be partially resolved by the techniques 
reviewed next, such as cyclostationary detection and collabora-
tive-spectrum sensing.  

Multitone model and the random demodulator
Laska et al. and Tropp et al. [22], [23] consider a discrete multi-
tone model and suggest sampling using the random demodula-
tor, as depicted in Figure 3. Multitone functions are composed 
of K  active tones spread over a bandwidth ,W  such that

	 ( ) , [ , ) .f t b e t 0 1i t2 !=
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Here, X is composed of K  normalized frequencies, or tones, 
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than the bandwidth .W  The goal is to recover both the tones ~  
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FIGURE 3. A block diagram for the random demodulator, including a ran-
dom number generator, a mixer, an accumulator, and a sampler [23].
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To sample the signal ( ),f t  it is first modulated by a high-
rate sequence ( )p tc  created by a pseudorandom number 
generator. It is then integrated and sampled at a low rate, as 
shown in Figure 3. The random sequence used for demodula-
tion is a square wave, which alternates between the levels 1!  
with equal probability. The K  tones present in ( )f t  are thus 
aliased by the pseudorandom sequence. The resulting demodu-
lated signal ( ) ( ) ( )y t f t p tc=  is then integrated over a period 

R1  and sampled at the low rate .R  This integrate-and-dump 
approach results in the following samples:

	 ( ) , , , , .y R y t m R0 1 1dt
/

( )/
m

m R

m R1
f= = -

+# � (2)

The samples ym  acquired by the random demodulator can 
be written as a linear combination of the W 1#  sparse ampli-
tude vector b that contains the coefficients b~  at the corre-
sponding locations ~ [22], [23]. In matrix form, we write

	 ,y bU= � (3)

where y  is the vector of size R  that contains the samples ym  
and U  is the known sampling matrix that describes the overall 
action of the system on the vector of amplitudes ,b  i.e.,  
demodulation and filtering (see [23] for more details). Capi
talizing on the sparsity of the vector ,b  the amplitudes b~  and 
their respective locations ~  can be recovered from the low-
rate samples y  using CS [41] techniques like those discussed 
in “Compressed Sensing Recovery,” in turn, allowing for the 
recovery of ( ).f t  The minimal required number of samples R  
for perfect recovery of ( )f t  in a noiseless setting is 2K [41].

The random demodulator is one of the pioneering and 
innovative attempts to extend the inherently discrete and 
finite CS theory to analog signals. However, truly analog 
signals, such as those we consider here, require a prohibi-
tively large number of harmonics to approximate them well 
within the discrete model. When attempting to approximate 
signals like those from the multiband model, the number of 
tones W  is of the order of the Nyquist rate, and the number 
of samples R  is a multiple of .KB  This, in turn, renders the 
reconstruction computationally prohibitive and very sensitive 

Compressed sensing (CS) [41], [43] is a framework for the 
simultaneous sensing and compression of finite-dimension­
al vectors, which relies on linear dimensionality reduction. 
In particular, the field of CS focuses on the following 
recovery problem:

	 ,z Ax= � (S1)

where x  is an N 1#  sparse vector, i.e., with few nonzero 
entries, and z  is a vector of the measurements of size 

.M N1  CS provides recovery conditions and algorithms 
to reconstruct x  from the low-dimensional vector z.

The different spectrum-sensing applications described in 
this article primarily deal with analog signals and sam­
pling techniques, while CS inherently defines a digital 
framework. We will discuss how the analog approaches 
of low-rate sampling use CS as a tool for recovery and 
adapt it to the analog setting. To that end, we describe 
here two CS greedy recovery algorithms that solve the 
optimization problem

	 . ,x x z Axargmin s.t0
x

= =t � (S2)

where · 0  denotes the 0, -norm. The first algorithm we 
consider belongs to the family of matching pursuit (MP) 
methods [44]. The orthogonal MP algorithm iteratively 
proceeds by finding the column of A  that is most correlat­
ed to the signal residual r,

	 ,A rargmaxi H= � (S3)

where the absolute value is computed elementwise. The 
residual is obtained by subtracting the contribution of a 
partial estimate x,t  of the signal at the , th iteration, from 
,z  as follows:

	 .r z Ax= - ,t � (S4)

Once the support set is updated by adding the index i, the 
coefficients of x,t  over the support set are updated, so as 
to minimize the residual error.

Other greedy techniques include thresholding algo­
rithms. Here, we focus on the iterative hard thresholding 
method proposed in [45]. Starting from an initial estimate 

,x 00 =t  the algorithm iterates a gradient descent step with 
step size μ followed by hard thresholding, i.e.,

	 ( ( ), ),x A Axx z kT H
1 1n= + -, , ,- -t t t � (S5)

until a convergence criterion is met. Here, ( , )x kT  denotes 
a thresholding operator on x  that sets all but the k entries 
of x  with the largest magnitudes to zero, and k is the 
sparsity level of x, assumed to be known.

These two greedy algorithms and other CS recovery 
techniques can be adapted to further settings, such as mul­
tiple measurement vectors, where the measurements z  
and sparse objective x  become matrices, infinite measure­
ment vectors, block sparsity, and more, as we will partially 
discuss in the article. Further details on CS recovery condi­
tions and techniques can be found in [41] and [43].

Compressed Sensing Recovery
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to the grid choice (see [46] for a detailed analysis). Further-
more, the time-domain approach precludes processing at a 
low rate, even for multitone inputs, because interpolation to 
the Nyquist rate is an essential ingredient of signal reconstruc-
tion. In terms of hardware and practical implementation, the 
random demodulator requires accurate modulation by a peri-
odic square mixing sequence and accurate integration, which 
may be challenging when implemented with analog signal 
generators, mixers, and filters.

In contrast to the random demodulator, which adopts a 
discrete multitone model, the rest of the approaches we focus 
on handle the analog multiband model (Figure 2), which is of 
interest in the context of CR.

Multirate sampling
An alternative sampling approach is based on the synchronous 
multirate sampling (SMRS) [24] scheme, which has been pro-
posed in the context of electro-optical systems to undersample 
multiband signals. The SMRS samples the input signal at P
different sampling rates ,Fi  each of which is an integer multi-
ple of a basic sampling rate .fD  This procedure aliases the sig-
nal with different intervals, as illustrated in Figure 4. The 
Fourier transform of the undersampled signals is then related 

to the original signal through an underdetermined system of 
linear equations,

	 ( ) ( ).f fz Qx= � (4)

Here, ( )fx  contains frequency slices of size fD  of the original 
signal ( ),x t  and ( )fz  is composed of the Fourier transform of 
the sampled signal. Each channel contributes M F fi i D=  
equations to the system (9), which concatenates the observa-
tion vector of all the channels. The measurement matrix Q has 
exactly P  nonzero elements in each column, which correspond 
to the locations of the spectral replica in each channel base-
band [ , ].F0 i

This approach assumes that either the signal or the sam-
pling time window is finite. The continuous variable f  is then 
discretized to a frequency resolution of .fD  Because ( )x t  is 
sparse in the frequency domain, the vector ( )fx  is sparse and 
can be recovered from (9) using CS techniques for each dis-
crete frequency .f  An alternative recovery method, referred 
to as the reduction procedure and illustrated in Figure 4, 
consists of detecting baseband frequencies in which there is 
no signal by observing the samples. These frequencies are 
assumed to account for the absence of signals of interest in all 
the frequencies that are downconverted to that baseband fre-
quency, which allows a reduction of the number of sampling 
channels. This assumption does not hold in the case where 
two or more frequency components cancel each other out 
due to aliasing, which happens with probability zero. Once 
the corresponding components are eliminated from (4), the 
reduced system is inverted using the Moore–Penrose pseudo-
inverse to recover ( ).fx

There are several drawbacks to the SMRS that limit its per-
formance and potential implementation. First, the discretiza-
tion process affects the SNR because some of the samples are 
thrown out. Furthermore, spectral components downconverted 
to off-the-grid frequencies are missed. In addition, the first 
recovery approach requires a large number of sampling chan-
nels, proportional to the number of active bands ,K  whereas 
the reduction procedure does not ensure a unique solution and 
the inversion problem is ill posed in many cases. Another dif-
ficulty is that, in practice, synchronization between channels 
sampling at different rates is challenging. Finally, this scheme 
samples wide-band signals using low-rate samplers. Practical 
ADCs introduce an inherent bandwidth limitation, modeled by 
an antialiasing low-pass filter (LPF) with a cutoff frequency 
determined by the sampling rate, which distorts the samples. 
Thus, the SMRS implementation requires low-rate samplers 
with large analog bandwidth.

Multicoset sampling
A popular scheme for sampling wide-band signals at the 
Nyquist rate involves multicoset or interleaved ADCs [25], 
[46], [48], in which several channels are used, each operating 
at a lower rate. Multicoset sampling may be described as the 
selection of certain samples from the uniform Nyquist grid, as 
shown in Figure 5, where T f1Nyq Nyq=  denotes the Nyquist 
period. More precisely, the uniform grid is divided into blocks 

Original Signals

Signals Sampled at Rate f1

Signals Sampled at Rate f2

Possible Occupied Support

f1 2f1

f2 2f2

3f1

(a)

(b)

(c)

(d)

FIGURE 4. The action of the SMRS on a multiband signal. (a) The input 
signal with K 2=  bands, (b) signals sampled at rate F1  in channel 1,  
(c) signals sampled at rate F2  in channel 2, and (d) possible support that 
is the intersection of the supports in channels 1 and 2 [24]. 
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of N  consecutive samples, from which only NM 1  are kept. 
Mathematically, the ith sampling sequence is defined as

	 [ ]
( ),
,

,
x n

x nT n mN c m
0 otherwise,

Z
c

iNyq
i

!
=

= +' � (5)

where the cosets ci  are ordered integers so that c c0 1 21#  
.c NMg1 1 1  A possible implementation of the sampling 

sequences (5) is depicted in Figure 6. The building blocks are 
M  uniform samplers at rate ,NT1 Nyq  where the ith sampler 
is shifted by c Ti Nyq  from the origin. When sampling at the 
Nyquist rate, M N=  and ( ).c i 1i = -

The samples in the Fourier domain can then be written as 
linear combinations of spectrum slices of ( ),x t  such that [25]

	 ( ) ( ), .f f fz Ax Fs!= � (6)

Here, ( )fx  denotes the spectrum slices of ( ),x t  fs = 
NT B1 Nyq $^ h  is the sampling rate of each channel, and 

, .f f2 2Fs s s= -6 @  This relation is illustrated in Figure 7. 
The M N#  sampling matrix A is determined by the selected 
cosets .ci  The recovery processing described later in this sec-
tion is performed in the time domain, where we can write

	 [ ] [ ], ,n n nz Ax Z!= � (7)

The vector [ ]nz  collects the measurements at ,t n fs=  and 
[ ]nx  contains the samples sequences corresponding to the 

spectrum slices of ( ).x t
The goal can then be stated as the recovery of [ ]nx  from 

the samples [ ].nz  The system (7) is underdetermined due to 
the sub-Nyquist setup and known as infinite measurement vec-
tors (IMVs) in the CS literature [41], [43]. With respect to these 
two properties, the digital reconstruction algorithm encom-
passes the following three stages [25] that we explain in more 
detail next:
1)	 The continuous-to-finite (CTF) block constructs a finite 

frame (or basis) from the samples.
2)	 The support recovery formulates an optimization problem 

whose solution’s support is identical to that of S  of [ ],nx  
i.e., the active slices.

3)	 The signal is digitally recovered by reducing (7) to the sup-
port of [ ].nx
The recovery of [ ]nx  for every n  independently is ineffi-

cient and not robust to noise. Instead, the CTF method, devel-
oped in [25], exploits the fact that the bands occupy continuous 
spectral intervals so that all [ ]nx  are jointly sparse, i.e., they 
have the same spectral support S  over time. The CTF produces 
a finite system of equations, called multiple measurement vec-
tors (MMVs) [41], [43], from the infinite number of linear sys-
tems described by (7). The samples are first summed as

	 [ ] [ ]n nQ z z
n

H=/ � (8)

and then decomposed to a frame V  such that .Q VVH=  
Clearly, there are many possible ways to select .V  One 

option is to construct it by performing an eigendecomposi-
tion of Q  and choosing V  as the matrix of eigenvectors cor-
responding to the nonzero eigenvalues. The finite-dimensional 
MMV system

x (t )

z1[t ]

zM [n ]

Time Shifts

∆t = c1TNyq

∆t = cMTNyq

t = nNTNyq

t = nNTNyq

.

.

.

FIGURE 6. A schematic implementation of multicoset sampling. The 
input signal ( )x t  is inserted into the multicoset sampler, which splits the 
signal into M  branches and delays each one by a fixed coefficient .c TNyqi  
Every branch is then sampled at the low rate / ( )NT1 Nyq  and then digitally 
processed to perform spectrum sensing and signal reconstruction.
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FIGURE 7. The spectrum slices of the input signal (x f ) are shown here to 
be multiplied by the coefficients ail  of the sensing matrix ,A  resulting in 
the measurements zi  for the i th channel. Note that, in multicoset sampling, 
only the slices’ complex phase is modified by the coefficients .ail  In the 
MWC sampling described later, in the “MWC Sampling” section, both the 
phases and amplitudes are affected.
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FIGURE 5. An illustration of multicoset sampling.
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	 AUV = � (9)

is then solved for the sparsest matrix U  with minimal number 
of nonidentically zero rows using CS techniques [41], [43]. 
The key observation of this recovery strategy is that the indi-
ces of the nonzero rows of U  coincide with the active spec-
trum slices of [ ]nz  [25]. These indices are referred to as the 
support of [ ]nz  and are denoted by .S

Once the support S  is known, [ ]nx  is recovered by reduc-
ing the system of equations (7) to .S  The resulting matrix ,AS  
which contains the columns of A corresponding to ,S  is then 
inverted as follows:

	 [ ] [ ].n nx A zS S= @ � (10)

Here, [ ]nxS  denotes the vector [ ]nx  reduced to its support. 
The remaining entries of [ ]nx  are equal to zero.

The overall sampling rate of the multicoset system is

	 .f Mf
N
M fs Nyqtot = = � (11)

The minimal number of channels is dictated by CS results 
[41] such that M K2$  with f Bs $  per channel. The sam-
pling rate can thus be as low as 2KB, which is twice the 
Landau rate [47].

Although this sampling scheme seems relatively simple 
and straightforward, it suffers from several practical draw-
backs [46]. First, as in the SMRS approach, multicoset sam-
pling requires low-rate ADCs with large analog bandwidth. 
Another issue arises from the time-shift elements, because 
maintaining accurate time delays between the ADCs to the 
order of the Nyquist interval TNyq  is difficult. Finally, the num-
ber of channels M required for recovery of the active bands 
can be prohibitively high. The MWC, presented in the next 
section, uses similar recovery techniques while overcoming 
these practical sampling issues.

MWC sampling
The MWC [26] exploits the blind recovery ideas developed 
in [25] and combines them with the advantages of analog 
RF demodulation. To circumvent the analog bandwidth 
issue in the ADCs, an RF front end mixes the input signal 
( )x t  with periodic waveforms. This operation imitates the 

effect of delayed undersampling used in the multicoset 
scheme and results in folding the spectrum to the baseband 
with different weights for each frequency interval. These 
characteristics of the MWC enable practical hardware 
implementation, which will be described in the “MWC 
Hardware” section.

More specifically, the MWC is composed of M  parallel 
channels. In each channel, ( )x t  is multiplied by a periodic 
mixing function ( )p ti  with period T f1p p=  and Fou-
rier expansion

	 ( ) .p t a ei il
l

j
T

lt2
p=

3

3 r

=-

/ � (12)

The mixing process aliases the spectrum such that each band 
appears at a baseband. The signal then goes through an LPF 
with cutoff frequency f 2s  and is sampled at rate .f fs p$  The 
analog mixture boils down to the same mathematical relation 
between the samples and the N f fsNyq=  frequency slices of 
( )x t  as in multicoset sampling, i.e., (6) in frequency and (7) in 

time, as shown in Figure 7. Here, the M N#   sampling matrix 
A contains the Fourier coefficients ail  of the periodic mixing 
functions. The recovery conditions and algorithm are identical 
to those described for multicoset sampling.

Choosing the channels’ sampling rate fs  to be equal to the 
mixing rate fp  results in a similar configuration as the multi-
coset scheme in terms of the number of channels. In this case, 
the minimal number of channels required for the recovery 
of  K  bands is 2K. The number of branches dictates the total 
number of hardware devices and thus governs the implemen-
tation complexity. Reducing the number of channels is a cru-
cial challenge for practical implementation of a CR receiver. 
The MWC architecture presents an interesting flexibility that 
permits trading between physical channels and sampling rate, 
allowing a drastic reduction in the number of channels, even 
down to a single channel.

Consider a configuration where f qfs p=  with an odd .q  
In this case, the ith physical channel provides q  equations 
over ,,f f2 2Fp p p= -6 @  as illustrated in Figure 8. Con-
ceptually, M  physical channels sampling at rate f qfs p=  
are then equivalent to Mq channels sampling at .f fs p=  The 
number of channels is thus reduced at the expense of the 
higher sampling rate fs  in each channel and additional digi-
tal processing. The output of each of the M  physical chan-
nels is digitally demodulated and filtered to produce samples 
that would result from Mq  equivalent virtual branches. This 
happens in the so-called expander module, directly after the 
sampling stage and before the digital processing described 
previously in the “Multicoset Sampling” section, in the con-
text of multicoset sampling. At its brink, this strategy allows 
collapsing a system with M  channels to a single branch with 
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FIGURE 8. An illustration of the expander configuration for .q 5=  (a) The 
spectrum of the output [ ]z niu  of the physical ith channel and (b) the 
spectrum of the samples [ ]z n,i j  of the q 5=  equivalent virtual channels 
for , , ,j 1 5f=  after digital expansion.
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the sampling rate f fMs p=  (further details can be found in 
[26], [49], and [50]).

The MWC sampling and recovery processes are illustrated 
in Figure 9. This approach results in a hardware-efficient sub-
Nyquist sampling method that does not suffer from the practi-
cal limitations described in previous sections, in particular, the 
analog bandwidth limitation of low-rate ADCs. Additionally, the 
number of MWC channels can be drastically reduced below 
2K to as few as one, using a higher sampling rate fs  in each 
channel and additional digital processing. This tremendously 
reduces the complexity of the hardware implementation. 
However, the choice of appropriate periodic functions ( )p ti  
to ensure correct recovery is challenging. Some guidelines are 
provided in [43], [51], and [52].

Uniform-linear-array-based MWC
An alternative sensing configuration that is composed of a uni-
form linear array (ULA) and relies on the sampling paradigm 
of the MWC is presented in [53]. The sensing system consists 
of a ULA composed of M  sensors, with two adjacent sensors 
separated by a distance ,d  such that ( ) ,cosd c fNyq1 i^ h  
where c  is the speed of light and i  is the angle of arrival 
(AOA) of the signal ( ) .x t  This system, illustrated in Figure 10, 
capitalizes on the different accumulated phases of the input 
signal between sensors, given by ,e j f2 i mr x  where

	 ( )cosdm
cmx i= � (13)

is the delay at the mth sensor with respect to the first one. 
Each sensor implements one channel of the MWC, i.e., the 
input signal is mixed with a periodic function, low-pass fil-
tered, and then sampled at a low rate.

This configuration has three main advantages over the 
standard MWC. First, it allows a simpler design of the mix-
ing functions, which can be identical in all sensors. The only 
requirement on ( ),p t  besides being periodic with period ,Tp  is 

that none of its Fourier series coefficients within the signal’s 
Nyquist bandwidth is zero. Second, the ULA-based system out-
performs the MWC in terms of recovery performance in low 
SNR regimes. Because all of the MWC channels belong to the 
same sensor, they are all affected by the same additive sensor 
noise. In the ULA architecture, each channel belongs to a dif-
ferent sensor with uncorrelated sensor noise between channels. 
This alternative architecture benefits from the same flexibil-
ity as the standard MWC in terms of collapsing the channels, 
which translates here into reducing the antennas. This leads 
to a tradeoff between hardware complexity, governed by the 
number of antennas, and SNR. Finally, as will be discussed  
later in the “Joint-Carrier Frequency and Direction Estimation” 
section, the modified system can be easily extended to enable 
joint spectrum sensing and DOA estimation.

Similar to the previous schemes, the samples ( )fz  can be 
expressed as a linear transformation of the unknown vector of 
slices ( ),fx  such that
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FIGURE 10. A uniform linear array configuration with M  sensors, with 
the distance d  between two adjacent sensors. Each sensor includes an 
analog front end composed of a mixer with the same periodic function 
( ),tp  an LPF, and a sampler at the rate .fs
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	 ( ) ( ), .f f fz Ax Fs!= � (14)

Here, ( )fx  is a nonsparse vector that contains cyclic shifted, 
scaled, and sampled versions of the active bands, as shown in 
Figure 11. In contrast to the previous schemes, in this configu-
ration, the matrix A, defined by
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depends on the unknown carrier frequencies.
Two approaches are presented in [53] to recover the carrier 

frequencies of the transmissions composing the input signal. 
The first is based on CS algorithms and assumes that the car-
riers lie on a predefined grid. In this case, the resulting sensing 
matrix, which extends A with respect to the grid, is known, 

and the expanded vector ( )fx  is sparse. This leads to a similar 
system as (6) or (7), which can be solved using the recovery 
paradigm from [25], described in the context of multicoset 
sampling. In the second technique, the grid assumption is 
dropped, and ESPRIT [40] is used to estimate the carrier fre-
quencies. This approach first computes the sample covariance 
of the measurements [ ]nz  as

	 [ ] [ ]n nR z z
n

H=/ � (16)

and performs a singular value decomposition. The nonzero 
singular values correspond to the signal’s subspace, and the 
carrier frequencies are then estimated from these. Once the 
carriers are recovered, the signal itself is reconstructed by 
inverting the sampling matrix A in (14).

The minimal number of sensors required by both recon-
struction methods in a noiseless setting is ,M K2=  with each 
sensor sampling at the minimal rate of f Bs =  to allow for per-
fect signal recovery [53]. The proposed system thus achieves 
the minimal sampling rate 2KB derived in [25]. We note that 
the expander strategy proposed in the context of the MWC can 
be applied in this configuration as well.

MWC hardware

MWC prototype
One of the main aspects that distinguishes the sub-Nyquist 
MWC from other sampling schemes is its practical implemen-
tation [49], proving the feasibility of sub-Nyquist sampling 
even under distorting effects of analog components and physi-
cal phenomena. A hardware prototype, shown in Figure 12, 
was developed and built according to the block diagram in 
Figure 9. In particular, the system receives an input signal with 
a Nyquist rate of 6 GHz, a spectral occupancy of up to 
200 MHz, and samples at an effective rate of 480 MHz, i.e., 
only 8% of the Nyquist rate and 2.4 times the Landau rate. 

(a) (b)

(c)

(d)
(e)

(f)

FIGURE 12. The MWC CR system prototype: (a) vector signal generators, (b) an FPGA mixing sequences generator, (c) an MWC analog front-end board, 
(d) an RF combiner, (e) a spectrum analyzer, and (f) an ADC and digital signal processor digital signal processor. 
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FIGURE 11. (a) The original source signals at baseband (before modulation) 
and (b) the output signals at baseband ( )x f  after modulation, mixing, filter-
ing, and sampling.
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This rate constitutes a relatively small oversampling factor of 
20% with respect to the theoretical lower sampling bound. 
This section describes the different elements of the hardware 
prototype, which are shown in Figure 12, and explains the var-
ious considerations that were taken into account when imple-
menting the theoretical concepts on actual analog components.

At the heart of the system lies the proprietary MWC board 
[49] that implements the sub-Nyquist analog front end. The 
card uses a high-speed one-to-four analog splitter that dupli-
cates the wide-band signal to M 4=  channels, with an expan-
sion factor of ,q 5=  yielding M 20q =  virtual channels after 
digital expansion. Then, an analog preprocessing step, com-
posed of preliminary equalization, impedance corrections, and 
gain adjustments, aims at maintaining the dynamic range and 
fidelity of the input in each channel. Indeed, the signal and 
mixing sequences must be amplified to specific levels before 
entering the analog mixers to ensure proper behavior emulat-
ing mathematical multiplication with the mixing sequences. 
The entire analog path of the multiband input signal can be 
seen in Figure 13.

The modulated signal next passes through an analog anti-
aliasing LPF. The antialiasing filter must be characterized  
by both an almost linear phase response in the passband 
from 0 to 50 MHz and an attenuation of more than 20 db at 

.f 2 60 MHzs =  A seventh-order type I Chebyshev LPF with 
a cutoff frequency ( )3 dB-  of 50 MHz was chosen for the 
implementation. After impedance and gain corrections, the 
spectral content of the signal is limited to 50 MHz and con-
tains a linear combination of the occupied bands with different 
amplitudes and phases, as seen in Figure 7. Finally, the low-rate 
analog signal is sampled by a National Instruments ADC oper-
ating at 120 MHz, leading to a total sampling rate of 480 MHz.

The mixing sequences that modulate the signal play an 
essential part in signal recovery. They must have low cross cor-
relations with each other, while spanning a large bandwidth 
determined by the Nyquist rate of the input signal, and yet be 

easy enough to generate with relatively cheap, off-the-shelf hard-
ware. The sequences ( ),p ti  for , ,i 1 4f=  are chosen as trun-
cated versions of Gold codes [54], which are commonly used in 
telecommunication (code division multiple access) and satellite 
navigation (global positioning system). Mixing sequences based 
on Gold codes were found to give good results in the MWC sys-
tem [55], primarily due to their small cross correlations.

Because Gold codes are binary, the mixing sequences are 
restricted to alternating 1!  values. This fact allows the digital 
generation of the sequences on a dedicated field-programma-
ble gate array (FPGA). Alternatively, they can be implemented 
on a small microchip with very low power and complexity. The 
added benefit of producing the mixing sequences on such a plat-
form is that the entire sampling scheme may be synchronized 
and triggered using the same FPGA with minimally added 
phase noise and jitter, keeping a closed synchronization loop 
with the samplers and mixers. An XiLinX VC707 FPGA 
evaluation kit  acts as the central timing unit of the entire sub-
Nyquist CR setup by generating the mixing sequences and the 
synchronization signals required for successful operation. It is 
crucial that both the mixing period Tp  and the low-rate sam-
plers operating at ( )q f1 p+  (due to intended oversampling) are 
fully synchronized to ensure correct modeling of the entire 
system and, consequently, guarantee accurate support detec-
tion and signal reconstruction.

The digital back end is implemented using a National 
Instruments PXIe-1065 computer with a dc-coupled ADC. 
Because the digital processing is performed at the low rate ,fs  
very low computational load is required to achieve real-time 
recovery. MATLAB and LabVIEW environments are used 
for implementing the various digital operations and provide 
an easy and flexible research platform for further experi-
mentations, as discussed in the next sections. The sampling 
matrix A  is computed once offline, using the calibration pro-
cess outlined in [50] and described in “Hardware Calibration 
of the MWC.”
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Support recovery
The prototype is fed with RF signals composed of up to five 
carrier transmissions with an unknown total bandwidth occu-
pancy of up to 200 MHz and a Nyquist rate of 6 GHz. An RF 
input ( )x t  is generated using vector signal generators, each 
producing one modulated data channel with individual band-
width of up to 20 MHz. The input transmissions then go 
through an RF combiner, resulting in a dynamic multiband 
input signal. This allows for testing of the system’s ability to 
rapidly sense the input spectrum and adapt to changes, as 
required by modern CR standards (see “IEEE 802.22 Standard 
for WRAN” for details). In addition, the described setup can 
simulate more complex scenarios, including collaborative-
spectrum sensing [56], [57], joint DOA estimation [53], cyclo-
stationary-based detection [58], and various modulation 
schemes, such as phase-shift keying (PSK), orthogonal fre-

quency-division multiplexing (OFDM), and more, for verify-
ing sub-Nyquist data reconstruction capabilities.

Support recovery is digitally performed on the low-rate 
samples, as previously presented in the “Sub-Nyquist Sam-
pling for CR” section in the context of multicoset sampling. 
The prototype successfully recovers the support of the trans-
mitted bands when SNR levels are above ,15 dB  as demon-
strated in Figure 14 (see Table 1 for Figure 14 parameters). 
More sophisticated detection schemes, such as cyclostation-
ary detection, allow perfect support recovery from the same 
sub-Nyquist samples in lower SNR regimes of ,0 15 dB-  as 
seen in the “Cyclostationary Detection” section, and will be 
further discussed next.

The main advantage of the MWC is that sensing is done in 
real time for the entire spectral range, even though the opera-
tion is performed solely on sub-Nyquist samples, which results 

In the sampling system described previously in the “MWC 
Sampling” section, the system matrix A  is theoretically 
known and contains the Fourier series coefficients of the 
mixing sequences, such that

	 ( ) d .A c T p t e t1
il il
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-# � (S6)

When calculating the matrix coefficients using (S6), perfect 
support recovery and signal reconstruction are guaranteed 
both theoretically and by numerical verification performed in 
software simulations. However, in practice, analog and phys­
ical distortions and imperfections affect the mixing and sam­
pling process, and some modeling assumptions that describe 
the system matrix in theory no longer hold. The main effects 
that distort the transfer function are described as follows.
•	 The mixing procedure introduces nonlinearities. In gener­

al, mixers are intended to modulate narrow-band signals 
with one sine carrier, as opposed to our mixing sequenc­
es that effectively contain over 100 different harmonics.

•	 The analog filters have a nonflat frequency response, 
both in amplitude and phase.

•	 The actual design uses amplifiers and attenuators. These 
components exhibit a nonlinear frequency response.

•	 The phase noise and jitter, due to variations in com­
ponents, cables, and clock deltas, lead to unknown 
and varying time shifts between the mixing and sam­
pling stages.

An accurate method for estimating the effective A  is cru­
cial for successful support recovery and signal reconstruc­
tion. An adaptive calibration scheme is proposed in [50]. 
The calibration procedure estimates the elements of A  
with no prior knowledge on the mixing series ( ),p ti  except 
for their period length .Tp

Because our system is not time invariant (e.g., samplers) 
or linear (e.g., mixers), one cannot find the entries of the 
system matrix by simply measuring its response to an 
impulse. To circumvent this difficulty, the system’s response 
is investigated for every frequency band of the spectrum 
by injecting known sinusoidal inputs sequentially. In each 
iteration, the following input

	 ( ) , , , ,sinx t lf f t l L2 0 1l l p 0 0f!a r= +^ h6 6@ @ � (S7)

is fed to the system. Here, .f f0 1 p0 =  was heuristically cho­
sen, and the amplitudes la  increase with l to compensate 
for the attenuation of the Fourier coefficients of the mixing 
sequences at high frequencies. Every sine wave corre­
sponds to a specific spectral band and translates to a rele­
vant column of the matrix A. The sub-Nyquist samples are 
then digitally processed to estimate the system matrix coef­
ficients column by column. Performance of the calibrated 
system is illustrated in Figure S3.

Hardware Calibration of the MWC

FIGURE S3. The hardware reconstruction success rate of the calibrated 
matrix versus the theoretical matrix.
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in substantial savings in both computational and memory com-
plexity. In additional tests, it is shown that the bandwidth occu-
pied in each band can also be very small without impeding 
the performance, as shown in Figure 15, where the support of 
signals with very low bandwidth (just 10% occupancy within 
the 20-MHz band) is correctly detected.

Signal reconstruction
Once the support is recovered, the data are reconstructed 
from the sub-Nyquist samples by applying (10). This step is 
performed in real time, reconstructing the signal bands [ ]nz  
one sample at a time, with low complexity due to the small 
dimensions of the matrix–vector multiplication. We note 
that reconstruction does not require interpolation to the 
Nyquist grid. The active transmissions are recovered at the 
low rate of 20 MHz, corresponding to the inherent band-
width of the slices ( ).fz

The prototype’s digital recovery stage is further expanded 
to support decoding of common communication modulations, 
including binary PSK (BPSK), quarternary PSK (QPSK), 
quadrature amplitude modulation, and OFDM. An example 
for the decoding of three QPSK modulated bands is presented 
in Figure 16. The I-axis (in phase) and Q-axis (quadrature) 
(I/Q) constellations are shown after reconstructing the origi-
nal transmitted signals xS  using (10), from their low-rate and 
aliased sampled signals .zn  The I/Q constellations of the base-
band signals are displayed, each individually translated using 
a general QPSK decoder. In this example, the user broadcasts 
text strings, which are then deciphered and displayed on screen. 
There are no restrictions regarding the modulation type, band-
width, or other parameters because the baseband information 
is precisely reconstructed regardless of its 
respective content. Therefore, any digi-
tal modulation method, as well as analog 
broadcasts, can be transmitted and deci-
phered without the loss of information by 
applying any desirable decoding scheme 
directly to the sub-Nyquist samples.

By combining both spectrum sens-
ing and signal reconstruction, the MWC 
prototype serves as two separate commu-
nication devices. The first is a state-of-the-
art CR that performs real-time spectrum 
sensing at sub-Nyquist rates, and the sec-
ond is a receiver that is able to simultane-
ously decode multiple data transmissions, 
regardless of their carrier frequencies, 
while adapting to spectral changes in real time. In cases 
where the support of the potential active transmissions is a 
priori known (e.g., potential cellular carriers), the MWC may  
be used as an RF demodulator that efficiently acquires and 
deciphers several frequency bands simultaneously.

Other schemes would require a dedicated demodulation 
channel for each potentially active band. In this case, the 
mixing sequences should be designed so that their Fou-
rier coefficients are nonzero only in the bands of inter-

est, increasing SNR, and the support recovery stage is not 
needed [59].

Statistics detection
In the previous section, we reviewed recent sub-Nyquist 
sampling methods that reconstruct a multiband signal, such 

as a CR signal, from low-rate samples. 
However, the final goal of CRs often only 
requires detection and not necessarily a 
perfect reconstruction of the PUs’ trans-
missions. In this regard, several works 
have proposed performing detection on 
second-order signal statistics, which share 
the same frequency support as the ori
ginal signal. In particular, power and 
cyclic spectra have been considered for 
stationary and cyclostationary [32] (see 
“Cyclostationarity”) signals, respectively. 
Instead of recovering the signal from the 
low-rate samples, its statistics are recon-
structed, and its support is estimated [58], 
[60]–[71].

Recovering second-order statistics rather than the signal 
itself benefits from two main advantages. First, it allows a fur-
ther reduction of the sampling rate, as we will discuss later in this 
section. Intuitively, statistics have less degrees of freedom than 
the signal itself, requiring fewer samples for their reconstruc-
tion. This follows from the assumption that the signal of interest 
is either stationary or cyclostationary. Going one step further, 
the sparsity constraint can even be removed in this case, and the 
power/cyclic spectrum of nonsparse signals can be recovered 

(a)

(b)

(c)

FIGURE 14. A screenshot from the MWC recovery software: (a) low-rate 
samples acquired from one MWC channel at rate 120 MHz; (b) digital re-
construction of the entire spectrum, performed from sub-Nyquist samples; 
and (c) true input signal ( )x t  showed using a fast spectrum analyzer. 

The main advantage of 
the MWC is that sensing 
is done in real time 
for the entire spectral 
range, even though the 
operation is performed 
solely on sub-Nyquist 
samples, which results 
in substantial savings in 
both computational and 
memory complexity.
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Cyclostationary processes have statistical characteristics 
that vary periodically with time. Examples of period­
ic phenomena that give rise to random data abound in 
engineering and science. In particular, in communica­
tions, periodicity arises from the underlying data modu­
lation mechanisms, such as carrier modulation, periodic 
keying, or pulse modulation [81]. A characteristic func­
tion of such processes, referred to as the cyclic spec-
trum, extends the traditional power spectrum to a 
two-dimensional map, with respect to angular and cyclic 
frequency variables. The cyclic spectrum exhibits spec­
tral peaks at certain frequency locations, called the 
cyclic frequencies,  which are determined by the signal’s 
parameters, particularly the carrier frequency and sym­
bol rate [72]. 

A process x(t ) is said to be wide-sense cyclostationary 
with the period T0  if its mean ( ) [ ( )]t x tExn =  and autocor­
relation ( , ) [ ( ) ( )]R t x t x tEs x x= +  are both periodic with 
the period T0  [32], i.e.,

	 ( ) ( ), ( , ) ( , ),t T t R t T R tx x x x0 0n n x x+ = + = � (S8)

for all .t R!  Given a wide-sense cyclostationary random 
process, its autocorrelation ( , )R tx x  can be expanded in a 
Fourier series:

	 ( , ) ( ) ,R t R ex x
j t2x x= a

a

ra/ � (S9)

where the sum is over integer multiples of the fundamental 
frequency /T1 0  and the Fourier coefficients ( )Rx xa  are 
referred to as cyclic autocorrelation functions. The cyclic 
spectrum is obtained by taking the Fourier transform of the 
cyclic autocorrelation functions with respect to ,x  i.e.,

	 ( ) ( ) ,dS f R ex x
j f2x x=

3

3a a r x

-

-# � (S10)

where a is referred to as the cyclic frequency and f is the 
angular frequency [32]. If there is more than one funda­
mental frequency / ,T1 0  then the process x(t) is said to be 
polycyclostationary in the wide sense. In this case, the 
cyclic spectrum contains harmonics (integer multiples) of 
each of the fundamental cyclic frequencies [72]. These cyclic 
frequencies are governed by the transmissions’ carrier fre­
quencies and symbol rates as well as modulation types.

An alternative and more intuitive interpretation of the 
cyclic spectrum expresses it as the cross-spectral density 

( ) ( )S f S fx uv=a  of two frequency-shifted versions of x(t ), 
u(t ), and v(t ), such that

	 ( ) ( ) , ( ) ( ) .u t x t e v t x t ej t j t_ _ra ra- + � (S11)

Then, from [73], it holds that

	 )( ) ( ) .S f S f X f X f2 2Ex uv
a a= = + -a ` `j j8 B � (S12)

As expressed in (S12), the cyclic spectrum ( )S fx
a  mea­

sures correlations between different spectral compo­
nents of x(t). Stationary signals, which do not exhibit 
a spectral correlation between distinct frequency com­
ponents, appear only at .0a =  This property is the 
key to the robust detection of cyclostationary signals 
in the presence of stationary noise, in low signal-to-noise 
ratio regimes.

The support region in the ( , )f a  plane of the cyclic spec­
trum of a bandpass cyclostationary signal is composed of 
four diamonds, as shown in Figure S4. Thus, the cyclic 
spectrum ( )S fx

a  of a multiband signal with K uncorrelated 
transmissions is supported over 4K diamond-shaped 
areas. Figure S5 illustrates the cyclic spectrum of two 
modulation types, amplitude modulation and binary 
phase-shift keying (BPSK).

Cyclostationarity

FIGURE S4. The support region of the cyclic spectrum of a bandpass 
cyclostationary signal with the carrier frequency fc  and bandwidth .B

α

2fc

–2fc

–fc fc

f

B

2B

FIGURE S5. The cyclic-spectrum magnitude of bandpass signals with 
(a) amplitude modulation and (b) BPSK modulation.

f αf α f αf α
(a) (b)
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from samples obtained below the Nyquist rate [58], [60], [61], 
[65], [66], [70]. This is useful for CRs operating in less sparse 
environments, in which the lower bound of twice the Landau 
rate may exceed the Nyquist rate. Second, robustness to noise is 
increased due to the averaging performed when estimating statis-
tics. This is drastically improved in the case of cyclostationary 
signals in the presence of stationary noise. Indeed, exploiting 
cyclostationarity properties exhibited by communication signals 
allows them to separate from stationary noise, leading to bet-
ter detection in low SNR regimes [72]. In this section, we first 
review power-spectrum detection techniques in stationary set-
tings and then extend these to the cyclic-spectrum detection of 
cyclostationary signals.

Power-spectrum-based detection
In the statistical setting, the signal ( )x t  is modeled as the sum 
of uncorrelated wide-sense stationary transmissions. The sta-
tionarity assumption is key to further reducing the sampling 
rate. In frequency, stationarity is expressed by the absence 
of correlation between distinct frequency components. 
Specifically, as shown in [73], the Fourier transform of a wide-
sense stationary signal is a nonstationary white process, 
such that

	 [ ( ) ( )] ( ) ( ).X f X f S f f fE *
x1 2 1 1 2d= - � (17)

Here, the power spectrum ( )S fx  of ( )x t  is the Fourier transform 
of its autocorrelation ( ).rx x  Thus, it is obvious that the support 
of ( )S fx  is identical to ( ) .fX  In this case, we will see that the 
autocorrelation matrix of the N  spectrum frequency slices of 
( )x t  contained in ( )fx  is diagonal and presents only N  degrees 

of freedom, which is key to the sampling-rate reduction.
Another intuitive interpretation can be given in the time 

domain. The autocorrelation of stationary signals ( )rx x = 
( ) ( )x t x tE x-6 @ is a function only of the time lags x  and not 

of the sampling times .t  Therefore, the autocorrelation recov-
ery capabilities of a sampling set are determined by the den-
sity of the associated difference set—the set that contains the 
time lags. The cardinality of the difference set, which depends 
on the choice of sampling times, is, in the worst case, equal 
to twice that of the original set. This corresponds, e.g., to a 

uniform sampling set. As a consequence, when the sampling 
scheme is not tailored to a power-spectrum recovery, the mini-
mal required sampling rate in the blind setting is the Landau 
rate [66]. However, for an appropriate choice of sampling 
times [62], [74], the cardinality of the difference set can be the 
square of the original sampling set. In this case, under certain 

Table 1. The MWC parameters used in the setup of Figure 14.

Value Notes 

fs 120 MHz ( )q f1 p+ —Sampling rate 

fp 20 MHz /T1 p  

q 5 The expansion factor 

/M q 4 The number of hardware channels 

f max  3 GHz /f f 2  max Nyq=  

B 18.5 MHz The bandwidth on each carrier 

Mp  305 The number of ±1 intervals in each period of 
( )p ti  

FIGURE 15. This setup is identical to Figure 14. In this case, the individual 
transmissions have low bandwidth, highlighting the structure of the signal 
when folding to the baseband. 

(a) (d)

(b)

(c)

FIGURE 16. The demodulation, reconstruction, and detection of N 3sig =  
inputs from sub-Nyquist samples using the MWC CR prototype: (a) I/Q 
phase diagrams, showing the modulation pattern of the transmitted bands 
after reconstruction from the low-rate samples, (b) sub-Nyquist samples 
from an MWC channel [ ]z ni  in the Fourier domain, (c) signal sampled by 
an external spectrum analyzer showing the entire bandwidth of 3 GHz, and 
(d) information sent on each carrier, proving successful reconstruction. 



154 IEEE Signal Processing Magazine   |   January 2018   |

conditions, the density of the different set can be arbitrarily 
high even if the density of the sampling set reaches  zero. With 
an appropriate design, the autocorrelation or power spectrum 
may thus be estimated from samples with arbitrarily low 
average sampling rates [60]–[62], [74]–[76] at the expense of 
increased latency.

We first review power-spectrum recovery techniques that 
do not exploit any specific design. We then present methods 
that further reduce the sampling rate by adapting the sam-
pling scheme to the purpose of autocorrelation or power-spec-
trum estimation.

Power-spectrum recovery
In this section, we first focus on sampling with generic MWC 
or multicoset schemes without a specific design of the mixing 
sequences or cosets, respectively.

To recover ( )S fx  from the low-rates samples ( )fz  obtained 
via multicoset sampling or the MWC [66], consider the cor-
relation matrix of the latter ( ) [ ( ) ( )].f f fR z zE H

z =  From (6), 
( )fRz  can be related to correlations between the slices ( )fx , 

i.e., ( ) [ ( ) ( )],f f fR x xE H
x =  as follows:

	 ( ) ( ) , .f f fR AR A FH
sz x != � (18)

From (17), the correlation matrix ( )fRx  is diagonal and con-
tains the power spectrum ( )S fx  at the corresponding frequen-
cies, as

	 ( ) , .f S f if
f

f
2

R Fx s s
Nyq

x( , )i i != + -c m � (19)

Recovering the power spectrum ( )S fx  is thus equivalent to 
recovering the matrix ( ).fRx  Exploiting the fact that ( )fRx  is 
diagonal and denoting its diagonal by using ( ),frx  (18) can be 
reduced to 

	 ( ) ( ) ( ),f fr A A rz x9= r � (20)

where ( ) ( ( ))f fvecr Rz z=  concatenates the columns of 
( )fRz . The matrix Ar  is the conjugate of ,A  and 9  denotes 

the Khatri–Rao product [77].
Generic choices of the sampling parameters, either mixing 

sequences or cosets, which are only required to ensure that A  
is a full spark, are investigated in [66]. The Khatri–Rao prod-
uct ( )A A9r  is a full spark as well if ,M N 22  i.e., the num-
ber of rows of A  is at least half the number of slices .N  The 
minimal sampling rate to recover ( ),frx  and, consequently,  

( ),S fx  from ( )frz  in (20) is thus equal to the Landau rate 
,KB  i.e., half the rate required for signal recovery [66]. The 

recovery of ( )frx  is performed using the procedure presented 
in the context of signal recovery on (20), i.e., CTF, support 
recovery, and power-spectrum reconstruction (rather than sig-
nal reconstruction).

The same result for the minimal sampling rate is valid for 
nonsparse signals, for which KB  is fNyq  [66]. The power spec-
trum of such signals can be recovered at half their Nyquist rate. 
This means that even without any sparsity constraints on the 

signal in crowded environments, a CR can retrieve its power 
spectrum by exploiting stationarity. In this case, the system 
(20) is overdetermined, and ( )frx  is obtained by a simple 
pseudoinverse operation.

In practice, we do not have access to ( ),fRz  which thus 
needs to be estimated. The overall sensing time is divided into 
N f  frames or windows of length Ns  samples. In [66], different 
choices of N f  and Ns  are examined for a fixed sensing time. 
To estimate the autocorrelation matrix ( )fRz  in the frequency 
domain, estimates of ( ), ,f i M1zi # #  denoted by ( ),fzit  are 
first computed using the fast Fourier transform on the samples 
[ ]z ni  over a finite time window. The elements of ( )fRz  are 

then obtained by averaging the correlations between ( )fzit  
over the frames. In practice, the number of samples dictates 
the number of discrete Fourier transform coefficients in the 
frequency domain and, therefore, the resolution of the recon-
structed power spectrum. Once ( )frxt  is reconstructed, several 
detection statistics can be computed, such as power or eigen-
value-based test statistics [78].

Sampling scheme design
Sampling approaches specifically designed for estimating the 
autocorrelation of stationary signals at much finer lags than 
the sample spacings have recently been studied in detail [62], 
[74], [75], [79]. These rely on the observation that the autocor-
relation is a function of the lags only, i.e., the differences 
between the pairs of sampling times. Thus, the correlation 
may be estimated at time lags contained within the difference 
set, also referred to as the difference coarray, which is the set 
composed of all differences between the pairs of sampling 
times. Because the size of the difference set may be greater 
than that of the original sampling set, depending on the choice 
of sampling times, we may need fewer sampling times for 
autocorrelation recovery than for signal recovery. Therefore, 
the sampling times should be carefully chosen so as to maxi-
mize the cardinality of the difference set.

The first approach we present, for autocorrelation recovery 
at sub-Nyquist rates, adopts multicoset sampling and designs 
the cosets in (5) to obtain a maximal number of differences. 
In the previous section, the results were derived for any coset 
selection. Here, we show that the sampling rate may be lower 
if the cosets are carefully chosen. When using multicoset sam-
pling, the sampling matrix A in (18) or (20) is a partial Fourier 
matrix with the ( , )i k th element .e ( )/j N c k2 ir  A typical element 
of ( )A A9r  is then .e ( )( )/j N c c k2 i jr -  If all cosets are distinct, then 
the size of the difference set over one period is greater than 
or equal to .M2 1-  This bound corresponds to a worst-case 
scenario, as discussed in the previous section, and leads to a 
sampling rate of at least half Nyquist in the nonsparse setting 
and at least Landau for a sparse signal with unknown support. 
This happens, e.g., if we select the first or last M  cosets or if 
we only keep the even or odd cosets.

To maximize the size of the difference set and increase 
the rank of ( ),A A9r  the cosets can be chosen [62], [79] using 
minimal linear and circular sparse rulers [80]. A linear sparse 
ruler is a set of integers from the interval [ , ],N0  such that the 
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associated difference set contains all integers in [ , ].N0  Intui-
tively, it may be viewed as a ruler with some marks erased but 
still able to measure all integer distances between zero and 
its length. For example, consider the minimal sparse ruler of 
length .N 10=  This ruler requires M 6=  marks, as shown in 
Figure 17. All of the lags 0 10# #x  on the integer grid are 
identifiable. There is no closed-form expression for the maxi-
mum compression ratio /M N  that is achievable using a sparse 
ruler; however, the following bounds hold:

	
( ) ( )

,
N
N

N
M

N
N1 3 1

# #
x - -

� (21)

where .2 4345.x  [79]. A circular or modular sparse ruler 
extends this idea to include periodicity. Such designs that seek 
minimal sparse rulers, i.e., rulers with a minimal number of 
marks ,M  can achieve compression ratios /M N  on the order  
of N . As N  increases, the compression ratio may become 
arbitrarily low.

Two additional sampling techniques specifically designed 
for autocorrelation recovery are nested arrays [74] and coprime 
sampling [75], presented in the context of autocorrelation esti-
mation as well as beamforming and DOA estimation applica-
tions. In nested and coprime structures, similar to multicosets, 
the corresponding coarrays have more degrees of freedom 
than those of the original arrays, leading to a finer grid for the 
time lags with respect to the sampling times. We now quickly 
review both sampling structures and their corresponding dif-
ference coarrays and show how the autocorrelation of an arbi-
trary stationary signal can be recovered on the Nyquist grid 
from low-rate samples.

In its simplest form, the nested-array [74] structure has two 
levels of sampling density. The first-level samples are at the 
N1  locations { } ,T N1Nyq 1, ,# #  and the second-level samples are 
at the N2  locations {( ) } .N kT1 k N1 1Nyq 2+ # #  This nonuniform 
sampling is then repeated with the period ( ) .N N T11 2 Nyq+  
Because there are N N1 2+  samples in intervals of length 
( ) ,N N T11 2 Nyq+  the average sampling rate of a nested-array 
sampling set is given by

	
( )

.f
N N T
N N

N T N T1
1 1

s
1 2

1 2

1 2Nyq Nyq Nyq
.=

+
+

+ � (22)

This rate can be arbitrarily low because N1  and N2  may be as 
large as we choose at the expense of latency.

Now, consider the difference coarray, which has a contribu-
tion from the cross differences and the self-differences. The 
nonnegative cross differences, normalized by TNyq  for clarity, 
are given by

	 ( ) , , .n N k k N N1 1 11 2 1, ,# # # #= + - � (23)

All differences in the range ( )n N N1 1 11 2# # + -  are cov-
ered except for multiples of .N 11+  These are precisely the 
self-differences among the second array. As a result, the dif-
ference coarray is a filled array composed of all integers 

[( ) ] [( ) ].N N n N N1 1 1 11 2 1 2# #- + - + -  Going back to 
our autocorrelation estimation problem, this result shows that, 
by proper averaging, we can estimate ( )R x  at any lag x  on 
the Nyquist grid from nested-array samples with arbitrarily 
low sampling rate as
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where Q  is the number of snapshots used for averaging and 
.N N 11= +u  Here, k  and ,  are such that (23) holds.

Another sampling technique designed for autocorrelation 
recovery is coprime sampling. It involves two uniform sam-
pling sets with spacing N T1 Nyq  and ,N T2 Nyq  respectively, 
where N1  and N2  are coprime integers. The average sampling 
rate of such a sampling set, given by

	 ,f
N T N T

1 1
s

1 2Nyq Nyq
= + � (25)

can, again, be made arbitrarily small compared to the Nyquist 
rate T1 Nyq  by choosing arbitrarily large coprime numbers 
N1  and .N2  The associated difference set, normalized by 

,TNyq  is composed of elements of the form .n N k N1 2 ,= -  
Because N1  and N2  are coprime, there exist integers k  and ,  
such that the previous difference achieves any integer value .n  
Therefore, the autocorrelation may be estimated by proper 
averaging, as

	 [ ] ( ( )) ( ( )),R n
Q

x N k N q x N N q1
q

Q

0

1

1 2 2 1,= + +
=

-

*t / � (26)

where k  and ,  are such that .n N k N1 2 ,= -

The main drawback of both techniques, besides the prac-
tical issue of analog bandwidth that is similar to multicoset 
sampling, is the added latency required for averaging. Further-
more, in practice, synchronizing ADCs with different sam-
pling rates can be challenging. Finally, nested-array sampling 
still requires one sampler operating at the Nyquist rate. Thus, 
there is no saving in terms of hardware but only in memory 
and computation.

Cyclostationary detection
Communication signals often exhibit statistical periodicity, 
due to schemes like carrier modulation or periodic keying 
[81]. Therefore, such signals are cyclostationary processes 

0 1 2 3 6 10

FIGURE 17. A minimal sparse ruler of order M 6=  and length .N 10=



156 IEEE Signal Processing Magazine   |   January 2018   |

[72]. A characteristic function of these processes, the cyclic 
spectrum ( ),S fx

a  exhibits spectral peaks at the cyclic fre-
quencies, which are determined by the signal’s parameters of 
periodicity, such as the carrier frequency and symbol rate 
[72]. The formal definition of the cyclic spectrum is present-
ed in “Cyclostationarity.” Cyclostationary-based detection 
distinguishes between the signals of interest, assumed to be 
cyclostationary, and stationary noise and interference by 
measuring spectral correlation [72]. Because stationary noise 
and interference exhibit no spectral correlation, as shown in 
(17), such detectors are highly robust to noise. With noise 
enhancement being one of the main limitations of sub-
Nyquist sampling-based techniques, cyclostationary detec-
tion performed on the reconstructed cyclic spectrum from 
compressive measurements is a natural candidate for improv-
ing sub-Nyquist detection.  

Cyclic-spectrum recovery
In the previous section, we showed how the power spectrum 

( )S fx  can be reconstructed from correlations ( )fRz  between 

the samples obtained using the MWC or multicoset sampling. 
To that end, we first related ( )S fx  to the slices’ correlation 
matrix ( )fRx  and then recovered the latter from ( ).fRz  Here, 
this approach is extended to the cyclic spectrum ( ).S fx

a  We 
first show how it is related to shifted correlations between the 
slices, namely, ( ) ( ) ( )f f f aR x xEa H

x = +u u u6 @  for [ , ]a f0 s!   
and [ , ].f f a0 s! -u  Next, similar to power-spectrum recovery, 

( )fRa
x
u  is reconstructed from shifted correlations of the samples 
( ) ( ) ( ) .f f f aR z zEa H

z = +u u u6 @  Once the cyclic spectrum ( )S fx
a  

is recovered, the transmissions’ carriers and bandwidth may be 
estimated by locating its peaks. Because the cyclic spectrum of 
stationary noise ( )n t  is zero for ,0!a  cyclostationary detec-
tion is more robust to noise than stationary detection.

The alternative definition of the cyclic spectrum (S12), pre-
sented in “Cyclostationary,” implies that the elements in the 
matrix ( )fRa

x
u  are equal to ( )S fx

a  at the corresponding a  and 
.f  Indeed, it can easily be shown [58] that

	 ( ) ( ),f S fR ( , )
a

i j xx = au � (27)

for

	
( )

( )
.

j i f a

f
f

f
f j i f a

2 2 2 2

s

s sNyq

a = - +

=- + - +
+

+u �
(28)

Here, ( )fR ( , )
a

i jx
u  denotes the ( , )i j th element of ( ).fRa

x
u  This 

means that each entry of the cyclic spectrum ( )S fx
a  can be 

mapped to an element from one of the correlation matrices 
( ),fRa

x
u  and vice versa. From (6) and similar to (18) in the 

context of power-spectrum recovery, we relate the shifted cor-
relation matrices of ( )fx  and ( )fz  as

	 ( ) ( ) , ,f f f f a0R AR Aa a H
sz x != -uu u 6 @ � (29)

for all [ , ].a f0 s!

Recall that, in the context of stationary signals, ( )fRx  is 
diagonal. Here, understanding the structure of ( )fRa

x
u  is more 

involved. In [58], it is shown that ( )fRa
x
u  contains nonzero ele-

ments on its 0, 1, and −1 diagonals and antidiagonals. Besides 
the nonzero entries being contained in only the three main and 
antidiagonals, the additional structure is exhibited, limiting the 
number of nonzero elements to two per row and column of the 
matrix ( ).fRa

x
u  This pattern follows from two main consider-

ations. First, each frequency component, i.e., each entry of ( ),fx  
is correlated to at most two frequencies from the shifted vector 
of slices ( ),f ax +u  one from the same frequency band and one 
from the symmetric band. Second, the correlated component 
can be either in the same/symmetric slice or in one of the adja-
cent slices.

Figures 18 and 19 illustrate these correlations for a 0=  
and ,a f 2s=  respectively. First, in Figure 20, a sketch of 
the spectrum of ( ),x t  i.e., ( ),X f  is presented for the case 
of a sparse signal buried in stationary noise. It can be seen 
that frequency bands of ( )X f  may either appear in one fp  
slice or split between two slices at most because .f Bp $  The 
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resulting vector of spectrum slices ( )fx  and the correlations 
between these slices without any shift, i.e., ( ),fR0

x
u  are shown 

in Figure 18(a) and (b), respectively. In Figure  18(b), we 
observe that self-correlations appear on only the main diago-
nal because every frequency component is correlated with 
itself. In particular, the main diagonal contains the noise’s 
power spectrum (in green). Cross correlations between the 
yellow symmetric triangles appear in the zero antidiagonal, 
whereas those of the blue trapezes are contained in the –1 
and +1 antidiagonals. The red rectangles do not contribute 
any cross correlations for .a 0=

Figure 19(a) and (b) shows the vector ( )x fu  and its shifted 
version ( )x f a+u  for ,a f 2s=  respectively. The resulting cor-
relation matrix ( )fRa

x
u  appears in Figure 19(c). Here, the self-

correlations of the yellow triangle appear in the main diagonal 
and the blue trapeze in the −1 diagonal. The cross correlations 
all appear in the antidiagonal for the shift .a f 2s=  Note 
that, because the noise is assumed to be wide-sense station-
ary, from (17), a noise-frequency component is correlated only 
with itself. Thus, ( )n t  only contributes nonzero elements on 
the diagonal of ( ).fR0

x
u

To recover ( )fRa
x
u  from ( ),fRa

z
u  structured CS techniques 

are used in [58] that aim at reconstructing a sparse matrix 
while taking into account its specific struc-
ture, as previously described. Once the cyclic 
spectrum is reconstructed, the number of 
transmissions and their respective carrier 
frequencies and bandwidths are estimated, 
as discussed in the next section. The detec-
tion performed on the cyclic spectrum is 
more robust to stationary noise than power-
spectrum-based detection, at the expense of a 
slightly higher sampling rate, as shown in [58]. 
More precisely, in the presence of stationary 
noise, the cyclic spectrum may be reconstructed from samples 
obtained at four fifths of the Nyquist rate, without any sparsity 
assumption on the signal. If the signal of interest is sparse, then 
the minimal sampling rate is further reduced to eight fifths of 
the Landau rate [58].

Carrier frequency and bandwidth estimation
Many detection and classification algorithms based on cyclo-
stationarity have been proposed (see the reviews [32] and 
[33]). We first survey several detection and classification 
approaches and then explain why they do not adhere to CR 
requirements. To assess the presence or absence of a signal, a 
first group of techniques requires a priori knowledge of its 
parameters and, particularly, of the carrier frequency [82]–
[87], which is the information that CRs need to determine in 
the first place. A second strategy focuses on a single trans-
mission [84], [88], which does not fit the multiband model. 
Alternative approaches apply machine-learning tools to the 
modulation classification of a single signal with an unknown 
carrier frequency and symbol rate [89]–[92]. Besides being 
suitable for only a single transmission, these methods require 
a training phase. Thus, these techniques can only cope with 

PUs whose modulation type and parameters were part of the 
training set.

For CR purposes, we seek a detector designed to comply with 
the following requirements: 1) carrier frequency and bandwidth 
estimation rather than simple detection of the presence or absence 
of a signal; 2) blind detection, i.e., without knowledge of the carrier 
frequencies, bandwidths, and symbol rates of the transmissions; 3) 
simultaneous detection of several transmissions; and 4) preferably 
a nonlearning approach, i.e., with no training phase. The param-
eter estimation algorithm, presented in [93], is a simple parameter 
extraction method from the cyclic spectrum of multiband signals 
that satisfies these requirements. It allows the estimation of sev-
eral carriers and bandwidths simultaneously as well as the 
number of transmissions. The proposed parameter estimation 
algorithm can be decomposed into four main steps: preprocess-

ing, thresholding, clustering, and parameter 
estimation, as illustrated in Figure 21.

The preprocessing simply aims at com-
pensating for the presence of stationary 
noise in the cyclic spectrum at the cyclic 
frequency ,0a =  by attenuating the ener-
gy of the cyclic spectrum at this frequency. 
Thresholding is then applied to the result-
ing cyclic spectrum to find its peaks. The 
locations and values of the selected peaks 
are then clustered using the k-means to 

find the corresponding cyclic feature after estimating the 
number of clusters by applying the elbow method [94]. It fol-
lows that, apart from the cluster present in dc, the number of 
real signals, i.e., ,N K 2sig =  is equal to half the number of 
clusters. Next, the carrier frequency ,fi  which corresponds 
to the highest peak [72], is estimated for each transmission. 
The bandwidth Bi  is found by locating the edge of the sup-
port of the angular frequencies at the corresponding cyclic 
frequency .f2i ia =

Results presented in [58] demonstrate that cyclostationary-
based detection, as described in this section, outperforms 
energy detection carried on the signal’s spectrum or power 
spectrum at the expense of increased complexity. We now 
show similar results obtained from hardware simulations, per-
formed using the prototype shown in Figure 12.

Hardware simulations: Robustness to noise
Cyclostationary detection has been implemented in the MWC 
CR prototype. The analog front end is identical to that of the 
original prototype, and only the digital recovery part is modi-
fied because the cyclic spectrum is recovered directly from the 
MWC low-rate samples. Preliminary testing suggests that 

–fNyq
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fNyq
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f
fs

0

FIGURE 20. The original spectrum ( ).X f  The cyclostationary transmissions 
are shown in yellow, blue, and red, buried in stationary noise shown in green.

The detection performed 
on the cyclic spectrum is 
more robust to stationary 
noise than power-
spectrum-based detection, 
at the expense of a slightly 
higher sampling rate.
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sensing success is still achievable at SNRs that are 15-dB 
lower than those allowed energy detection performed on the 
recovered spectrum or power spectrum. Representative results 
shown in Figure 22 demonstrate the advantage of cyclosta-
tionary detection over energy detection in the presence of 
noise. The figure presents the reconstructed cyclic spectrum 
from samples obtained using the MWC prototype as well as 
cross sections at f 0=  and ,0a =  which correspond to the 
power spectrum. This increased robustness to noise comes at 
the expense of more involved digital processing on the low-
rate samples. The additional complexity stems from the higher 
dimensionality involved, because we reconstruct the two-
dimensional (2-D) cyclic spectrum rather than the one-dimen-
sional (power) spectrum.

Collaborative-spectrum sensing

Collaborative model
Until now, we assumed a direct observation of the spectrum. 
In practice, the task of spectrum sensing for CR is further 
complicated due to physical channel effects, such as path loss, 

fading, and shadowing [34]–[36], as described in “Channel 
Fading and Shadowing.” To overcome these practical issues, 
collaborative CR networks have been considered, where dif-
ferent users share their sensing results and cooperatively 
decide on the licensed spectrum occupancy.

The different collaborative approaches can be distinguished 
according to several criteria [34]. First, cooperation can be 
either centralized or distributed. In centralized settings, the 
data streams are sent to a fusion center that combines them 
to jointly estimate the spectrum or determine its occupancy. 
In the distributed approach, the CRs communicate among 
themselves and iteratively converge to a common estimate or 
decision. While centralized cooperation does not require itera-
tions and can reach the optimal estimate based on the shared 
data, convergence to this estimate is not always guaranteed in 
its distributed counterpart. However, the latter is less power 
hungry and more robust for node and link failures, increasing 
the network survivability. An additional criterion concerns the 
shared data type; the CRs may share local binary decisions on 
the spectrum occupation (hard decision) or a portion of their 
samples (soft decision).
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We consider the following collaborative model. A network 
of Nrec  CRs receives the Nsig  transmissions, such that the 
received signal at the jth  CR is given by

	 ( ) ( ) ( ) ( ).x t r t s t h t( )j
ij

i

N

i
i

N

ij
1 1

sig sig

)= =
= =

/ / � (30)

The channel response ( )h tij  is determined by fading and shad-
owing effects. Typical models are Rayleigh fading or small-
scale fading and log-normal shadowing or large-scale 
fading [35], [36], [95], as described in “Channel Fading and 
Shadowing.” In the frequency domain, the Fourier transform 
of the jth  received signal is given by

	 ( ) ( ) ( ).X f S f H f( )j
i

i

N

ij
1

sig

=
=

/ � (31)

Therefore, the support of ( )x t( )j  is included in the support of 
the original signal ( ).x t  Because the transmissions are affected 

differently by fading and shadowing from each transmitter to 
each CR, we can assume that the union of their respective sup-
ports is equivalent to the frequency support of ( ).x t  The goal 
here is to assess the support of the transmitted signal ( )x t  
from sub-Nyquist samples of the received ( ), ,x t j N1( )j

rec# #  
by exploiting their joint frequency sparsity.

A simple and naive approach is to perform support recov-
ery at each CR from its low-rate samples and combine the 
local binary decisions, either in a fusion center for centralized 
collaboration or in a distributed manner. In this hard-decision 
strategy, the combination can be performed using several 
fusion rules, such as AND, OR, or a majority rule. Although 
this method is attractive due to its simplicity and low com-
munication overhead, it typically achieves lower performance 
than its soft-decision counterpart. To mitigate the commu-
nication overhead, soft-decision-based methods may rely on 
sharing observations based on the low-rate samples, rather 
than the samples themselves. In the next section, we review 
such techniques both in centralized and distributed contexts.

Analog signals transmitted over physical channels are 
affected by two main phenomena: Rayleigh fading, or 
small-scale fading, and log-normal shadowing, or large-
scale fading [35], [36], [95]. The received signal is gen­
erally described in terms of the transmitted signal ( )s ti  
convolved with the impulse response of the channel 

( ),h tij  i.e.,

	 ( ) ( ) ( ),r t s t h tij i ij)= � (S13)

where ( )r tij  is the received signal corresponding to the ith 
transmission at the jth cognitive radio and * denotes the 
convolution. Fading and shadowing affect the channel 
response ( ).h tij

Rayleigh fading
For most practical channels, the free-space propagation 
model, which only accounts for path loss, is inadequate to 
describe the channel. A signal typically travels from trans­
mitter to receiver over multiple reflective paths, which is 
traditionally modeled as Rayleigh fading. This implies that 
the amplitude and phase of the channel response 

( ) ( )h t R t e ( )
ij

j t= z  are stochastically independent and identi­
cally distributed processes. The amplitude R(t ), for ,t R!  
follows the Rayleigh distribution, given by

	 ( )p r
r e r

0

0

otherwise,

/

R

r
2

22 2
$

v=
v-* � (S14)

where 2 2v  is the mean power [95]. The phase ( ),tz  for 
,t R!  is uniformly distributed over the interval [ , ).0 2r

Log-normal shadowing
Large-scale fading represents the average signal power 
attenuation or path loss due to motion over large areas. 
The resulting channel frequency response is, therefore, a 
constant. This phenomenon is affected by prominent ter­
rain contours between the transmitter and receiver. 
Empirical measurements suggest that this type of fading, 
or shadowing, follows a normal distribution in decibel 
units [96], or, alternatively, the linear channel gain may 
be modeled as a log-normal random variable [36]. 
Therefore, the path loss (PL) measured in decibels is 
expressed as

	 .logPL PL d
d X100
0

c= + + v � (S15)

Here, the reference distance d0  corresponds to a point 
located in the far field of the antenna (typically, 1 km for 
large cells). The PL to the reference point PL0  is usually 
found through field measurements or calculated using free-
space PL. The value of the PL exponent c  depends on the 
frequency, antenna heights, and propagation environ­
ment. Finally, Xv  denotes a Gaussian random variable (in 
decibels) with the variance 2v  determined heuristically as 
well [95]. The shadowed received signal is thus given by

	 ( ) ( ),r t s t10 ·/
ij

PL
i

20ij= - � (S16)

where PLij  denotes the PL between the ith transmitter 
and the j th receiver and the channel response 

( ) ( ).h t t10 /
ij

PL 20ij d= -

Channel Fading and Shadowing
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Centralized collaborative support recovery
One approach [97], [98] to centralized spectrum sensing con-
siders a digital model based on a linear relation between the 
M  sub-Nyquist samples z( )j  at CR j  and N  Nyquist samples 
x( )j  obtained for a given sensing time frame, i.e.,

	 ,z Ax( ) ( )j j= � (32)

where A is the sampling matrix. This model has been exten-
sively studied by Leus et al. [97]–[99]. In all these works, the 
channel state information (CSI) is assumed to be known, and 
the joint power spectrum of x is reconstructed, where x  denotes 
the N 1#  vector of Nyquist samples. CSI is traditionally 
unknown by the CRs and should be estimated prior to detection 
to enable the use of this method. The autocorrelation of the 
Nyquist samples is first related to that of the sub-Nyquist sam-
ples. Then, in [97], the common sparsity of r ( )j

x  is exploited in 
the frequency domain across all CRs to jointly reconstruct them 
at the fusion center, using a modified simultaneous orthogonal 
matching pursuit (SOMP) [41] algorithm. In [98] and [99], 
besides exploiting joint sparsity, cross correlations between 
measurements from different CRs are used, i.e., ,Rz zj k  where j  
and k  are the indices of two CRs. These cross correlations are 
related to the common power spectrum ,s Frx x=  where F is 
the discrete Fourier transform matrix. It is shown that if the total 
number of samples N Mrec  is greater than ,N  and these are suit-
ably chosen to account for enough measurement diversity, then 
the power spectrum sx  of a nonsparse signal can be recovered 
from compressed samples from a sufficient number of CRs. 
This shows that the number of receivers may be traded for the 
number of samples per CR. However, increasing the number of 
samples per CR does not increase spatial diversity, as does 
increasing the number of receivers.

An alternative approach [57] relies on the analog model 
from (6) and does not assume any a priori knowledge on the 
CSI. This method considers collaborative-spectrum sensing 
from samples acquired via multicoset sampling or the MWC 
at each CR. In this approach, the jth  CR shares its observa-
tion matrix ,V( )j  as defined in (9), rather than the sub-Nyquist 
samples themselves, and its measurement matrix ,A( )j  with a 
fusion center. The sampling matrices are considered to be dif-
ferent from one another to allow for more measurement diver-
sity. However, the same known matrix can be used to reduce 
the communication overhead. The underlying matrices U( )j  
are jointly sparse because fading (S13) and (S14) and shadow-
ing (S16) do not affect the original signal’s support. Capitaliz-
ing on the joint support of ,U( )j  the support of the transmitted 
signal ( )x t  is recovered at the fusion center by solving
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To recover the joint support of U( )j  from the observation 
matrices ,V( )j  both orthogonal matching pursuit (OMP) and 
iterative hard thresholding (IHT), described in “Compressed 

Sensing Recovery,” are extended to the collaborative setting 
[57]. Previously, in the “Sub-Nyquist Sampling for CR” sec-
tion, we considered support recovery from an individual CR, 
which boils down to an MMV system of equations (9). CS 
algorithms have been extended to this case, such as SOMP 
from [100] and simultaneous IHT (SIHT), as presented in 
[101]. These now need to account for the joint sparsity across 
the CRs.

The distributed CS-SOMP (DCS-SOMP) algorithm [102], 
which extends the original SOMP to allow for different sam-
pling matrices A( )j  for each receiver, is adapted to the CR 
collaborative setting in [57]. The main modification appears 
in the computation of the index that accounts for the great-
est amount of residual energy. Here, the selected index is the 
one that maximizes the sum of residual projections over all 
the receivers. Once the shared support is updated, the residual 
matrices can be computed for each CR separately. The result-
ing modified algorithm is referred to as block sparse OMP 
(BSOMP) [57]. Next, the block sparse IHT (BSIHT) algorithm 
[57] extends SIHT by selecting the indices of the common 
support though averaging over all of the estimated U( )j  in each 
iteration. Once the support is selected, the update calculations 
are performed separately for each receiver. Both methods are 
suitable for centralized cooperation in the presence of a fusion 
center. As in the previous approach, if the CSI is known, then 
the sampling rate per CR can be reduced by a factor of Nrec  
with respect to the rate required from an individual CR.

Distributed collaborative support recovery
In the distributed approach, there is no fusion center, and the 
CRs can only communicate with their neighbors. Both the dig-
ital and analog centralized approaches have been extended to 
the distributed settings. In [103] and [104], a digital model (32) 
is used where the spectrum is divided into N  known slots. 
Both unknown and known CSI cases are considered. In the 
first case, each CR computes its local binary decision for every 
spectral band by recovering the sparse spectrum using CS 
techniques. Then, an average consensus approach is adopted 
with respect to the shared hard decision. If the CSI is known, 
similar to [98] and [99], then the spectrum is recovered in a 
distributed fashion. In [103], the proposed algorithm iterates 
through the following two steps: local spectrum reconstruction 
given an estimated support and consensus averaging on the 
support of the nodes. In [104], a distributed augmented Lag
rangian is adopted.

The centralized approach, based on the analog model (6), 
presented in [57], is modified in [56] to comply with distribut-
ed settings. The ith  CR contacts a random neighbor ,j  chosen 
with some probability ,Pij  according to the Metropolis–Hast-
ings scheme for random transition probabilities:
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Here di  denotes the cardinality of the neighbor set of the ith  
CR and E  is the set of communication links between CRs in 
the network.

A single vector, computed from the low-rate samples (and that 
will be defined later in this section for each recovery algorithm), 
is passed between the CR nodes in the network rather than the 
samples themselves, effectively reducing communication over-
head. When a CR receives this vector, it performs a local compu-
tation to update both the shared vector and its own estimate of the 
signal support accordingly. Finally, the vector is sent to a neigh-
bor CR, chosen according to the random walk with probability 
(34). Two distributed algorithms are presented in [56]. The first 
is the distributed one-step greedy algorithm (DOSGA), which 
extends the OSGA from [102] to distributed settings. The second 
method, referred to as randomized distributed IHT (RDSIHT), 
adapts the centralized BSIHT [57] to the distributed case.

To describe the DOSGA algorithm, we first present its cen-
tralized counterpart OSGA. Each CR computes the 2,  norm of 
the projections of the observation matrix V( )j  onto the columns 
of the measurement matrix ,A( )j  stored in the vector w( )j  of 
size .N  The fusion center then averages over all receivers’ vec-
tors, such that

	
N
1w w( )j

j

N

1rec

rec

=
=

t / � (35)

and retains the highest values of ,wt  whose indices constitute 
the support of interest. In the absence of a fusion center, find-
ing this average is a standard distributed average consensus 
problem, also referred to as distributed averaging or distribut-
ed consensus. DOSGA [56] then uses a randomized gossip 
algorithm [105] for this purpose, with the Metropolis–
Hastings transition probabilities.

Next, we turn to the RDSIHT algorithm, which adapts the 
centralized BSIHT algorithm [57] to the distributed scenario. 
The distributed approach from [56] was inspired by the ran-
domized incremental subgradient method proposed in [106] 
and recent work on a stochastic version of IHT [107]. A vec-
tor w  of size ,N  which sums the 2,  norms of the rows of the 
estimates of U( )j  before thresholding, is shared in the network 
through random walk. The indices of its k  largest values cor-
respond to the current estimated support. When the ith  CR 
receives ,w  it locally updates it by performing a gradient step 
using its own objective function that is then added to .w  Next, 
it selects a neighbor j  to send the vector to with probability Pij  
(34). The joint sparsity across the CRs is exploited by sharing 
one common vector w  by the network. It is shown numerically 
in [56] that both DOSGA and RDSIHT converge to their cen-
tralized counterparts.

Hardware simulations: Collaborative versus individual 
spectrum sensing
We now confirm that the collaborative algorithms for spec-
trum sensing perform better than their individual counter-
parts by demonstrating a collaborative setting implemented 
using the MWC CR prototype, as can be seen in Figure 23. 
During the conducted experiments, N 5rec =  CR receivers 
spread across different locations are emulated, denoted by 
white circles on the transmitter/receiver map. The transmit-
ters are also positioned in various locations depicted by 
green x marks. The positions and broadcasts of the transmit-
ter mimic the effects of physical channel phenomena, i.e., 
fading and shadowing. The frequency support recovered by 
each of the CRs is false because they individually receive 
only a partial spectral image of their surroundings, as expect-
ed in a real-world scenario.

FIGURE 23. A screenshot from the MWC CR collaborative hardware prototype. On the upper left side, we see the spatial map of the receivers in white 
and the transmitters in green. On the bottom left, the occupied band indices of the real spectral support are shown, while, to the right of the transmitter/
receiver map, the estimated indices by each CR individually are presented. On the right, we see the spectrum-sensing results of four different algorithms: 
hard co-op (hard-decision collaboration, which selects the most popular frequency band indices), BSIHT, BSOMP, and RDSIHT. These results show both 
the superiority of collaborative-spectrum-sensing methods over individual detection and that of soft-decision methods compared to the plain union of all 
CR results. 
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In all simulated scenarios, collabora-
tive-spectrum sensing outperforms detec-
tion realized by individual CRs. This result 
is expected, because the soft collaborative 
methods take advantage of the spatial de
ployment of the receivers to reproduce the 
exact spectral map of the environment. 
Moreover, the centralized and distributed 
algorithms BSOMP, BSIHT, and RDSIHT, 
based on soft decisions, showed superior 
results in comparison with a hard-decision 
method. The same result can be seen in 
Figure 23, where the hard-decision support 
algorithm (hard co-op) fails to recover the 
entire active frequency support (depicted by red bins).

Joint-carrier frequency and direction estimation
Many signal processing applications, including CR, may 
require or at least benefit from joint spectrum sensing and 
DOA estimation. For CRs to map vacant bands more efficient-
ly, spatial information about the PUs’ locations are of great 
interest. Consider the network of CRs presented in Figure 24 
and focus on CR1. Now, imagine a scenario where PU2, with 
AOA 2i  with respect to CR1, is transmitting in a certain fre-
quency band with carrier .f2  Assuming that CR2 does not 
receive PU2’s transmission, CR1 could transmit in the same 
frequency band in the opposite direction of PU2 toward CR2. 
The DOA estimation can thus enhance CR performance by 
allowing the exploitation of vacant bands in space in addition 
to the frequency domain.

Model and system description
To mathematically formulate our problem, assume that the 
input signal ( )x t  is composed of Nsig  source signals ( )s ti  
with both unknown and different carrier frequencies fi  and 
AOAs .ii  The main difference between this scenario and 
the one that has been discussed in the previous sections is 
the additional unknown AOAs .ii  Figure 24 illustrates this 
signal model. To recover the unknown AOAs, an array of 

sensors is required. A similar problem 
thoroughly treated in the literature is the 
2-D-DOA recovery problem, where two 
angles are traditionally recovered and 
paired. In our case, the second variable is 
the signal’s carrier frequency instead of an 
additional angle.

Multicoset approach
A few works have recently considered joint 
DOA and spectrum sensing of multiband 
signals from sub-Nyquist samples. In [108] 
and [109], low-rate samples are obtained 
using the multicoset sampling scheme. In 

[108], which considers the digital model (32), both time and 
spatial compression are applied by selecting samples from the 
Nyquist grid and receivers from a ULA, such that

	 [ ] [ ] .n nZ C X Cs t= � (36)

Here, [ ]nX  is the matrix of Nyquist samples from all receivers 
in the ULA, and the selection matrices Cs  and Ct  operate on 
the spatial and time domain, respectively, to form the matrix 
of compressed samples [ ].nZ  The 2-D power-spectrum 
matrix of the underlying signal is then reconstructed from the 
samples, where every row describes the power spectrum in the 
frequency domain for a given AOA and every column corre-
sponds to the power-spectrum information in the angular 
domain for a given frequency.

In [109], an L-shaped array with two interleaved, or multi-
coset, channels, with a fixed delay between the two, samples 
the signal below the Nyquist rate. Then, exploiting correlations 
between samples from the direct path and its delayed version, 
the frequencies and their corresponding AOAs are estimated 
using MUSIC [38], [39]. However, the pairing issue between 
the two, i.e., matching each frequency with its corresponding 
angle, is not discussed.

In the next section, we describe the compressed carrier and 
DOA estimation (CaSCADE) system, presented in [53], that 
utilizes the sampling principles of the MWC. This technique 
addresses the pairing issue and avoids the hardware issues 
involved in multicoset sampling.

The CaSCADE system
The CaSCADE system implements the modified, or ULA-
based, MWC over an L-shaped array with M2 1-  sensors (M
sensors along the y  axis and M  sensors along the z  axis, 
including a common sensor at the origin) in the yz  plane. 
Each transmission ( )s ti  impinges on the array with its corre-
sponding AOA ,ii  as shown in Figure 25. The array sensors 
have the same sampling pattern as the alternative MWC. Each 
sensor is composed of an analog mixing front end, implement-
ing one physical branch of the MWC, that includes a mixer, 
an LPF, and a sampler.

By treating the L-shaped array as two orthogonal ULAs, 
one along the y  axis and the other along the z  axis, two systems 
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components. 
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of equations similar to (14) can be derived. For the ULA along 
the y  axis, we obtain

	 ( ) ( ), ,f f fy A x Fy s!= � (37)
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and ( )/ cosdm cm
y
x i i=^ ^h h  denote the delays at the m th 

sensors with respect to the first sensor. Along the z  axis, the 
samples ( ),fz  sampling matrix ,Az  and delays m

zx  are 
similarly defined.

Two joint recovery approaches for the carrier frequencies 
and DOAs of the transmissions are proposed in [53]. Note that, 
once the carriers and AOAs are estimated, the signals can 
be reconstructed, as shown for the alternative MWC. For the 
sake of simplicity, a statistical model where ( )x t  is wide-sense 
stationary is considered. The first recovery approach is based 
on CS techniques and allows recovery of both parameters 
assuming the electronic angles cosfi ii  and sinfi ii  lie on a 
predefined grid. The CS problem is formulated in such a way 
that no pairing issue arises between the carrier frequencies 
and their corresponding DOAs. To that end, the time-domain 
samples from both ULAs are concatenated into one vector 
[ ] [ ] [ ] ,n n nv y zT T T
=6 @  whose correlation matrix,

	 [ ] [ ] ,n nR v v AR AE H
x

H= =6 @ � (39)

is computed. Here, [ , ]A A Ay
T

z
T T=  and the autocorrelation 

matrix [ ] [ ]k kR x xEx
H= 6 @ are sparse and diagonal from the 

stationarity of ( ).x t  From the grid assumption, (39) can be dis-
cretized with respect to the possible values taken by the elec-
tronic angles. The resulting sparse matrix derived from Rx  is 
diagonal as well, and its sparse diagonal can be recovered 
using traditional CS techniques, similar to (15).

The second recovery approach, inspired by [110] and [111], 
extends the ESPRIT algorithm to the joint estimation of 
carriers and DOAs while overcoming the pairing issue. The 
2-D-ESPRIT algorithm presented in [53] is directly applied to 
the sub-Nyquist samples by considering cross-correlation 
matrices between the subarrays of both axes. Dropping the 
time variable n  for clarity, the samples from the subarrays can 
be written as
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where , , , andy y z z1 2 1 2  are samples from the subarrays shown 
in Figure 25. The matrices Ay1  and Ay2  are the first and last 
M 1-  rows of ,Ay  respectively, and Az1  and Az2  are similarly 
defined. Each couple of subarray matrices along the same axis 
are related as
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We see from (42) that the carrier frequencies fi  and AOAs 
ii  are embedded in the diagonal matrices U  and .W  Applying 

the ESPRIT framework on cross-correlation matrices between 
the subarrays of both axes allows it to jointly recover U  and 
W  [53]. This leads to a proper pairing of the corresponding 
elements ( )fi

y
i1x i  and ( ).fi z

i1x i  The AOAs ii  and carrier fre-
quencies fi  are then given by
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It is proven in [53] that the minimal number of sensors 
required for perfect recovery is .K2 1+  This leads to a mini-
mal sampling rate of ( ) ,K B2 1+  which is slightly higher than 
the minimal rate KB2  required for spectrum sensing in the 
absence of DOA recovery. These ideas can be extended to 
jointly recover the transmissions’ carrier frequencies, azimuth, 
and elevation angles in a three-dimensional framework.

Conclusions and future challenges
In this article, we reviewed several challenges imposed on the 
traditional task of spectrum sensing by the new application of 
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CR. We first investigated sub-Nyquist sampling schemes, 
enabling the sampling and processing of wide-band signals at 
low rates by exploiting their a priori known structure. A possi-
ble extension of these works is to include an adaptive detected 
support update, which is triggered by a change in a PU’s activ-
ity, either by starting a transmission in a previously vacant 
band or withdrawing from an active band. To increase efficien-
cy, this should be performed by taking the current detected 
support as a prior and updating it with respect to the newly 
acquired samples without going through the entire support 
recovery process. Additional preliminary assumptions on the 
structure or statistical behavior of the potentially active signals, 
such as statistics on channel occupancy, can also be exploited.

We then considered detection challenges in the presence of 
noise, where second-order statistics recovery and, in particu-
lar, cyclostationary detection are shown to perform better than 
simple energy detection. Next, fading and shadowing channel 
effects were overcome by collaborative CR networks. Finally, 
we addressed the joint spectrum sensing and DOA estimation 
problem, allowing for better exploitation of frequency vacant 
bands by utilizing spatial sparsity as well. All of these methods 
should be combined to map the occupied spectrum in frequency, 
time, and space, thus maximizing the CR network’s throughput. 
This requires an adequate spectrum access protocol as well, one 
that translates the data acquired by spectrum sensing into trans-
mission opportunities for the CRs. Spectrum access challenges 
and algorithms were outside this article’s scope. 

An essential part of the approach adopted in this survey is 
the relation between the theoretical algorithms and practical 
implementation, demonstrating real-time spectrum sensing from 
low-rate samples using off-the-shelf hardware components. We 
believe that prototype development is the key to enabling sub-
Nyquist sampling as a solution to the task of spectrum sensing in 
CR platforms. A natural next step in that direction is the imple-
mentation of a complete CR network, collaboratively performing 
joint spectrum sensing and DOA estimation followed by spec-
trum access. This prototype should then be tested on real data to 
assess its true capabilities. We believe that a sub-Nyquist digital-
to-analog interface can alleviate many of the bottlenecks cur-
rently hindering the development of CR systems, consequently 
allowing the fast deployment of low-rate, simple, and efficient 
CR devices that will be using currently available hardware. 

For CRs to become a viable solution to the spectrum shortage, 
other main challenges need to be addressed, as discussed previ-
ously in the “CR Challenges” section. The issue of coexistence 
with existing communication links from PUs is crucial and very 
particular to the CR scenario. Here, coexistence is not a symmet-
ric requirement, as CRs are prohibited from interfering with PUs. 
Another challenge is the establishment of a communication chan-
nel for CRs to be able to exchange the locations of their current 
transmission bands. Finally, the issue of security against attacks 
to the CR networks still has numerous unresolved questions.
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