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Abstract— Identifying and visualizing vasculature within
organs and tumors has major implications in managing car-
diovascular diseases and cancer. Contrast-enhanced ultrasound
scans detect slow-flowing blood, facilitating noninvasive perfusion
measurements. However, their limited spatial resolution pre-
vents the depiction of microvascular structures. Recently, super-
localization ultrasonography techniques have surpassed this limit.
However, they require long acquisition times of several minutes,
preventing the detection of hemodynamic changes. We present
a fast super-resolution method that exploits sparsity in the
underlying vasculature and statistical independence within the
measured signals. Similar to super-localization techniques, this
approach improves the spatial resolution by up to an order of
magnitude compared to standard scans. Unlike super-localization
methods, it requires acquisition times of only tens of milliseconds.
We demonstrate a temporal resolution of ∼25 Hz, which may
enable functional super-resolution imaging deep within the tissue,
surpassing the temporal resolution limitations of current super-
resolution methods, e.g., in neural imaging. The subsecond acqui-
sitions make our approach robust to motion artifacts, simplifying
in vivo use of super-resolution ultrasound.

Index Terms— Compressed sensing (CS), contrast-enhanced
ultrasound (CEUS), sparse representation, super-localization
microscopy, super-resolution, super-resolution optical fluctuation
imaging.

I. INTRODUCTION

ULTRASOUND (US) is a cost-effective, reliable, nonin-
vasive, and radiation-free imaging technique. The use of

encapsulated gas microbubbles as contrast agents extends the
capabilities of US to the imaging of fine vessels with low
flow velocities. Specifically, contrast-enhanced US (CEUS)
enables real-time hemodynamic and perfusion imaging with
high-penetration depth. However, like many noninvasive imag-
ing modalities, spatial resolution limitations prevent clas-
sic CEUS imaging from resolving the fine structure of the
microvasculature. Therefore, despite their superior penetration
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depth, classic US measurements are limited in their capability
to detect microvascular changes in response to anticancer [1]
and anti-inflammatory treatment [2], and produce functional
maps with limited spatial resolution, compared to optical
scans [3], [4]. Since anticancer and anti-inflammatory treat-
ments are known to cause structural changes in the microvas-
cular level [5], resolving these vessels could enable fast
and direct treatment monitoring capability, valuable for both
research and clinical applications. Furthermore, when neural
activity is increased, most of the blood flow enhancement is
performed in the capillaries [3], so that functional imaging at
this level may enable better understanding of neural activity.

Several CEUS super-localization techniques that were intro-
duced in the last few years, were shown to surpass the
classic resolution limitations dictated by the point spread
function (PSF) of the US system and provide subdiffraction
scans [6]–[12]. Inspired by optical fluorescent microscopy
methods like PALM [13] and STORM [14], these techniques
overcome the diffraction limit by capturing a series of frames,
each composed of a sparse distribution of microbubbles. The
main assumption in these methods is that the microbubbles
in each frame are resolvable, and therefore the center of each
echo is estimated with subdiffraction resolution. By applying
a super-localization procedure and accumulating the localiza-
tions over many frames, the overall structure of interest can be
revealed. In CEUS super-localization, the assumption of sparse
microbubble distribution is satisfied by using very low concen-
trations of microbubbles [7], [8], [12]; bursting subpopulations
of microbubbles [9]; and filtering with spatiotemporal filters to
capture subsets of microbubbles [6]. By estimating the centers
of resolvable PSFs, an improvement of up to tenfold in spatial
resolution was reported [6]. Super-localization has found a
range of preclinical applications including 3-D anatomical
imaging of vessels in the brain [6] and in tumors [10].

Despite recent advances in CEUS super-localization, these
methods are still limited by low temporal resolution (typically
tens to hundreds of seconds) and large amounts of data (tens
of thousands of sequential images) that need to be stored and
processed [6], [8]. Reducing these long acquisition times and
limiting CEUS super-resolution scans to less than a second
is important for two main reasons. First, fast hemodynamic
changes, with a timespan of a few seconds and less [15],
cannot be captured by current super-localization methods.
Therefore, these techniques do not have the temporal res-
olution needed for functional imaging applications such as
functional US imaging of the brain. Second, long acquisition
times make super-localization sensitive to motion artifacts.
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These artifacts are difficult to compensate for in postprocessing
since the motion is 3-D and CEUS imaging is commonly
performed in 2-D [1]. In addition, breath holds have limited
efficiency since many patients cannot hold their breaths for
long periods of time [16]. Consequently, long acquisition times
limit the clinical applicability of CEUS super-localization,
especially when imaging internal organs whose scans are
highly affected by motion artifacts [17].

Inspired by an optical fluorescence microscopy method
named SOFI [18], an alternative approach for improving spa-
tial resolution in CEUS imaging was recently presented [19],
termed CEUS SOFI. Relying on the independence of fluctuat-
ing CEUS signals in neighboring vessels, high-order statistics
of the time-series measured in each pixel are estimated.
This technique was shown to produce improvement in spatial
resolution that scales with the order of the statistics. Avoiding
the assumption of resolvable microbubbles, high US contrast
agents’ concentrations were used, enabling short acquisition
times and high temporal resolution. However, in practice,
the order of the statistics used in SOFI is limited by both
the signal-to-noise ratio (SNR) and dynamic range of CEUS
signals, restricting the typical resolution improvement to a
factor of 2.

Here, we present an approach for fast CEUS super-
resolution, termed sparsity-based US super-resolution hemo-
dynamic imaging (SUSHI), which extends the preliminary
results presented in [20]. The main goal of SUSHI is fast
detection and depiction of hemodynamic changes with sub-
diffraction resolution. To this end, SUSHI uses high UCA
concentration to maximize the portion of the vasculature
imaged during ultrafast acquisitions and makes use of the
statistical independence between the fluctuations of CEUS
signals originating from different vessels. In addition, SUSHI
exploits the sparsity of the underlying vascular structure to
improve the spatial resolution beyond the diffraction limit,
by relying on sparse recovery techniques [21]–[24].

Super-resolution imaging by exploiting sparsity in the cor-
relation domain was recently introduced in the context of flu-
orescence microscopy, in a method called sparsity-based super
resolution correlation microscopy (SPARCOM) [25], [26].
SUSHI extends the ideas of SPARCOM to CEUS imaging
by exploiting sparsity within the CEUS correlation domain.
However, the signal model in CEUS imaging differs from its
optics counterpart, as statistical independence between UCA
signals can only be assumed between different blood vessels.
Moreover, the CEUS signal includes phase measurements,
unlike fluorescent signals which contain magnitude only.
SUSHI exploits the phase of the received signal to separate
between vessels with opposite flow via Doppler processing,
prior to performing sparse recovery. This separation provides
additional anatomical information, based on flow directions,
and results in sparser signals for both arteries and veins,
compared with the original non-Doppler filtered signal. Sparse
recovery in the correlation domain allows SUSHI to reduce
acquisition time dramatically and operate with short, subsec-
ond acquisition rates and high UCA concentrations, while
achieving spatial resolution close to that of super-localization
techniques.

In recent years, sparse representations of signals [27], [28]
and the theory of compressed sensing (CS) [23], [24]
have gained popularity and found applications in many
research fields such as radar [29], magnetic resonance
imaging (MRI) [30], and US imaging [31]. A discrete signal
is said to be sparse, if it can be represented as a linear
combination of a small number of functions. That is, in an
appropriate transform domain, the signal can be represented
by a vector with most coefficients zero, except a small number
of nonzero values at unknown locations. CS techniques aim
at estimating the locations and values of these coefficients.
The theory underlying CS asserts that such a sparse vector
can be recovered exactly from a small number of linear
measurements taken in a nonadaptive manner [27]. CS has
also been used to enable super-resolution in fields such as
fluorescence microscopy [25], and coherent diffraction imag-
ing [32], to name a few. In addition, recent works [33], [34]
have shown that sparse recovery in the correlation domain may
lead to a dramatic increase in the number of detected sources,
compared with sparse recovery performed on the signal itself.

The rest of the paper is organized as follows. A paramet-
ric model for CEUS signals, including Doppler information,
is presented in Section II. Based on this model, statistical inde-
pendence in CEUS signals is discussed in Section III. SUSHI
processing that uses this statistical independence together with
sparsity in the underlying vascular structures is described in
Section IV. In Sections V and VI, we show improvement in
spatial resolution comparable to super-localization, but with
much higher temporal resolution. Our results are analyzed and
discussed in Section VII. Section VIII concludes this paper.

Throughout this paper, x represents a scalar, x a vector,
and X a matrix. The size of a matrix A is denoted by
M × N , such that A has M rows and N columns. The kth
discrete Fourier transform coefficient of x[p], p = 1, . . . , P is
denoted using capital letters and index k, X[k], k = 1, . . . , P .
The notation || · ||p indicates the p-norm. Square brackets [·]
relate to discrete-time signals, while round brackets (·) indicate
continuous-time signals.

II. CEUS SIGNAL MODEL AND DOPPLER PROCESSING

In this section, we specify the analytical model we assume
to describe the acquired CEUS signal. This model is then
used for Doppler processing, which is a preprocessing step in
the overall SUSHI algorithm. It also enables us to exploit the
inherent sparsity within the signal to achieve super-resolution,
as we describe in Section IV.

A. Signal Model

CEUS imaging is performed by transmitting a series of
US pulses toward the region of interest with uniform time
differences �T . This series of P measurements is performed
over an interval t ∈ [0, T ], where T = P�T . The received
signals in the transducer elements are focused upon reception
in a process called beamforming to produce an US map of the
interrogated tissue and are then demodulated to produce the
IQ signal. The IQ signal f is composed of the desired blood
signal b, resulting from echoes of individual microbubbles,
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and contaminated by the tissue clutter c and an additive noise
component w [35]

f (x, z, t) = c(x, z, t)+ b(x, z, t)+ w(x, z, t). (1)

Here, x and z are the lateral and axial coordinates, respectively.
Our goal is to utilize the acquired microbubbles signal b
to achieve a subdiffraction representation of the underlying
vasculature, with subsecond acquisition times. The first step
in our processing scheme is to estimate the relevant blood
related component b from f . We then exploit the inherent
sparse structure of the underlying vasculature, described
in Section IV, to achieve fast, super-resolved CEUS imaging.

The removal of clutter noise from CEUS data and the
estimation of b, denoted as b̂, is usually performed based
on two priors: the nonlinear (harmonic) nature of the echoes
produced by the microbubbles at low acoustic pressure, and
their distinct velocity patterns. Pulse sequences containing
several pulses with different amplitudes and/or phases were
developed to separate the nonlinear signal component [36].
The echoes resulting from these different pulses are weighted
and combined as a preliminary processing step. Next, tempo-
ral [37] or spatiotemporal [35] filters can be used to remove the
remaining nonlinear clutter noise and produce an estimation
of the blood related signal b̂. IIR filters with projection
initialization [37] were used in this work since this method’s
cutoff parameter is directly connected to the minimal flow
velocity in the estimated blood signal and therefore is easier
to interpret and control.

We now turn to describe an analytical model for b̂, which
will enable us to perform additional Doppler processing and
to formulate the SUSHI processing. We assume that the
US acquisition is performed by a linear, shift invariant sys-
tem. Therefore, at any given time, the filtered blood related
signal b̂ can be written as a convolution between the reflectiv-
ity function of the scanned object, denoted by i(x, z, t), and
the PSF of the system h(x, z). Denoting the time-dependent
set of detected bubbles at time t as K(t), the reflectivity of
the UCAs, i(x, z, t), is modeled as a sum of Dirac delta func-
tions δ(·, ·) at time-varying positions (xq(t), zq (t)), such that

i(x, z, t) =
∑

q∈K (t)

δ(x − xq(t), z − zq(t))σq (2)

where σq represents the scattering of each bubble. A physical
model for the echo from a single bubble can be found in [38].
Signal b̂ is the convolution between i(x, z, t), defined in (2),
and the PSF, resulting in a stream of pulses model [19]

b̂(x, z, t) =
∑

q∈K (t)

h(x − xq(t), z − zq(t))σq . (3)

This stream-of-pulses model for CEUS signals is similar to
the one in [39].

By discretizing the positions of the microbubbles in (3) and
associating them with one of Np neighboring volume cells in
which they are located at a given time, b̂ can be described by
the following equation [19]:

b̂[m�x L, l�zL , t] ≈
NP∑

n=1

h[m�x L − xn, l�zL − zn]sn(t) (4)

where m, l ∈ {1, . . . ,M} and [�x L,�zL ] are the indices
and dimensions of the pixels in the beamformed image,
respectively, (L stands for “low,” as in the low-resolution
beamformed image); [xn, zn] are the positions of the Np

microbubble-containing pixels; and sn(t) is the time dependent
signal, summing the contributions σq of all the bubbles in each
bubble-containing pixel. Here, we consider a square image for
convenience only, although the method is easily applicable to
rectangular images.

The time-dependent fluctuations in each pixel sn(t) include
a multiplicative envelope a and a complex phase whose
temporal change over consecutive acquisitions is affected by
the velocity of the moving contrast agents. In US imaging,
we measure sn(t) at t = p�T , where p is the transmitted
pulse index. Following [40] and the derivation in [41] for a
single scatterer, sn[p�T ] is described as:

sn[p�T ] = a[p�T ]
∑

u∈Un

exp− jνu p�T+β0 . (5)

The set Un contains the microbubble velocities detected within
each volume cell n during the imaging interval, νu are their
Doppler angular frequencies, and β0 is a random constant
phase. Each Doppler angular frequency is related to a specific
axial velocity νz,u , by the following relation:

νu ≡ 2π(2 f0vz,u/c). (6)

Here, c is the velocity of sound in the medium and f0 is the
center frequency of the US wave. A single volume cell n can
contain bubbles belonging to several vessels or streamlines
with different Doppler angular frequencies νu . In previous
works, the random envelop a was shown to follow the
K -distribution [42].

The complex phase in (5) enables the use of Doppler
processing, not only to remove clutter noise but also to
decompose the CEUS signal according to the blood flow
velocities within the vessels. By doing so, CEUS signals that
belong to different blood vessels with distinct Doppler signals
can be separated even if they spatially overlap. This Doppler
processing is performed on each pixel’s time-trace separately.

B. Doppler Processing

Next, we detail our Doppler preprocessing, starting with
a single pixel, whose time trace is given by (4), sampled
at times t = p�T . In the following, the �T notation is
removed, for convenience. Considering (4) at discrete time
points p, we obtain the P-point temporal discrete Fourier
transform (DFT) of b̂ in pixel [m, l] as

Bm,l [k] = DFT

{
NP∑

n=1

h[m�x L − xn, l�zL − zn]sn[p]
}

=
NP∑

n=1

∑

u∈Un

h[m�x L − xn, l�zL − zn]Au[k] (7)

where the DFT of the uth velocity component from (5)
(DFT{sn[p]}) is given by

Au[k] = DFT{a[p]e− jνu p�T+β0}[k], k = 0, . . . , P−1. (8)
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The double sum in (7) presents the contribution of the
velocity distribution Un in each bubble-containing location n.
As part of our Doppler processing we divide the continuous
Doppler spectrum of the imaged blood vessels into U bands.
By doing so and looking at the entire scan instead of a single
pixel, we can reorder the double sum in (7) according to
a desired number of bands U , and the number of volume
cells containing microbubbles in each Doppler band Nu .
Subsequently, the signal Bm,l [k] is decomposed according to
its spectral content

Bm,l[k] =
U∑

u=1

⎛

⎝Au[k]
∑

n∈Nu

h[m�x L − xn, l�zL − zn]
⎞

⎠. (9)

Since we divide Bm,l[k] into U different Doppler bands (which
together cover the entire spectrum), we may apply a series
of temporal bandpass filters to the time series in each pixel,
to separate the bands. By doing so, the blood signal b̂ at pixel
[m, l] is decomposed into D f signals, each denoted by b̂d ,
with different flow characteristics

b̂d
m,l [p] = DFT−1{Bm,l[k]�d

m,l[k]
}[p], (10)

where �d , d = 1, . . . , D f correspond to the series of D f tem-
poral bandpass filters that together cover the relevant Doppler
frequency bands. These temporal filters are applied to each
pixel’s time-trace, in parallel. When applied to all the pixels
in the scan, this Doppler processing results in D f movies,
each showing different flow patterns and sparser vasculature,
divided according to the different Doppler velocities. In this
work, we chose D f = 2, and used one filter to separate
the positive frequencies and another to separate negative
frequencies, with respect to the transducer. Thus, arterial and
venous vasculature could be separated (as presented in Fig. 2),
according to the direction of flow. An illustration of the
temporal filters is given in Fig. 5.

In the time domain, the filtered signal b̂d in (10) is given by

b̂d[m�x L, l�zL, p] =
Nu∑

n=1

h[m�x L − xn, l�zL − zn]sd
n [p]

(11)

with sd
n [p] being the time-dependent signal fluctuation in each

bubble containing pixel n, and d being the index of the
Doppler band. From here on, the processing is performed on
each filtered signal, b̂d and we omit the superscript [·]d for
ease of notation. In Section III, we describe how to exploit
statistical properties of CEUS fluctuations over each filtered
signal to improve the spatial resolution.

III. STATISTICAL PROCESSING OF CEUS TIME SERIES

The statistical blinking of CEUS signals was recently
utilized in a method called CEUS SOFI [19], to enhance
the spatial resolution of these scans while maintaining high
temporal resolution. In CEUS SOFI, the moments of the
time series in each pixel were presented together as 2-D
images. SUSHI improves upon CEUS SOFI, by exploiting
sparsity in the correlation domain on each filtered signal.
In this section, we briefly describe the main ideas behind

the statistical processing of CEUS scans as presented in [19].
In Section IV, inspired by the SPARCOM method developed
for super-resolution florescent microscopy [25], we exploit
sparsity in the correlation domain to improve the resolution
even further. This enables to achieve super-resolution imaging
while dramatically reducing the acquisition time.

We make the following assumptions throughout.

1) For each processed ensemble, the statistics of the mea-
sured echoes from the bubbles in each volume cell
sd

n [p] depend only on the time difference τ between
the measurements and not on the specific measurement
times (i.e., it is a wide sense stationary process).

2) The location of a vessel containing volume cells posi-
tioned around [xn, zn], n = 1, . . . , NP does not change
during the short acquisition time of the processed ensem-
ble (and so, no image registration is required).

3) Temporal signal fluctuations in volume cells that belong
to different blood vessels are statistically independent.

Following assumptions 1–3, SOFI processing calculates sta-
tistical quantities of the CEUS time-series in each pixel and
presents them as a single image. For example, the second-order
SOFI signal g2 is produced by estimating the autocorrelation
of each pixel in (11) for a prechosen discrete time-lag τ [19]

g2[m�x L, l�x L, τ ] =
∑

n

|h[m�x L − xn, l�x L − zn]|2gn[τ ]

+
∑

i, l
i �= l

h[m�x L − xi , l�x L − zi ]

· h̄[m�x L − xl , l�x L − zl ]gil [τ ] (12)

where gn[τ ] = E{s̃n[p + τ ]s̃n[p]} is the autocorrelation
function of the temporal fluctuations of pixel n, and gil [τ ] =
E{s̃i [p + τ ]s̃l[p]} is the cross correlation of pixels i and j .
Here, s̃n[p] = sn[p] − E{sn[p]}, n is the pixel index, τ is the
discrete predetermined delay of the autocorrelation function,
and i and l are indices of (dependent) volume cells located
in the same streamline. Bubbles flowing independently in
different vessels produce only squared absolute-valued PSF,
seen in the first expression in (12) but not cross-terms, seen
in the second part of this equation. Being narrower than the
original PSF, the squared absolute-valued PSF represents the
improved separation between the vessels. The second term
shows the wider first order PSFs that smooth the signal from
microbubbles flowing along the same vessels. In [19], higher
statistical orders were used to further increase the resolution
of SOFI images.

The application of SOFI to CEUS scans provides several
advantages including a significant SNR improvement [43] and
increase in spatial resolution which scales as the square root
of the applied statistical order [19]. However, in practice,
high-order statistics beyond the fourth moment are rarely used
since longer ensembles are needed for estimating high-order
statistics; in addition, when using high-order statistics strong
echoes mask weaker echoes from adjacent bubbles [18]. The
limited improvement in spatial resolution achieved by CEUS
SOFI and the ideas presented in SPARCOM [25] motivate the
combination of the statistical priors of SOFI with additional
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Fig. 1. Simulation showing the resolution capabilities of SUSHI. Flow of low concentration of microbubbles within two nearby narrow tubes is
depicted by (a) temporal mean (150 frames), (b) second-order SOFI, (c) SUSHI, and (d) super-localization, compared to (f) higher concentration SUSHI
and (g) super-localization reconstructions. (e) Intensity profiles measured along the horizontal yellow lines. The measured ratio between the temporal mean
FWHM to the SUSHI/super-localization FWHM is 9.96 and 12.59, respectively, implying an order of magnitude improvement over that of the temporal
mean image. Finally, the SUSHI recovery appears smoother compared to the super-localization recovery for both low and high concentrations, without the
false-positive detections appearing in super-localization, even at relatively low microbubble concentration (and more so in high concentrations).

priors on the characteristics of the underlying signal of interest,
leading to the SUSHI framework for super-resolution CEUS
imaging. Using this approach, the vasculature is reconstructed
on a grid denser than the grids of CEUS SOFI images, without
increasing the required scan time (see Fig. 1).

IV. SUSHI PROCESSING

A. Exploiting Sparsity for Super-Resolution

We now describe the SUSHI processing in detail which
exploits sparsity of the underlying vasculature in the corre-
lation domain. Sparse recovery processing is demonstrated
by using the correlation-based images calculated from the
low-resolution measurements. The key idea in SUSHI is to
model the underlying vasculature as composed of point targets
on higher resolution grid. We assume that on this grid, the
underlying vasculature is sparse. This assumption leads to the
formulation of a sparse recovery problem, which is solved
with a numerically efficient algorithm. SUSHI can easily
be expanded to images of higher order statistics as well
(see discussion in Appendix B-A).

Consider the correlation-based CEUS-SOFI image (12).
The first term represents the autocorrelation of the temporal
fluctuations arising from each microbubble, while the second
term constitutes the cross correlation function of temporal fluc-
tuations from adjacent microbubbles flowing within the same
vessel in a correlated way. The second term was neglected in
the following processing, as it is does not affect the support
of the vessels. By posing a sparse recovery problem on the
correlation image, we recover a super-resolved map of the
vasculature from scans with overlapping CEUS echoes.

To achieve super-resolution, we introduce a new high-
resolution grid with spacing [�x H ,�z H ], such that [xn, zn] =
[ix�x H , iz�z H ] for some ix , iz ∈ {0, . . . , N − 1}, while

[�x L,�zL ] is referred to as the low-resolution grid.
We assume that �x L = D�x H and �zL = D�z H for some
D ≥ 1, and consequently it holds that N = DM (in all of our
experiments we fix D = 8). Thus, we start from an M × M
CEUS correlation image and reconstruct an N × N super-
resolved image which is D2 times larger. When studying the
structure of the vasculature residing in the imaged plane, the
underlying information we wish to obtain is the set of voxels
which contain vessels in this high-resolution grid.

Omitting the cross correlation term from (12) (applied to
each b̂d), we rewrite it in Cartesian form as

g2[m�L, l�L , τ ]
=

∑

ix ,iz

|h[m�L − ix�H , l�L − iz�H ]|2gix ,iz [τ ]. (13)

Substituting �x L = D�x H , �zL = D�z H into (13), we have

g2[m D, l D, τ ] =
N−1∑

ix ,iz=0

|h[m D − ix , l D − iz]|2gix ,iz [τ ] (14)

where �x L , �zL , �x H , and �z H are omitted for convenience.
Since we discretized the possible positions of vessels within

N × N pixels, gix ,iz [τ ] represents the autocorrelation of pixel
[ix, iz] on the high-resolution grid, for a prechosen time-lag τ .
The possible locations of the vessels are discretized according
to the high-resolution grid ix , iz ∈ [0, . . . , N − 1], such that if
no bubble is present in some pixel, then its autocorrelation will
be zero. By estimating the locations in which gix ,iz [τ ] �= 0,
a high-resolution estimation of the vascular structure can be
achieved. For example, choosing τ = 0, the variance of the
fluctuations is estimated using the high resolution grid. Each
pixel in the recovered image corresponds to the variance of
the echoes originating from this point (or zero, if no echoes
are detected).
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The above model and the sparsity prior on the underlying
vasculature enable us to estimate the locations of the vessels
by solving an inverse problem as described below. Following
a similar line of computation to that presented in [25], we con-
sider (14) in the discrete Fourier domain, leading to an efficient
numerical estimation of the high-resolution image. Note that
g2[m D, l D, τ ] is an M × M matrix. We denote its 2-D DFT
by G2[km, kl, τ ], where km, kl are M×M spatial frequencies.
Performing an M × M 2-D DFT on (14) yields

G2[km, kl , τ ] = H [km, kl ]
N−1∑

ix ,iz=0

gix ,iz [τ ]e− j 2π
N km ix e− j 2π

N kl iz

(15)

where H [km, kl ] is the M×M 2-D DFT of the M×M squared,
absolute value PSF |h(x D, y D)|2.

Next, we rewrite (15) in matrix-vector notation. To simplify
the equation, we perform column-wise stacking (vectoriza-
tion) of G2[km, kl , τ ], and denote the result as an M2 long
vector y[τ ], that is y[τ ] = vec{G2[km, kl, τ ]}. In a similar
manner, we vectorize the N × N image statistics on the high-
resolution grid gix, ix

[τ ] and denote the result as an N2 long
vector x[τ ], so that x[τ ] = vec{gix ,i y [τ ]}, ix , ix = 0, . . . N−1.
Thus, x[τ ] represents the underlying vasculature we wish to
recover on the high-resolution grid, and is assumed to be
sparse. Rewriting (15) in matrix-vector form yields

y[τ ] = H(FM ⊗ FM )x[τ ] = Ax[τ ], A ∈ C
M2 X N2

. (16)

Here, A = H(FM ⊗ FM ), H is an M2×M2 diagonal matrix
with diagonal elements {H [0, 0], . . . , H [M− 1, M− 1]}, ⊗
stands for the Kronecker product and FM denotes a partial
M×N DFT matrix, created by taking the rows corresponding
to the lowest M frequency components of a full N × N DFT
matrix. Additional illustrations and information regarding the
Doppler processing and the construction of FM (Fig. 6) and
A are presented in Appendixes A and B.

We solve for x[τ ] in (16) by considering the following
optimization problem which includes the prior that x is sparse:

min
x

λ||x||1 + 1

2
|| y− Ax||22. (17)

Here τ is omitted for the sake of simplicity and λ ≥ 0 is
a regularization parameter. Exploiting sparsity enables recon-
struction of the underlying vascular structure at subdiffraction
resolution even without separation of single bubbles. If τ = 0,
then x represents the variance of the CEUS signal fluctua-
tions, which is a nonnegative quantity, and consequently the
constraint x ≥ 0 is added.

Many existing algorithms aim at solving (17). We focus
on the FISTA [21] algorithm which is known to achieve the
fastest possible (worst case) convergence rate for a first-order
method, as described by Nesterov [21]. Since we formulated
our problem in the (discrete) frequency domain, we are able
to evaluate the application of A on a vector using fast Fourier
transform (FFT) operations. A detailed description of the
SUSHI algorithm is given in Algorithm 1. The sign function
in line 2 of the algorithm operates elementwise and is equal
1 for a positive input, zero for a zero input and −1 for a

Algorithm 1 SUSHI via FISTA for Minimizing (17)

Input: CEUS movie b̂ with P frames, regularization λ > 0,
maximum iterations number KM AX , time-lag τ
Output: xKM AX

Statistical pre-processing:
For each pixel in b̂ estimate its correlation:

g2 [m, l, τ ]

= 1

P − τ

P−τ∑

t=1

b̂ [m, l, t] b̂ [m, l, t + τ ]− 1

P2

(
P∑

t=1

b̂[m, l, t]
)2

Vectorize g2: y = vec{g2}
Initialize: z1 = x0 = 0, t1 = 1, k = 1 and L f = ||AT A||2
While k ≤ KM AX or stopping criteria not fulfilled

1. Calculate qk = AT Azk − AT y as described in [26]

2. xk = max
(∣∣∣zk − 1

L f
qk

∣∣∣− λ
L f

, 0
)
· sign(zk − 1

L f
qk)

3. tk+1 = 0.5(1+
√

1+ 4t2
k )

4. zk+1 = xk + tk−1
tk+1

(xk − xk−1)
5. k ← k + 1

End

negative input. The calculation of the gradient in Algorithm 1,
which involves the application of AT and AT A on vectors, can
be computed very efficiently, due to our formulation of (16)
in the discrete frequency domain (the explicit expression of
the gradient is given in step 1 of Algorithm 1). In particular,
as shown in detail in [26] in the context of SPARCOM,
matrix A does not need to be stored in memory; rather it can be
applied directly using FFT operations. Similarly, in the Fourier
domain, AT A admits a structure known as block circulant with
circulant blocks, so that it can be applied on vectors directly
again using only FFTs leading to a very efficient numerical
implementation.

Sparse recovery and in particular super-resolution recovery
can also be performed by assuming that x is sparse under dif-
ferent transformations. For example, sparse representation of
vascular structures in Haar and Daubechies wavelets has been
used in MRI CS algorithms [30]. Another option is to con-
sider super-resolution recovery under total-variation [44] (TV)
constraints

min
x

λTV(x)1 + 1

2
|| y− Ax||22. (18)

In its general form, we utilize an analysis-based formulation

min
x

λ||T∗x||1 + 1

2
|| y − Ax||22 (19)

where T stands for the desired transformation such as the
discrete wavelet transform or DCT and (·)∗ stands for the
adjoint operation. Specifically, (19) implies that x has a sparse
representation under the transformation T , that is x = Tα,
and α is sparse. In the case of a TV prior, we used the
TV-FISTA [45] formulation to solve the minimization prob-
lem, while for the analysis problem we used the S-FISTA [22]
algorithm. The SUSHI images in this paper are generated
by solving (17). Comparison to (18) and (19) can be found
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in Appendix C. Solutions of (17) and (19) showed similar
reconstruction results, which were better in our examples than
piecewise-constant images obtained by minimizing (18).

B. PSF Estimation

In practice, to apply the matrix A in (17), the PSF |h|
must be estimated first. Generally, even when using high
concentrations of US contrast agents, echoes from resolvable
bubbles can be expected, at least in small blood vessels with
low density flow. In this work, these resolvable echoes were
exploited for PSF estimation, using a three-step process. First,
the correlation between each image patch and an M × M
template patch is calculated. The template patch can be either
manually picked or computed according to the geometry of the
transducer and the imaging depth. Patches whose correlation
with the template patch is above a predefined threshold are
considered relevant. These L patches are automatically aligned
to the template using rigid body registration and stacked
together to produce an M×M×L matrix. Finally, the M×M
PSF is estimated by taking the mean of each pixel, over
the L patches. As initialization, patches containing resolvable
microbubbles were selected from the in vivo scans. The mean
of these patches was used as a template for further automatic
patch selection.

V. MATERIALS AND METHODS

We validate SUSHI using numerical phantoms and in vivo
scans. In these tests, SUSHI achieves spatial resolution gain
comparable to that of super-localization approaches, but with
short acquisition intervals of only 40–60 ms, compared to
tens or hundreds of seconds in super-localization [6], [8].
Using SUSHI, we demonstrate for the first-time subsecond
hemodynamic changes in a vascular scan of a rabbit kidney
with subdiffraction spatial resolution. Selected frames from
a time-lapse movie with a frame-rate of 25 Hz, similar to
the frame-rate of clinical hemodynamic Doppler scans [4], are
presented in Section VI.

A. Simulations

We first test SUSHI using a numerical phantom simulation,
to investigate its possible resolution gain and stability under
different concentrations of microbubbles. To compare the
results of the proposed method to a known underlying geom-
etry, a 2-D 150–frame-long numerical simulation of signals
originating from two closes by parallel vessels is performed.
Three Gaussian bubbles were positioned in the right vessel
and six in the left vessel. Additional simulations with up to
4 times the number of bubbles tested the effects of higher
concentrations (see also additional concentrations in Fig. 10).
Here, Doppler processing was not applied, in order to test
the separation of vessels with similar flow velocities using
sparsity alone. The dimensions of the simulated Gaussian
PSF were set according to the experimental PSF estimated
from a rabbit kidney scan, as presented in Appendix B.
The standard deviations of these microbubbles is defined
as σx = 0.27 mm and σz = 0.23 mm in the lateral and

axial directions, respectively. The centers of the simulated
vessels are separated by 1.2σx to make sure that they are
nonresolvable in the temporal mean image. The velocity in
the left vessel is defined as 0.25σz/frame while the velocity
in the right vessel is 0.5σz/frame. In this scenario, due to the
velocity differences, in some frames microbubble overlap is
present, such that two microbubbles are horizontally aligned,
and their centroids distance is 1.2σx . Initial distance between
the bubbles was chosen randomly with a uniform distribution,
while preventing the event of connected bubbles. The autocor-
relation of the simulated complex signals is calculated together
with the temporal mean of the envelope signal in each pixel.

SUSHI images are also compared to super-localization
images generated throughout this paper using the Image-J soft-
ware [46] and the ThunderSTORM plug-in [47]. In essence,
this plug-in finds local maxima points and performs a non-
linear fit to a Gaussian for each such detection, to achieve
sub-pixel precision. In an iterative manner, the Gaussian
width is also estimated in the process. Specifically, in this
study, we performed this fit via the weighted least squares
option. Prior to the fitting procedure, this code denoised the
input data using a wavelet based built-in denoising procedure
with B-spline of order 2 and scale 3. Both SUSHI and the
super-localization recovery were smoothed, as is customary in
single molecule microscopy, with the same Gaussian kernel.
A bifurcation simulation similar to the first bifurcation in [48]
was also performed (see Fig. 11).

B. In Vivo Ultrafast Imaging

The in vivo scans presented throughout this paper belong
to a New Zealand white rabbit model: plane wave inversion
Doppler (PID) [39] was used to image normal vessels in the
kidney of healthy rabbits. All the scans were acquired using
a clinical Aixplorer US system (Supersonic Imagine, Aix-en-
Provence, France) and an L15-4 linear probe transmitting at a
PRF of 5 kHz. Only the central part of the elements is used
upon reception due to channel limitation. The carrier frequency
of the transmitted single cycle pulses was 4.5 MHz and a
mechanical index of 0.06 was used to reduce the burst rate of
the microbubbles. Definity (Lantheus Medical Imaging Inc.,
N. Billerica, MA, USA), a clinically approved contrast agent,
was used at a clinical concentration of 10 μL/Kg. Following
the injection of 0.5 mL of this contrast agent into the ear vain
of the rabbit, an additional 1 mL of saline was used to flush it.
All the protocols were approved by the Sunnybrook Research
Institutional Review Board.

The initial step in the processing of the received IQ data
was the weighted summation of the echoes from different
pulses that compose the PID sequence. This process cancels
out the linear part of the signal and maintains the nonlin-
ear bubble related signal. The single channel data is then
beamformed to produce a 2-D + time cine matrix. Fast time
(axial direction) 2–12-MHz finite-impulse response bandpass
filter was applied to remove noise outside the passband of
the transducer. Next, Doppler (slow time) processing was
performed to remove the static clutter from the moving blood
and to provide separation between small vessels with blood
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flowing in opposite directions. A sixth-order Butterworth filter
with a stopband of 0.03PRF was used as the clutter filter
(wall filter). This threshold is selected since it provides good
separation between flow and clutter.

VI. RESULTS

A. Simulations
The numerical simulation covered a wide range of contrast

agents’ concentrations. In practice, even when high concentra-
tions of contrast agents are injected and many microbubbles
are found in the imaging plane, separated microbubbles can be
frequently found in specific locations containing small vessels.
The simulation depicted in Fig. 1(a)–(d) represents a CEUS
patch with such low concentration of microbubbles within two
adjacent vessels. Fig. 1(a) shows the temporal mean image,
created by averaging the envelope of all 150 frames included
in the movie. Fig. 1(b) illustrates the second-order SOFI
reconstruction (zero time-lag), and Fig. 1(c) and (d) shows
the SUSHI and super-localization reconstructions, respectively.
In contrast to Fig. 1(a)–(d), Fig. 1(f) and (g) depicts the
SUSHI and super-localization reconstructions for high local
concentration, respectively. Judging the panels, SOFI resulted
only in a slight decrease in the intensity between the two
streamlines, while SUSHI and the super-localization technique
fully resolved them. Fig. 1(e) provides further support to this
conclusion, by presenting an intensity cross section along the
lateral direction for the low concentration scenario [yellow
line in Fig. 1(a)–(d)]. The plus head (black line) in Fig. 1(e)
corresponds to the temporal mean image, diamond-head
(blue line) to the second-order SOFI image and the right
head (green line) and left head (turquoise line) to the SUSHI
and super-localization images, respectively. Both SUSHI and
super-localization techniques resolve the two lines, while the
second-order SOFI does not. (A very minor dip is present.)
Furthermore, the SUSHI and super-localization profiles depict
an almost perfect match.

To quantify the resolution enhancement, the full-width at
half-maximum (FWHM) ratio between that of the temporal
mean and SUSHI/super-localization profiles (right peak) is
measured as 9.96 and 12.59, respectively. The SUSHI FWHM
ratio implies a resolution increase by an order of magnitude
beyond the classical resolution of the scanner, similar to the
results presented previously using super-localization [8].

Nevertheless, it is important to note that even at this sim-
ulation of low contrast agent concentration, super-localization
processing produces false positive detection, marked by the
white arrow at the lower part of Fig. 1(d), which are absent in
the SUSHI image. Similar results were also observed in the
bifurcation simulation (Fig. 11). This effect worsens as the
concentration increases [Fig. 1(g) and (f)]. The rate of false
positive detections increases with the bubbles concentration
for super-localization [Fig. 1(g)], while the SUSHI recovery
[Fig. 1(f)] seems similar to the recovery for low concen-
trations. We conclude that SUSHI operates better in higher
concentrations than super-localization. Thus, SUSHI is able
to process scans of higher concentrations of contrast agents,
which leads to a dramatic reduction in the acquisition time,
while producing super-resolved images of the vasculature.

Fig. 2. Decomposition of the vasculature using Doppler preprocessing.
(a) Temporal mean image of the kidney. (b) SUSHI reconstruction. Red indi-
cates negative flow and cyan positive flow with respect to the transducer.
(c) Correlations SOFI image of the negative flow. (d) Correlations SOFI image
of the positive flow. (c) and (d) display nearby vessels with opposite flow
velocities are decomposed using Doppler processing. Comparing (c) and (d),
Doppler processing can clearly distinguish between overlapping blood ves-
sels according to their flow directions. Moreover, (b) shows clear SUSHI
high-resolution reconstruction of the entire kidney with separation to positive
and negative flows.

B. In Vivo Experiments

To validate the performance of SUSHI when applied to
in vivo scans, two scans previously presented [19], [49]
are reprocessed. These scans include noise, out-of-plane
reflectance and depict the true nonlinear behavior of the
injected microbubbles at high US contrast agent concentrations
usually used in the clinic.

The capability of Doppler processing to separate between
adjacent vessels with different flow velocities is demonstrated
in Fig. 2. Here, SUSHI is implemented on a rabbit kid-
ney scan containing 150 frames. The temporal mean image
of the kidney is presented for reference in Fig. 2(a). The
second-order correlation images of the positive and negative
flow components are displayed in Fig. 2(c) and (d), respec-
tively. These two images show different vascular structures
with higher resolution compared to the temporal mean image.
Fig. 2(b) presents the SUSHI reconstruction of the entire
kidney, divided into both flow directions. Fig. 2(b) serves
to emphasize the power of SUSHI to process entire organs,
without any restrictive assumptions on the geometry of the
blood vessels. By examining Fig. 2(a)–(d), it can be seen
that, indeed, the intertwined vasculature of arteries and veins
is separated. Therefore, Doppler-based filtering serves as an
important preprocessing step. CS processing is then performed
on each image separately, to achieve better depiction of the
blood vessels, and their flow directions. Although some of the
largest blood vessels appear slightly grainy, we emphasize that
these blood vessels are considerably larger than the diffraction
limit, and are not the focus of the resolution enhancement
performed by SUSHI. Improving their visual quality is a
matter for future work. To gain a detailed comparison between
the spatial resolution enhancement of different approaches,
we turn to perform our analysis on specific regions of interest.
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Fig. 3. Spatial resolution comparison. Blood vessel bifurcations, appearing in a scan acquired with high concentration of contrast agents, are depicted
as (a) temporal mean, using 150 frames, (b) fourth-order SOFI, (c) SUSHI, and (d) super-localization. Red and cyan depict hemodynamic flow from and
toward the transducer, respectively. Comparing visually, the super-localization image seems very noisy and unclear, while temporal mean and SOFI images
have degraded resolution compared with SUSHI. SUSHI exhibits the clearest image of the vasculature, presenting a sharp, almost noiseless reconstruction,
compared with the other methods. (e) and (f) Intensity profiles measured along the solid and dashed yellow lines on (a)–(d). All profiles were taken with
respect to the red blood vessels only. (e) shows that in high density areas (e.g., bifurcations), SUSHI is superior, while in low density areas [e.g., isolated
vessel in (f)], SUSHI exhibits comparable spatial resolution to super-localization.

Fig. 3 presents a comparative processing of a patch taken
from the kidney scan presented in Fig. 2. In this scan,
UCA overlap is present in most frames. Fig. 3(a)–(d) shows
temporal mean, fourth-order SOFI (zero time-lag, absolute
value), SUSHI and super-localization reconstructions, respec-
tively. Red and cyan blood vessels correspond to negative
and positive flow with respect to the transducer. Judging
visually, the SOFI image seems clearer than the temporal
mean image, though the resolution enhancement is limited.
The SUSHI reconstruction is very well-defined and sharp,
depicting clear bifurcations and intertwined blood vessels.
In contrast, the super-localization image seems noisier without
a clear depiction of the bifurcation. This happens since in this
scan UCA overlap is present, which emphasizes its limitation
in the case where high densities are used to reduce acquisition
time bellow 100 ms.

Fig. 3(e) and (f) presents selected intensity profiles of
the four methods along the solid and dashed yellow lines,
respectively. (Profiles were taken with respect to the red
blood vessels.) Fig.3(e) and (f) supports the conclusions drawn
from the visual comparison. Fig. 3(e) shows that SUSHI
(right arrow, green) clearly separates the two leftmost blood
vessels. The temporal mean and SOFI profiles (plus head,
black and diamond blue, respectively) do not exhibit such
separation. The super-localization profile does not produce
a clear depiction of the bifurcation. On the other hand,
Fig. 3(f) demonstrates that when isolated blood vessels are
considered and clear UCA separation is evident, the res-
olution of SUSHI, even on experimental scans, is similar
to that of the super-localization recovery, though slightly
lower.

The measured ratios between the temporal mean FWHM
and the SUSHI/super-localization FWHM is 4.55 and 4.97,
respectively, almost 5 times better than that of the original
temporal mean. Here, the change in FWHM does not reflect
the full increase in resolution since it is affected by the width
of the blood vessels.

After comparing the spatial resolution of SUSHI and super-
localization images, we proceed to demonstrate the ability
of SUSHI to produce subdiffraction movies with a high
temporal resolution of 25 Hz, capturing changes in the imaged
flow pattern. Fig. 4(a)–(d) presents four fourth-order SOFI
images (zero time-lag) from a longer rabbit scan, injected
with the contrast agent concentration similar to that used in
the clinic. Each Fig. 4(a)–(d) is composed from 100 consecu-
tive frames from the 1000 frames included in the complete
scan. Corresponding SUSHI reconstructions are presented
in Fig. 4(e)–(h). The four high-resolution SUSHI images
illustrate a temporal resolution of 25 Hz. The white arrows
in Fig. 4(f) and (g) point to a clear bifurcation which
is considerably less visible, and with poorer resolution in
the corresponding SOFI images. This bifurcation vanishes
in Fig. 4(h), suggesting a difference in the vasculature captured
during later parts of this subsecond scan. This observation
shows the ability of SUSHI to monitor hemodynamic changes
in a high spatiotemporal resolution.

Fig. 4(i) illustrates the spatial shift (∼0.5 mm) in the
position of the blood vessel [Fig. 4(e) in green and Fig. 4(h) in
purple], indicated by the white arrow, over a span of 240 ms
(40 ms frame rate). Since super-localization-based techniques
operate with longer acquisition periods, they require motion
compensation to be applied to the localizations to reduce
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Fig. 4. Demonstration of the high temporal resolution of SUSHI. (a)–(d) Four fourth-order SOFI snapshots (zero time lag) of the same bifurcation of a
blood vessel in a kidney of a white New Zealand rabbit, injected with US microbubbles, at different times. Here, very short ensembles of 100 frames were
used for each image. (e)–(h) Times of the snapshots are given in the lower left corners, which present the corresponding SUSHI reconstructions to (a)–(d).
(i) Super-imposed image of (e) and (h) in green and purple, respectively, spanning a temporal duration of 240 ms (40-ms frame rate). Bifurcation of blood
vessels marked by the white arrow heads can be clearly seen in (f) and (g), which is clearly less visible in the corresponding SOFI (b) and (c). The white
arrow in (i) serves to emphasize the lateral translation of the blood vessel during a period of 400 ms. This example depicts the ability of SUSHI to image
in vivo fine vasculature with a high spatiotemporal resolution.

the overall localization error. SUSHI does not require such
compensation in order to provide super-resolved time-lapse
imaging of fast hemodynamic changes, but might benefit from
it if the acquisition is extended when aiming to maximize the
percentage of the vasculature imaged during the scan of low
perfused tissues, such as tumors.

VII. DISCUSSION

In this work, SUSHI is shown to produce images with
exceptional combination of spatial super-resolution and high
temporal resolution. This is achieved by relying on the ability
to separate close-by vessels according to their Doppler veloc-
ities; the independence of CEUS fluctuations originating from
different vessels; and by exploiting sparsity in the correlation
domain. This prior information enables the proposed frame-
work to produce an unprecedented spatiotemporal resolution
tradeoff: a tenfold increase in spatial resolution and high
temporal resolution. In cases where high UCA concentrations
are considered, SUSHI produces a clear depiction of the
vasculature with subsecond acquisition times, compared to
typically a few minutes in super-localization scans [6], [8].
When well isolated blood vessels were analyzed, FWHM val-
ues of SUSHI were comparable to those of super-localization
although slightly lower.

Fast super-resolution opens a vast range of opportunities for
future applications and follow-up studies. Foremost, it facili-
tates functional (hemodynamic) super-resolution imaging that
could bridge, for example, between cerebral anatomical super-
resolution and functional neural imaging. In addition, it solves
several important practical limitations that currently hinder
wide clinical use of current CEUS super-resolution techniques.
First, SUSHI acquisitions can be performed between breaths
without the need for long breath-holds, which are unman-
ageable for many patients. Second, the numerically efficient
implementation described in Appendix B, and the potential
for parallel processing of many image patches could facilitate
an in-clinic fast reconstruction process. Finally, when using

scanners with limited computational resources, a reduction of
almost 2 orders in the number of acquired frames compared
to super-localization techniques means lower amounts of data
to store and process.

SUSHI shares an inherent physical limitation of all CEUS
imaging methods with short acquisition times, even when high
US contrast agent concentrations are used: certain vessels
with very low flow velocities might not contain microbubbles
during the imaging interval. This is also true for both SUSHI
and CEUS imaging methods with lower CEUS concentra-
tions and longer acquisition times, no matter what processing
method is applied. Although the use of high concentrations
of US contrast agents in this work maximizes the portion of
the vessels included in the scan within a given acquisition
time, it cannot ensure a full coverage of the vasculature
if very short acquisition intervals are needed. Incorporating
microbubbles tracking over several frames within the super-
localization framework can improve microbubble detection
and ULM estimations which could be important specifically in
short CEUS acquisitions [48]. The integration of sparsity and
UCA motion kinematics is a topic of continuing research [50].

Finally, in this study, SUSHI was implemented using fast
plane-wave imaging to detect fast hemodynamic changes.
Currently, the use of fast plane-wave imaging is not wide-
spread, mainly due to hardware limitations. When considering
variance estimation, as was presented here, SUSHI can in prin-
ciple also be applied with lower rate commercially available
scanners, using wide beam imaging for example. In the general
sense, sparsity can even be used in the processing of images
when RF signals are not accessible [50].

VIII. CONCLUSION

This work presents a new and improved tradeoff between
spatial and temporal resolutions in CEUS imaging: short
acquisitions of only tens of milliseconds, with a 25 Hz tem-
poral resolution, and improved super-resolution abilities with
64-fold increase in pixel density and up to a tenfold increase in
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Fig. 5. Separation to Doppler frequency bands using temporal bandpass
filters. Two Doppler filters (top). Four Doppler filters (bottom).

Fig. 6. Partial discrete Fourier matrix of low-frequency components.

spatial resolution. Drawing inspiration from SPARCOM, these
results are achieved by a CS framework that combines prior
knowledge on the temporal fluctuations of the received signal,
alongside the sparse nature of the underlying signal. The
proposed approach is characterized by short acquisition times,
computationally efficient implementation, and reduced mem-
ory burden, which together could simplify the clinical adap-
tation of super-resolution CEUS. In addition, the enhanced
spatiotemporal resolution provides researchers with a new set
of tools that may enable, for example, the investigation of
malignant hemodynamic patterns, super-resolution imaging of
cardiac vasculature, and the monitoring of fast hemodynamic
changes in functional neural scans.

APPENDIX A
SUPPORTING FIGURES FOR THE

THEORETICAL DERIVATIONS

Fig. 5 illustrates spectral decomposition of the continuous
Doppler spectrum into several bands for several possible selec-
tions of the temporal bandpass filters, described in (10). The
upper illustration depicts two symmetric filters D1 and D2,
separating the spectrum into positive flow and negative flow,
with respect to the transducer. The lower figure shows four
filters D1 − D4 separating the spectrum into four categories.
This decomposition provides both flow direction and in each
direction two flow categories. For example, D3 indicates slow,
positive flow with respect to the transducer, while D4 indicates
fast, positive flow. The same holds for D2 and D1 for negative
flow. Each such filter is applied on every pixel’s time trace,
separately. Additional decompositions can also be performed,
such that each filtered signal occupies a narrower velocity
range.

Fig. 6 depicts the partial discrete Fourier matrix,
as described in Section IV-A. The matrix FM is constructed
by first generating a full N×N DFT matrix and then removing
some of its rows. In this illustration, the zero frequency is at
the middle of the matrix, negative frequencies correspond to
the upper half of rows, and positive frequencies correspond to

the lower half of rows. The matrix FM consists only of the M
rows from −M/2 to M/2, as marked by the gray rectangle.

APPENDIX B
SUPPORTING MATERIAL FOR

IMPLEMENTATION OF SUSHI

A. Use of Higher Statistical Order in SUSHI Processing

Sparse recovery can be used not only for the correlations
image, but theoretically for any statistical image, e.g., fourth-
order images, in which the value of each pixel is the fourth
moment of its time trace. Thus, (14) in the main text will
consist of a super-position of the absolute PSF |h| raised to
the power of 4 instead of 2, and gix ,iz will consist of the
fourth-order moment estimation of the emitters’ fluctuations.
SUSHI will then be applied using an estimate of the PSF raised
to the power of 4 when minimizing (17)–(19).

In practice, we refrain from high-order statistical estimation
and demonstrate SUSHI using correlations only, since statis-
tical estimation of high-order moments requires an exponen-
tially increasing number of frames to retain the same SNR
level. This in turn reduces the temporal resolution of SUSHI,
since longer movie ensembles are required for the estimation
process. Thus, for the sake of simplicity and to achieve good
temporal resolution, we restricted the demonstration in this
paper to second-order statistics, which can be estimated from
a relatively low number of frames, as we demonstrate in
Section VI. There we show a significant improvement in the
spatial resolution compared to the diffraction limit, with a
subsecond temporal resolution.

B. Forward Problem in the Matrix-Vector Form

For convenience of the reader, we present here the forward
problem (16) in the matrix-vector form in a more explicit way.
Specifying separately each element of the PSF matrix H and
the vectors y and x, we get
⎡

⎢⎣
y1(τ )

...
yM2(τ )

⎤

⎥⎦ =
⎡

⎢⎣
H [0, 0] 0 0

0
. . . 0

0 0 H [M − 1, M − 1]

⎤

⎥⎦

×(FM ⊗ FM )

⎡

⎢⎢⎢⎣

x1(τ )
x2(τ )

...
xN2 (τ )

⎤

⎥⎥⎥⎦ (20)

where y is the temporal autocorrelation vector, calculated
from the data measured on the low-resolution grid, and x is
the sparse representation vector that we want to estimate
(on the high-resolution grid). M is the width and length of the
low-resolution grid, N is the width and length of the high-
resolution grid, and τ is the discrete time lag used for the
autocorrelation calculation.

C. PSF Estimation

In this section, we provide an example of the estimated PSF,
using the procedure described in Section IV-B. An example
of the real component of an automatically detected patch
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Fig. 7. PSF estimation from resolvable microbubbles. (a) Patch including
a single resolvable microbubble. (The real part of the signal is displayed.)
(b) Absolute value of the final estimation of the PSF. (c) Lateral section
through the estimated PSF showing sidelobes. (d) Axial cross section through
the estimated PSF showing the ringing of the transmitted pulse. Clearly, there
is some mismatch to the simplified Gaussian model. However, SUSHI can
operate adequately with both the estimated PSF (see Fig. 3) and a Gaussian
estimate (see Fig. 4).

with a recoverable microbubble is depicted in Fig. 7(a). The
modulation of the pulse can be clearly seen. The final esti-
mated PSF is presented in Fig. 7(b) in its absolute value. The
amplitude of cross sections through this PSF, in the lateral and
axial directions, is presented in Fig. 7(c) and (d), respectively,
along with their Gaussian approximation. The limitation of the
Gaussian approximation is evident by looking at the additional
details appearing in the estimated PSF. These details include
sidelobes [Fig. 7(c)] in the lateral direction and asymmetric
structure, related to the ringing of the transducer, in the axial
direction [Fig. 7(d)]. The estimated PSF is then used in the
SUSHI algorithm to recover the underlying vasculature with
subdiffraction resolution.

APPENDIX C
SUPPORTING In Vivo RESULTS

A. Additional In Vivo Example

In this section, we show an additional example of the
high-resolution reconstruction obtained by SUSHI, when high
densities are used. Fig. 8 shows an additional patch of sub
diffraction sized blood vessels, taken from the same kidney
scans (150 frames) presented in Figs. 2 and 3. The vessels in
red contain negative flow with respect to the transducer, while
vessels in cyan illustrate the positive flow.

Fig. 8(a)–(d) depicts four reconstructions: temporal mean,
fourth-order SOFI (zero time-lag, absolute value), SUSHI and
super-localization, respectively. Judging visually, the SUSHI
recovery seems the sharpest of all recoveries, showing clear
bifurcations, which are missing in the temporal mean and
SOFI recoveries. Since the microbubbles density is high
(clinical dose), the super-localization technique involves many
false detections and results in a noisy and unclear image.

Fig. 8. Additional spatial resolution comparison. Blood vessel bifurcations
are depicted with (a) temporal mean, using 150 frames, (b) fourth-order SOFI,
(c) SUSHI, and (d) super-localization. Red and cyan depict hemodynamic flow
from and toward the transducer. (e) and (f) Two intensity profiles measured
along the yellow solid and dashed lines on (a)–(d). All profiles were taken
with respect to the red blood vessels only.

Fig. 9. Sparse recovery under different sparsity assumptions. Blood vessel
bifurcations are depicted with (a) temporal mean, using 150 frames, (b) SUSHI
recovery using (17), (c) SUSHI recovery using (19), and (d) SUSHI recovery
using (18). Red and cyan depict hemodynamic flow from and toward the
transducer. (e) and (f) Intensity profiles are given, corresponding to the
yellow solid and dashed lines in (a)–(d), respectively. Comparing visually,
(b) and (c) show similar reconstruction (l1 and wavelet), while (d) (TV) shows
a reconstruction with degraded resolution. (e) and (f) support this observation.
For example, (e) shows a clear bifurcation for the l1 and wavelet recoveries,
which is absent in the TV image.

Fig. 8(e) and (f) depicts selected intensity profiles along the
yellow solid and dashed lines, respectively. The temporal mean
profile is given by the plus-head, black line, fourth-order
SOFI by the blue diamond-head line, SUSHI by the green
right-arrowhead and super-localization by the turquoise, left-
arrowhead. Fig. 8(e) and (f) serves to illustrate that SUSHI
detects subdiffraction blood vessels, which are not depicted by
the temporal mean and SOFI reconstructions, while achieving
clearer depiction compared to super-localization, when high
concentrations are used. A clear depiction of bifurcations
is seen in the SUSHI profiles [e.g., three blood vessels
on Fig. 8(e)], while the super-localization profiles seem noisy
and contain many false detections of blood vessel.

B. Reconstruction With Different Sparsity Priors

In this section, we provide a comparison between SUSHI
recoveries under different sparsity assumptions. We compare
with the same data presented in Fig. 3. In all cases, sparse
recovery was performed using λ = 0.5 and 150 iterations.



BAR-ZION et al.: SUSHI: SPARSITY-BASED US SUPER-RESOLUTION HEMODYNAMIC IMAGING 2377

Fig. 9(a) shows the temporal mean image and Fig. 9(b)–(d)
shows SUSHI recoveries. Reconstructions were performed
using (17), (19), and (18), respectively (l1, wavelet and TV).
The wavelet filter used in the reconstruction of Fig. 9(c) is
a Daubechies wavelet with 16 taps, and we use a single
level of decomposition. Clearly, Fig. 9(b) and (c) shows
similar images and achieve similar spatial resolution. The
reconstruction in Fig. 9(d), using the TV norm, yields a
reconstruction with poorer spatial resolution. Fig. 9(e) and (f)
shows intensity profiles which further support our analysis.
Both recoveries in Fig. 9(b) and (c) (l1 and wavelet) man-
aged to resolve the left bifurcation in Fig. 9(e), while the
reconstruction using the TV norm did not (though it achieved
better resolution than the temporal mean image). Even in
isolated blood vessels [see Fig. 9(f)], the width of the l1 and
wavelet reconstructions was similar and narrower than the TV
reconstruction.

APPENDIX D
ADDITIONAL SIMULATIONS

A. Increased Microbubble Densities in Numerical Simulations

Increasing the concentration of microbubbles injected into
the body increases the probability of at least one microbubble
flowing inside a given vessel during the duration of the US
scan. Therefore, using the highest clinically approved con-
centration maximizes the portion of the vasculature detected
during a certain imaging interval. This is true no matter what
processing method is applied to the acquired CEUS data.
Therefore, with increased temporal resolution being the focus
of our study, the maximal clinically approved US contrast
agent concentration is used in all the in vivo scans. To test the
capabilities of this method over a wide range of concentrations,
numerical simulations with a different number of microbubbles
were produced.

In this section, we compare the performance of SUSHI
against super-localization using data generated by a set of sim-
ulations with increased microbubble densities, moving along
the same two streamlines presented in Fig. 1. Four movies
were generated, 150 frames each, of microbubbles flowing
along the two streamlines. In the original simulation, three
Gaussian bubbles were positioned in the right vessel and six
in the left vessel. Here, each movie has increased microbubbles
density. The second movie has twice the density compared to
the first, the third movie has three times the density, and the
fourth movie has four times the density. Fig. 10(a)–(d) shows
the corresponding SUSHI reconstructions, while Fig. 10(e)–(h)
illustrate the corresponding super-localization recoveries, for
increasing densities, respectively. All reconstructions were
smoothed with the same Gaussian kernel, so that the com-
parison is performed under similar conditions.

Judging the recoveries in Fig. 10(a)–(h), one observes that
for all these concentrations SUSHI produces successful recon-
structions, while a clear degradation in the super-localization
estimations is evident. In Fig. 10(g) and (h), one can note
many false positives, and it is nearly impossible to clearly
separate the two streamlines, thus demonstrating the limi-
tations of super-localization when applied to CEUS scans

Fig. 10. Simulation results of increased microbubble densities.
(a)–(d) SUSHI recoveries of the two streamlines presented in Fig. 1, and
recoveries with increasing microbubble density of 2, 3, and 4 times the
original concentration, respectively. (e)–(h) Corresponding super-localization
recoveries. It can be observed that as the density of flowing microbubbles
increases, super-localization techniques fail due to the strong overlap between
the echoes of the bubbles. On the other hand, in all cases, SUSHI manages
to recover the two streamlines similarly, for every density presented here.

Fig. 11. Simulation results of bifurcating blood vessel. Blood vessel
bifurcations are depicted with (a) single frame from the movie, absolute value,
(b) fourth-order SOFI recovery, zero time-lag, (c) SUSHI recovery using (17),
and (d) super-localization recovery. SUSHI manages to clearly detect the
bifurcation better than the SOFI image, while showing its clear depiction,
unlike the super-localization image.

with high CEUS concentrations. Figs. 8 and 10 substanti-
ate the conclusions drawn that when using high densities,
the performance of SUSHI is superior compared to the other
methods. Higher concentrations lead to a reduction in the
number of frames required to create a single super-resolved
image, which in turn leads to an increase in the temporal
resolution.

B. Bifurcation Simulation

In this section, we provide an additional simulation com-
parison between SUSHI, SOFI and super-localization, of a
bifurcation blood vessel. Similar to the first bifurcation in [48],
the width of the main vessel is 40 μm with a peak velocity
of 15 mm/s and the width of the secondary vessels was 25 μm.
The PSF was identical to the one in Figs. 1 and 10, and a
total of 600 frames were simulated. Initial location along the
cross section of the vessel was uniformly randomly selected.
Temporal density is identical as in the simulation of two
parallel blood vessels (Fig. 1) and in the branches of the
bifurcating vessels, on average. Fig. 11(a)–(d) shows a single
frame from the movie, where significant UCA overlap is
evident, fourth-order SOFI image, SUSHI image and super-
localization recovery. Similar conclusions can be deduced here
also. Clearly, SUSHI outperforms the SOFI and temporal mean
images, by clearly detecting the bifurcation (much earlier than
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Fig. 12. PSNR, SSIM, and FWHM values for low and high UCA density
simulations. (a) PSNR values in dB for SUSHI. (b) SSIM values. (c) FWHM
ratios for the SUSHI reconstructions. It can be observed that, as expected,
as the SNR increases, the metrics values for SUSHI increase and achieve
high PSNR and SSIM values, as well as high values of FWHM ratios, for
both concentrations.

the SOFI image). The SUSHI recovery is also better than
the super-localization recovery, in which the depiction of the
bifurcation in unclear and with artifacts.

APPENDIX E
NOISE ANALYSIS

We next use two of the simulations presented in Fig. 1
(lowest and highest UCA concentration simulations) to test
the performance of SUSHI with varying SNR conditions.
To perform a fair analysis, we normalize the intensity of
each movie frame to 1 and define the SNR as SNR = 1/σ 2,
where σ is the standard deviation of the noise. We add white
Gaussian noise for increasing SNR values to the movie and
performed SUSHI recovery. Each recovery is then smoothed
with the same kernel as before (postprocessing) and its peak
intensity is normalized to one. We compute three metrics, peak
SNR (PSNR) and structural similarity index (SSIM) against
the noiseless SUSHI recovery, and the FWHM ratio computed
as the ratio between the FWHM value of the temporal mean
image, divided by the FWHM of the corresponding SUSHI
recovery.

Fig. 12 depicts these values as a function of increasing
SNR. It can be observed from Fig. 12(a)–(c) that as the SNR
increases, the quality of the SUSHI recoveries, as measured
by the PSNR, SSIM, and FWHM ratio metrics increases, for
both concentrations. For SNR values of 20–30 dB and higher,
SUSHI performs well and achieves PSNR values above 20 dB,
SSIM values close to one (not really affected by different
concentrations) and a FWHM ratio of ∼8–10, indicating a
resolution gain of ∼8–10 times better than the temporal mean
image, for both concentrations. As the concentration increases,
the FWHM ratio decreases [Fig. 12(c)], but still, an order of
magnitude improvement in the FWHM ratio is evident for high
SNR values.
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