
2390 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 65, NO. 12, DECEMBER 2018
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Abstract— The standard technique used by commercial med-
ical ultrasound systems to form B-mode images is delay and
sum (DAS) beamforming. However, DAS often results in limited
image resolution and contrast that are governed by the center
frequency and the aperture size of the ultrasound transducer.
A large number of elements lead to improved resolution but at
the same time increase the data size and the system cost due to the
receive electronics required for each element. Therefore, reducing
the number of receiving channels while producing high-quality
images is of great importance. In this paper, we introduce
a nonlinear beamformer called COnvolutional Beamforming
Algorithm (COBA), which achieves significant improvement of
lateral resolution and contrast. In addition, it can be imple-
mented efficiently using the fast Fourier transform. Based on
the COBA concept, we next present two sparse beamformers
with closed-form expressions for the sensor locations, which
result in the same beam pattern as DAS and COBA while
using far fewer array elements. Optimization of the number of
elements shows that they require a minimal number of elements
that are on the order of the square root of the number used
by DAS. The performance of the proposed methods is tested
and validated using simulated data, phantom scans, and in vivo
cardiac data. The results demonstrate that COBA outperforms
DAS in terms of resolution and contrast and that the suggested
beamformers offer a sizable element reduction while generating
images with an equivalent or improved quality in comparison
with DAS.

Index Terms— Array processing, beam pattern, beamforming,
contrast resolution, medical ultrasound, sparse arrays.

I. INTRODUCTION

ULTRASOUND imaging is one of the most common
medical imaging modalities, allowing for noninvasive

investigation of anatomical structures and blood flow. Cardiac,
abdominal, fetal, and breast imaging are some of the applica-
tions where it is extensively used as a diagnostic tool.

In a conventional scanning process, short acoustic pulses are
transmitted along a narrow beam from an array of transducer
elements. During their propagation, echoes are scattered by
acoustic impedance perturbations in the tissue and detected
by the array elements. The backscattered radio-frequency (RF)
signals are then processed in a way referred to as beamforming
to create a line in the image. The beamformer is designed
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to focus and steer the ultrasound transducer toward a desired
direction or point in space. The main goal of the beamformer
is to generate a beam pattern with a narrow main lobe and low
sidelobes [1]. The beam main-lobe width dictates the system
resolution, while the sidelobe level controls the contrast so that
the beam properties have a great impact on image quality [2].

In medical ultrasound imaging, the standard beamformer is
delay and sum (DAS) [1], [3], which consists of delaying and
weighting the reflected echoes before summing them. While
its simplicity and real-time capabilities make DAS widely used
in ultrasound scanners, it exhibits limited imaging resolution
and contrast [4]. Increasing the number of elements, while
keeping the array pitch below half a wavelength to avoid
grating lobes [5], results in enhanced resolution. However,
this increases channel data size and the system cost due to
the receive electronics required for each element. Therefore,
reducing the number of receiving channels while producing
high-quality images is of great importance.

A. Related Work

Considering a full array, several methods to improve image
quality have been proposed. Adaptive beamformers improve
resolution without sacrificing contrast by dynamically chang-
ing the receive aperture weights based on the received data
statistics [6]. The most common is Capon/minimum vari-
ance (MV) beamforming [7], which offers better contrast and
resolution than DAS. However, its real time application is
difficult due to the calculation of a covariance matrix and
its inverse at each time instant. Its application to ultrasound
imaging was studied extensively over the last decade, and
many improved versions of MV with reduced complex-
ity have been proposed [8]–[11]. Nilsen and Hafizovic [12]
suggest a beamspace adaptive beamformer, BS-Capon,
based on orthogonal beams formed in different directions.
Jensen and Austeng [13] developed an adaptive beamformer
called multibeam Capon that is based on multibeam covariance
matrices. Using similar concepts, Jensen and Austeng [14]
proposed a method called iterative adaptive approach [15].

Other related techniques have been presented such as
applying various finite impulse response filters on each
receive channel, instead of single apodization weights [16].
Chernyakova et al. [64] proposed a beamformer called itera-
tive maximum-a-posteriori (iMAP) where both the interfer-
ence and the signal of interest are viewed as random variables
and the beamformer output is the maximum a posteriori
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estimator of the signal computed in an iterative fashion.
An approach based on the spatial correlation of echo sig-
nals called short-lag spatial coherence (SLSC) has been
suggested in [17] and [18]. However, B-mode techniques
aim at imaging the magnitude of the backscattered echoes,
whereas SLSC attempts to calculate their spatial coherence.
Matrone et al. [19]–[24] and Mozaffarzadeh et al. [25] pre-
sented a nonlinear beamformer called filtered-delay multiply
and sum (FDMAS) that is based on computing the autocor-
relation of the RF signals. This approach leads to improved
resolution and contrast at the expense of high computational
load, resulting in slow runtime.

Several studies investigate compressed sensing (CS) [26],
[27] techniques for data reduction based on the assumption
that the ultrasound signal can be sparsely represented in
an appropriate basis. Wagner et al. [28] proposed a method
for reducing the sampling rate by treating ultrasound sig-
nals within the finite rate of innovation [26], [27] framework.
Sub-Nyquist data acquisition from each transducer element
and low-rate processing were presented in [29] and were later
extended to plane-wave imaging [30]. Liebgott et al. [31]
studied the reconstruction performance of ultrasound signals
in different bases. Liu et al. [32] introduced a beamforming
technique called CS-based synthetic transmit aperture that
increases the frame rate by transmitting a small number of
randomly apodized plane waves and uses CS reconstruction
to recover the full channel data. None of the above-mentioned
works consider element reduction.

Possible approaches to reduce the number of receiving
channels without compromising image quality include sub-
aperture processors and microbeamformers [33], whereby part
of the beamformation is moved into the probe handle. How-
ever, this requires manufacturing expensive integrated circuits
with high power consumption [34]–[36]. Alternative strategies
that have gained a lot of interest are based on using the
standard DAS with sparse arrays where some of the ele-
ments are removed, including deterministic designs such as
vernier arrays and random designs [37]–[45]. These works
are concerned with designing a combined transmit/receive
effective aperture mostly for 3-D imaging, whereas we propose
methods that can be applied in both active and passive settings.
Another approach is 2-D row–column-addressed arrays for 3-
D imaging [46]–[50], in which every row and column in the
array acts as one large element. However, this work is limited
to 3-D imaging and the use of large elements leads to a con-
siderable increase in edge effects that limit image quality [47].

B. Contributions

The main goal of this work it to reduce the number of
receiving channels while preserving or improving the image
quality in comparison with a DAS beamformer operating on
the full array. To that end, we propose a new beamforming
technique and present two deterministic designs of sparse
arrays based on it.

We first introduce a nonlinear beamformer referred to as
COnvolutional Beamforming Algorithm (COBA), which is
based on the convolution of the delayed RF signals prior

to summation. COBA can be implemented efficiently using
the fast Fourier transform (FFT), thus making it suitable for
real-time application. We analyze the beam pattern generated
by COBA and show its relation to the sum coarray [51], [52],
which has twice the size of the physical aperture and
triangle-shaped apodization. Consequently, COBA demon-
strates significant improvement of lateral resolution and image
contrast.

Then, we provide a definition of sparse arrays based on
the sum coarray, which combined with COBA leads to two
designs of sparse convolutional beamformers that require
fewer receiving elements than DAS. The first technique, called
sparse COBA (SCOBA), utilizes significantly fewer elements
while obtaining a beam pattern similar to that of DAS in
terms of resolution. The second method, termed SCOBA with
super-resolution (SCOBAR), offers increased resolution at the
expense of a smaller, yet notable, channel reduction. We then
describe how to apply apodization directly on the sum coarray
in order to improve its contrast. Optimization of the sparse
designs reveals that the minimal number of elements required
to obtain the beam patterns achieved by both SCOBA and
SCOBAR is proportional to

√
N , where N is the number of

channels in the fully populated array. Thus, these approaches
offer sizable element reduction without compromising image
quality.

Next, we use simulations of point reflectors and an anechoic
cyst to provide qualitative and quantitative assessments of
image quality using the proposed beamformers. We show
that COBA achieves significant improvement of resolution
and contrast compared with DAS. In addition, SCOBA and
SCOBAR demonstrate a similar and enhanced performance
with respect to DAS while operating with a low number of
channels. These results are verified using phantom scans and
in vivo cardiac data, proving that the beamformers presented
are suitable for clinical use in real-time scanners.

The rest of this paper is organized as follows. In Section II,
we describe the signal model and formulate our problem.
Section III introduces the convolutional beamformer, applied
to ultrasound image formation, and analyzes its beam pattern.
We present and describe in detail sparse array designs in
Section IV and propose two beamformers that utilize fewer
elements. We then derive the minimal number of channels
required by both approaches. In Section V, the performance
of the suggested techniques is evaluated using simulated and
experimental data. Finally, Section VI concludes this paper.

II. ARRAY THEORY AND PROBLEM FORMULATION

A. Signal Model and Beam Pattern

We consider a uniform linear array (ULA) comprised of
2N − 1 transducer elements aligned along the lateral axis x .
The sensor locations {pn} are given by

pn = (nd, z = 0) n = −(N − 1), . . . , N − 1 (1)

where d is the spacing (pitch) between the centers of the
individual elements and z denotes the axial axis. Upon recep-
tion, an energy pulse is backscattered from a point in space
(r, θ), propagates through the tissue at speed c and is received
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by all array elements at a time depending on their locations.
We denote the signal received at the 0th element by

f (t) = f̃ (t)e jw0t (2)

where w0 is the transducer center frequency and f̃ (t) is the
signal envelope. The sensors spatially sample the signal, such
that the signal fn(t) at the nth element is given by

fn(t) = f (t − τn) = f̃ (t − τn)e
jw0(t−τn) (3)

where τn is a time delay. To derive an expression for the
delays, we introduce the following assumptions.

A 1 (Narrow Band): The signal f (t) is narrow-band,
i.e., the bandwidth of the envelope is small enough so that

f̃ (t − τn) � f̃ (t), n = −(N − 1), . . . , N − 1. (4)

A 2 (Far Field): The point (r, θ) is in the far-field region
of the array, and thus, the input signal impinging on the array
is considered to be a plane wave.

Under the above-mentioned assumptions, we can rewrite (3)
as

fn(t) = f̃ (t)e jw0(t−τn) (5)

where τn = (d sin θ/c)n, i.e., the delays are approximated by
phase shifts independent of r .

A beamformer processes each sensor output by a filter with
impulse response g̃n(t) = gn(t + αn), where

αn = d sin θ0

c
n (6)

for a direction of interest −(π/2) ≤ θ0 ≤ (π/2). Thus,
the output of the nth element is

yn(t) = g̃n(t) ∗
t

fn(t) = gn(t + αn) ∗
t

fn(t − τn) (7)

where ∗
t

denotes temporal convolution. The beamformer then
sums the outputs to obtain the array output

y(t) =
N−1∑

n=−(N−1)

yn(t). (8)

In the frequency domain, (8) may be expressed as

Y (ω) =
N−1∑

n=−(N−1)

Gn(ω)F(ω)e− jω(τn−αn)

= F(ω)

N−1∑

n=−(N−1)

Gn(ω)e− jω(τn−αn ) (9)

where Y (ω), F(ω), and Gn(ω) are the temporal Fourier
transforms of y(t), f (t), and gn(t), respectively.

To analyze the response of a beamformer to an input field,
we assume the input to be a unity amplitude plane wave

f (t) = e jwot (10)

Fig. 1. Beam pattern magnitude as a function of angle for N = 10,
wn = 1, λ = 1, d = (1/2).

where f̃ (t) ≡ 1. Substituting (10) into (9), we obtain

Y (ω) = δ(ω − ω0)

N−1∑

n=−(N−1)

Gn(ω)e− jω(τn−αn)

= δ(ω − ω0)

N−1∑

n=−(N−1)

Gn(ω0)e
− jω0(τn−αn) (11)

where δ(ω) is the Dirac delta. Given the explicit expressions
for τn and αn , we can rewrite (11) as a function of θ

Y (ω, θ) = δ(ω − ω0)

N−1∑

n=−(N−1)

Gn(ω0)e
− jω0

nd
c (sin θ−sin θ0).

(12)

The sum on the right-hand side of (12) is defined as the beam
pattern of the beamformer

H (θ) �
N−1∑

n=−(N−1)

Gn(ω0)e
− jω0

nd
c (sin θ−sin θ0). (13)

For simplicity, we assume that θ0 = 0, which yields

H (θ) =
N−1∑

n=−(N−1)

Gn(ω0)e
− jω0

nd sin θ
c . (14)

The beam pattern represents the beamformer response to
variations in the input field.

In the standard DAS beamforming, we have

gn(t) = wnδ(t), n = −(N − 1), . . . , N − 1 (15)

where wn is the weight of the nth element. Thus,

HDAS(θ) =
N−1∑

n=−(N−1)

wne− jω0
nd sin θ

c . (16)

A plot of a beam pattern generated by a standard DAS
beamformer is presented in Fig. 1. The main-lobe width of the
beam pattern affects system resolution, while the peak sidelobe
level determines image contrast and interference levels [53].

Denote the transducer wavelength by λ = 2πc/ω0 and the
array’s aperture size by L = 2(N − 1)d . The angle θ1 of the
first zero in the beam pattern is given by

sin θ1 = λ

L
. (17)
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Hence, a large array, or a high center frequency, yields a
narrow main lobe. In contrast, the magnitude of the sidelobes
is controlled by the weights {wn}, known as the aperture
function. The sidelobes can be reduced by choosing an aper-
ture function that is smooth like a Hanning window or a
Gaussian shape. This, however, broadens the main-lobe width,
decreasing system resolution.

Before concluding our discussion on DAS beamforming,
we note that in practice ultrasound systems perform beam-
forming in the digital domain: analog signals are amplified
and sampled by an analog-to-digital converter [27], preceded
by an antialiasing filter. Sampling rate reduction is discussed
in [29]. In addition, Assumptions A1 and A2 do not typically
hold in ultrasound imaging. The signal f (t) is wideband and
imaging is performed in the near field, leading to time delays
that depend nonlinearly on both r and θ as

τn = r + √
r2 − 2ndr sin θ + (nd)2

c
. (18)

However, the approach taken here is convenient in introducing
the major concepts such as in lobe and sidelobes that affect
the image quality [53] and is standard in the literature.

B. Problem Formulation

The goal of this work is to design arrays with fewer
elements than 2N − 1 together with a beamforming method
that enables obtaining the beam pattern given by (16) or
an improved pattern in terms of resolution and image con-
trast. To that end, we first introduce a new beamformer
based on a lateral convolution operation and show that it
leads to improved resolution by analyzing its beam pattern.
Next, we propose two sparse beamforming techniques. The
first beamformer uses fewer channels and demonstrates a
lateral resolution similar to that of DAS, whereas the second
beamformer achieves a twofold improvement in resolution at
the expense of a smaller element reduction. An analysis of
these approaches shows that the minimal number of elements
required to obtain the desired beam patterns is proportional
to

√
N .

Throughout this paper, we assume that the element pitch d
and the transducer center frequency ω0 are fixed. In addition,
we constraint the array configurations so that all element
locations satisfy |x | ≤ L/2. We show that this limitation on
the physical array aperture does not prevent us from creating
an effective aperture that is larger in size than L. Note that we
assume an odd number of elements 2N − 1 only for clarity
of presentation so that the center of the array is well-defined.
However, the results presented hold also for an even number
of elements.

III. CONVOLUTIONAL BEAMFORMING

AND ITS BEAM PATTERN

In this section, we present a new nonlinear beamformer
called COBA. The proposed beamformer is based on a convo-
lution operation and can be implemented efficiently using the
FFT. We then introduce the concept of sum coarray [51], [52]
to analyze the beam pattern of COBA, showing that it outper-
forms DAS in terms of resolution and image contrast.

A. Convolutional Beamforming

Consider the delayed signals yn(t) given by (7), where
gn(t) = wnδ(t) as in DAS. For simplicity, we assume that
unity weights wn = 1. An extension for arbitrary apodiza-
tion is given in Section IV-D. Inspired by the work on
transmit/receive pair array synthesis [52], we define a new
beamformed signal as

ȳ(t) =
N−1∑

n=−(N−1)

N−1∑

m=−(N−1)

un(t)um(t) (19)

where

un(t) = exp{ j yn(t)}
√|yn(t)|, −(N − 1) ≤ n ≤ N − 1

(20)

with yn(t) and |yn(t)| the phase and modulus of yn(t),
respectively. The operation in (20) ensures that the amplitude
of each product in (19) is on the same order of that of the RF
signals yn(t). This, in turn, means that the dynamic range of
the resultant image will be similar to that obtained by DAS.

Computing (19) requires all possible signal pair combi-
nations, i.e.,

(2N−1
2

)
multiplications. Thus, conventionally,

the computation load for each pixel is O(N2), which may lead
to slow runtime. This complexity can be substantially reduced
by noticing that the beamformed output (19) is equivalent to

ȳ(t) =
2(N−1)∑

n=−2(N−1)

sn(t) (21)

where

sn =
∑

(i, j : i+ j=n)

ui (t)u j (t), n = −2(N − 1), . . . , 2(N − 1).

(22)

Defining s(t) and u(t) as the length 2N − 1 vectors whose
entries are sn(t) and un(t), receptively, we have that

s(t) = u(t) ∗
s

u(t) (23)

where ∗
s

denotes a discrete linear convolution in the lateral
direction. Thus, the vector s can be computed using an FFT
by zero padding u to length 2N − 1, compute the Fourier
transform of the result, square each entry, and then perform
the inverse Fourier transform to get s. Thus, the beamformed
signal ȳ(t) is obtained with low complexity of O(N log N)
operations.

The temporal products comprising the signal ȳ(t) translate
to a convolution in the frequency domain with respect to the
axial direction, leading to direct current and harmonic compo-
nents in the spectrum of ȳ(t) [19], [54]. Thus, an additional
processing step is required to remove the baseband. The final
output of our convolutional beamformer is given by

y COBA(t) = hBP(t) ∗
t

ȳ(t) (24)

where hBP(t) is a bandpass (BP) filter centered at the harmonic
frequency 2ω0. A summary of convolutional beamforming
is presented in Algorithm 1 where the choice of weights is
explained in Section IV-D.
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Algorithm 1 COBA
Input: Delayed RF signals {yn(t)}, weights {wn}.

1: Compute un(t) = exp{ j yn(t)}√|yn(t)|.
2: Set weights w̃n = wn

(2N−1)−|n| .
3: Calculate s(t) = u(t) ∗

s
u(t) using FFT.

4: Evaluate the weighted sum

ȳ(t) =
2(N−1)∑

n=−2(N−1)

w̃nsn(t).

5: Apply a band-pass filter

y COBA(t) = hBP(t) ∗
t

ȳ(t).

Output: Beamformed signal y COBA(t).

We note that COBA involves computing pairwise products
of the RF signals as in FDMAS. However, in contrast to
FDMAS, it consists of all possible products, including the self-
products for n = m and repetitions created by interchanging n
and m. This allows to avoid the high computational complexity
and partial energy loss which FDMAS suffers from [55].
In addition, the works related to FDMAS did not consider
element reduction that is the main contribution of this paper
and is described in Section IV.

B. Beam Pattern Analysis

We now analyze the beam pattern of the proposed convo-
lutional beamformer to show that it outperforms the standard
DAS beamforming in terms of lateral resolution and image
contrast. To this end, we use the following definitions.

Definition 1 (Position Set): Consider a linear array with d
the minimum spacing of the underlying grid on which sensors
are assumed to be located. The position set is defined as an
integer set I , where n ∈ I if there is a sensor located at nd .

In the interest of brevity, we refer to a linear array with
position set I as a linear array I .

Definition 2 (Sum Coarray): Consider a linear array I .
Define the set

S̃I = {n + m : n, m ∈ I }. (25)

Note that S̃I includes repetitions of its elements. We also
define the set SI , referred to as the sumset of I , which consists
of the distinct elements of S̃I . The sum coarray of I is defined
as the array whose position set is SI .

As an example, the sum coarray of an M element ULA is
another ULA with 2M − 1 elements. The number of elements
in the sum coarray directly determines the number of nonzeros
in the convolutional signal given by (23).

Definition 3 (IntrinsicApodization): Consider a linear array
I and define a binary vector �I whose nth entry is 1 if n ∈ I
and zero otherwise. The intrinsic apodization is an integer
vector defined as

a = �I ∗ �I . (26)

The intrinsic apodization vector is related to SI and S̃I in the
following way. For every n ∈ SI , the entry an denotes the
number of occurrences of n in S̃I .

To derive an expression for the beam pattern of the con-
volutional beamformer, we assume the input signal to be
f (t) = e jω0t impinging on the array at direction θ , as in
Section II. Consequently, we obtain

un(t) = e jω0t e− jω0τn (27)

where τn is given by (5). Substituting (27) into (19), we have

ȳ(t) =
N−1∑

n=−(N−1)

N−1∑

m=−(N−1)

e j2ω0t e− jω0(τn+τm)

= e j2ω0t
N−1∑

n,m=−(N−1)

e− jω0(τn+τm). (28)

Following BP filtering, we get

y COBA(t) = (
hBP(t) ∗

t
e j2ω0t )

N−1∑

n,m=−(N−1)

e− jω0(τn+τm ). (29)

In the Fourier domain

Y COBA(ω) = δ(ω − 2ω0)HBP(2ω0)

(N−1)∑

n,m=−(N−1)

e− jω0(τn+τm)

(30)

where HBP(ω) is the Fourier transform of the BPF hBP(t).
Assuming that HBP(2ω0) = 1, the beam pattern generated by
COBA is

H COBA(θ) =
N−1∑

n,m=−(N−1)

e− jω0(τn+τm)

=
N−1∑

n,m=−(N−1)

e− jω0
d sin θ

c (n+m) (31)

where the last equation is obtained by substituting the explicit
expression for τn .

The sum in (31) is the product of two polynomials
H COBA(θ) = H DAS(θ)H DAS(θ) with H DAS(θ) given by (16)
assuming wn = 1. In Appendix A, we show that H COBA(θ)
can be written as a single polynomial

H COBA(θ) =
2(N−1)∑

n=−2(N−1)

ane− jω0
d sin θ

c n (32)

where {an} are triangle-shaped intrinsic apodization weights
given by (26). This apodization is illustrated in Fig. 5(b) and
is further discussed in Section IV-D.

Equation (32) can be thought of as the beam pattern of a
DAS beamformer operating on the sum coarray. This virtual
array is twice the size of the physical one, leading to a
resolution, that is twice better the standard resolution. In
addition, the apodization of the sum coarray reduces the
sidelobes, and thus, the convolutional beamformer results in
improved image contrast, as demonstrated in Fig. 2.
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Fig. 2. Beam pattern magnitude of DAS (blue line) and COBA (red line)
for N = 10, wn = 1, λ = 1, and d = (1/2). Bottom-right corner: zoomed-in
view on the main lobes.

IV. SPARSE CONVOLUTIONAL BEAMFORMING

So far, we presented a convolutional beamformer that
leads to better resolution and contrast with respect to DAS.
An analysis of its beam pattern showed that its performance
depends on the sum coarray rather than the physical array. In
this section, we exploit this property to derive two families
of beamformers that rely on a reduced number of elements,
without affecting the beam pattern.

A. Sparse Arrays

Given a ULA of 2N − 1 elements with position set
I = {−(N − 1), . . . , (N − 1)}, we aim to remove some of its
elements to create a thinned array. The challenge is to design
such an array without degrading image quality. To this end,
we define the following.

Definition 4 (Sparse Array): Consider a ULA with position
set I . A sparse array with respect to I is a thinned array,
created by removing part of the elements, which satisfies

J ⊂ I ⊆ SJ (33)

where J and SJ are integer sets indicating the elements posi-
tions of the thinned array and of its sum coarray, respectively.

A sparse array J according to Definition 4 must be a strict
subarray of I , i.e., the number of elements in J is strictly
smaller than that of I . In addition, performing convolutional
beamforming using J is equivalent to applying DAS beam-
forming on the sum coarray SJ which by Definition 4 has an
aperture at least as large as the original ULA I . Thus, it results
in a beam pattern that is equal or better in resolution than the
beam pattern generated by a DAS beamformer applied to I .

B. Sparse Beamforming

Here, we provide a simple closed-form sparse array design
that leads to a large element reduction.

Assume that N is not prime, so that it can be factored as
N = AB , where A, B ∈ N

+. Given such a decomposition,
we define the following array:

UA = {−(A − 1), . . . , 0, . . . , A − 1},
UB = {n A : n = −(B − 1), . . . , 0, . . . , B − 1}. (34)

An illustration of this array for N = 9, A = 3, and B = 3 is
seen in Fig. 3.

Let UA + UB = {n + m : n ∈ UA, m ∈ UB}. Then,

UA + UB = {−(AB − 1), . . . , 0, . . . , AB − 1}
= {−(N − 1), . . . , 0, . . . , N − 1}
= I. (35)

Thus, denoting by U ⊂ I the array geometry defined as

U = UA ∪ UB (36)

it holds that

I ⊂ SU (37)

where SU is the sumset of U . Thus, the family of sets (36)
satisfies (33), where the number of elements in each set is
2A + 2B − 3. As an example, for N = 9, A = 3, and B = 3,
the set U has only 9 elements out of 17 in the full array,
as shown in Fig. 3. We note that the proposed sparse arrays
are similar to nested arrays [56] used in the array processing
literature. However, while nested arrays are related to the
difference coarray, the sets (34) are synthesized from the sum
coarray perspective [51] and have a smaller physical aperture.

Based on U , we propose SCOBA that computes the follow-
ing signal:

ȳ SCOBA(t) =
∑

n∈U

∑

m∈U

un(t)um(t) (38)

where un(t) is defined in (20). Namely, we perform COBA
only on the outputs of the elements in U . As before, (38) can
be written using the sum coarray SU

ȳ SCOBA(t) =
∑

n∈SU

sn(t) (39)

where

sn(t) =
∑

(i, j∈U :i+ j=n)

ui (t)u j (t). (40)

The final output of SCOBA is given by

y SCOBA(t) = hBP(t) ∗ ȳ SCOBA(t). (41)

Computing (39) can be performed using appropriate zero
padding and FFT in O(N log N) operations or directly by pair-
wise products with complexity O((A+B)2) that may be lower.
The proposed beamformer is summarized in Algorithm 2.

To analyze the beam pattern produced by SCOBA, we fol-
low the same steps presented in Section III. This leads to

H SCOBA(θ) =
∑

n,m∈U

e− jω0
d sin θ

c (n+m)

=
∑

n∈SU

une− jω0
d sin θ

c n (42)

where u = �U ∗ �U is the intrinsic apodization of SCOBA.
Notice that (42) can be rewritten as

H SCOBA(θ) =
∑

n∈I

une− jω0
d sin θ

c n +
∑

m∈SU/I

ume− jω0
d sin θ

c m

(43)

where SU /I = {m ∈ SU : m /∈ I }. The first sum in (43)
ensures that the resolution of SCOBA is at least as good as the
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Fig. 3. Element positions of (a) ULA I = [−8, 8], (b) sum coarray SI = [−16, 16], (c) sparse array U given by (36), (d) sum coarray SU , (e) sparse array
V defined by (45), and (f) sum coarray SV . In this example, the element spacing is d = 1, N = 9, A = 3, and B = 3.

Algorithm 2 SCOBA
Input: Delayed RF signals {yn}, weights {wn}, parameters

A, B .
1: Construct the set U using (36) and its sumset SU .
2: Compute un(t) = exp{ j yn(t)}√|yn(t)|, n ∈ U.
3: Calculate a = �U ∗ �U .
4: Set weights w̃n = wn

an
, n ∈ SU .

5: For all n ∈ SU compute sn(t) using (40).
6: Evaluate the weighted sum

ȳ(t) =
∑

n∈SU

w̃nsn(t).

7: Apply a band-pass filter

y SCOBA(t) = hBP(t) ∗
t

ȳ(t).

Output: Beamformed signal y SCOBA(t).

resolution of a DAS beamformer applied on the full array I .
The second sum, on the right-hand side of (43), provides
additional degrees of freedom that may be used to improve
the resolution. The image contrast depends on the apodization
{un}, which can be adjusted as we describe in Section IV-D.
A demonstration of the beam pattern of SCOBA is presented
in Fig. 4.

The number of elements required for SCOBA
is 2A + 2B − 3, and thus, it leads to a family of beamformers
in which each beamformer demonstrates a different level of
element reduction, controlled by the parameters A and B .
While a large number of elements may be favorable
in the presence of noise, it also increases the mutual

Fig. 4. Beam pattern of DAS (blue line), SCOBA (red line), and SCOBAR
(yellow line) for N = 6 A = 3, B = 2, λ = 1, and d = (1/2).

coupling [57]–[60], which is the electromagnetic interaction
between adjacent sensors that has an adverse effect on
obtaining a desired beam pattern. In Section IV-E, we discuss
how to minimize the number of sensors using this approach.

C. Sparse Beamforming With Super-Resolution

Previously, we presented COBA that achieves double the
standard resolution. Following that, we introduced a sparse
array design to create a beamformer, which uses fewer ele-
ments and yields a resolution that is comparable with the stan-
dard one. Now, we propose a family of sparse beamformers
with enhanced resolution that is equivalent to that of COBA,
thereby combining the best of both worlds. We refer to this
technique as SCOBAR.

We extend the array configuration used in SCOBA by
constructing an additional array as

UC = {n : |n| = N − A, . . . , N − 1}. (44)
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Fig. 5. Intrinsic apodization of (a) DAS with 127 elements, (b) COBA with 127 elements, (c) SCOBA with A = B = 8, and (d) SCOBAR with A = B = 8.

Then, we define a sparse array geometry given by

V = UA ∪ UB ∪ UC . (45)

As shown in Fig. 3, we obtain V by adding to U two small
ULAs of size A − 1 at its edges. It can be verified that

V ⊂ I ⊂ SV = SI (46)

i.e., the sum coarray of V is equal to the sum coarray of the
full array I . SCOBAR uses the array sensors given by V to
compute the signal

ȳ SCOBAR(t) =
∑

n∈V

∑

m∈V

un(t)um(t)

=
∑

n∈SV

sn(t) (47)

where un(t) is defined in (20) and

sn(t) =
∑

(i, j∈V :i+ j=n)

ui (t)u j (t). (48)

The final output of SCOBAR is given by

y SCOBAR(t) = hBP(t) ∗ ȳ SCOBAR(t). (49)

Similar to SCOBA, (47) can be calculated using the FFT in
O(N log N) operations or directly in O (

(A + B)2
)
. A sum-

mary of SOCBAR is provided in Algorithm 3.
Following similar arguments as for COBA and SCOBA,

the beam pattern of SCOBAR is:
H SCOBAR(θ) =

∑

n,m∈V

e− jω0
d sin θ

c (n+m)

=
∑

n∈SV

vne− jω0
d sin θ

c n

=
2(N−1)∑

n=−2(N−1)

vne− jω0
d sin θ

c n (50)

where v = �V ∗ �V and the last equality is due the fact that
SV = SI = {−2(N −1), . . . , 2(N −1)}. The latter implies that
the lateral resolution of SCOBAR is similar to that of COBA,

Algorithm 3 SCOBAR
Input: Delayed RF signals {yn}, weights {wn}, parameters

A, B .
1: Construct the set V using (45) and its sumset SV .
2: Compute un(t) = exp{ j yn(t)}√|yn(t)|, n ∈ V .
3: Calculate a = �V ∗ �V .
4: Set weights w̃n = wn

an
, n ∈ SV .

5: For all n ∈ SV compute sn(t) using (48).
6: Evaluate the weighted sum

ȳ SCOBAR(t) =
∑

n∈SV

w̃nsn(t).

7: Apply band-pass filter

ySCOBAR(t) = hBP(t) ∗
t

ȳ SCOBAR(t).

Output: Beamformed signal ySCOBAR(t).

twofold better than the standard one, as shown in Fig. 4. The
weights {vn} can be modified to control the image contrast as
described in Section IV-D.

The number of elements required by SCOBAR is 4A +
2B − 5, and thus, the improved resolution is at the expense
of a smaller element reduction in comparison with SCOBA.
Optimization of the parameters A and B is presented in
Section IV-E.

D. Apodization

As stated in Section II, the image contrast is governed
by the peak sidelobe level. Amplitude apodization [61] is
an important tool used for suppressing sidelobes, leading
to improved contrast. Typical apodization functions include
Hanning, Hamming, or Gaussian amplitude weighting of the
elements that lowers the sidelobes at the expense of widening
the main lobe width, i.e., worsening the lateral resolution.
Therefore, there is a tradeoff between lateral resolution and
contrast and a judicious choice of the apodization must be
made based on the clinical application.
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In Section III-B, we introduced the concept of intrinsic
apodization that arises in the proposed beamformers. This
concept is extended to a standard DAS beamformer by
assuming that the array has intrinsic weights of unity. Fig. 5
shows the intrinsic apodization of the different beamformers.
For a DAS beamformer, the intrinsic apodization function is
constant over the elements and equal to 1, whereas for COBA,
we get a triangle-shaped apodization that suppresses sidelobes.
The intrinsic apodization functions of SCOBA and SCOBAR
depend on the parameters A and B and should be analyzed to
avoid unwanted sidelobes.

To address this issue, we propose a simple adjustment to
the apodization function that takes into account the intrinsic
apodization. Given a desired apodization function with weights
{wn}, we define a modified apodization function

w̃n = wn

an
(51)

where {an} are the intrinsic weights assumed to be nonzero.
Then, we apply these weights on the sum coarray by comput-
ing the weighted sum

ȳ(t) =
∑

n

w̃nsn(t) (52)

prior to BP filtering. This ensures that the resulting beam
pattern will have weights equal to {wn} as desired.

The intrinsic apodization functions of both COBA and
SCOBAR have only nonzeros, and thus, any apodization can
be achieved using (51). In the case of SCOBA, the intrinsic
apodization has zeros, leading to discontinuities in the beam
pattern which may be considered as a drawback at first
glance. However, note that this is expected since the intrinsic
apodization of SCOBA is designed to have nonzeros in the
range −[N −1, N −1], similar to the DAS beamformer. Thus,
any apodization function obtained by DAS can be attained
by SCOBA. In fact, the intrinsic apodization of SCOBA has
more degrees of freedom (nonzeros) than DAS as shown
in (43), allowing the use of an extended family of apodization
functions.

E. Minimal Number of Elements

As noted before, the number of elements used by SCOBA
and SCOBAR is controlled by the parameters A and B .
We next derive the expressions for A and B , leading to a
minimal number of sensors required by the proposed beam-
formers.

For SCOBA, minimizing the number of elements can be
cast as the following optimization problem:

A∗, B∗ = arg min
A,B∈N

2(A + B) − 3

s.t. AB = N. (53)

When N is a prime number, there are only two feasible
solutions that are optimal given by A = N and B = 1
and vice versa; both result in a fully populated array. Hence,
we consider below the case where N is not prime and (53)
becomes a combinatorial optimization problem. A closed-form
solution is presented in Theorem 1.

Fig. 6. Fourier transforms of the impulse response of the Hanning-based BP
filter (dashed line) and of the signal given by (21), which corresponds to the
central simulated image line.

Theorem 1: Given an arbitrary N ∈ N
+, define the sets

D1 = {m ∈ N : m|N, m ≤ √
N }

D2 = {m ∈ N : m|N, m ≥ √
N } (54)

where m|N indicates that m is a divisor of N . The optimal
solutions for (53) are

A∗ = max(D1) and B∗ = min(D2)

A∗ = min(D2) and B∗ = max(D1). (55)

When N is a perfect square, we have a single optimal solution

A∗ = B∗ = √
N . (56)

Proof: Here, we prove the case where N is a perfect
square. The complete proof is given in Appendix B.

First, we write an equivalent problem to (53) as

A∗, B∗ = arg min
A,B∈N

A + B

s.t. AB = N. (57)

From the inequality of the arithmetic and geometric means,
we have that

√
AB ≤ A + B

2
. (58)

Thus, the objective function is lower bounded by 2
√

N .
Equality is obtained in (58) if and only if A = B = √

N .
Thus, this choice attains the lower bound and is optimal, which
concludes the proof.

Theorem 1 implies that the minimal number of elements
required by SCOBA is proportional to

√
N and the beam-

formed signal given by (49) can be computed with a low
complexity of O(N).

As for SCOBAR, note that when B = 1, UC = UA, and
A = N , leading to the trivial case where the array is full,
hence, we assume that B > 1. In this case, the minimal number
of elements required by SCOBAR is given by the solution to

A∗, B∗ = arg min
A,B∈N, B>1

2(2A + B) − 5

s.t. AB = N. (59)

When N is prime, the only feasible and, hence, optimal
solution is A = 1 and B = N , which is trivial. Therefore,
we address below the case where N is not prime. A closed-
form solution is obtained in Theorem 2.
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Fig. 7. Images of simulated point-reflector phantom obtained by (a) DAS (127), (b) COBA (127), (c) SCOBA (29), and (d) SCOBAR (43). Number in
brackets refers to the number of elements used.

Theorem 2: Given an arbitrary N ∈ N
+, define the sets

D3 = {m ∈ N : m|2N, m ≤ √
2N}

D4 = {m ∈ N : m|2N, m ≥ √
2N}. (60)

Denote by E the set of even integers. The optimal solutions
for (59) are given by the following cases.

1) max(D3) ∈ E, min(D4) ∈ E

A∗ = max(D3)/2 and B∗ = min(D4)

A∗ = min(D4)/2 and B∗ = max(D3). (61)

2) max(D3) ∈ E, min(D4) /∈ E

A∗ = max(D3)/2 and B∗ = min(D4). (62)

3) max(D3) /∈ E, min(D4) ∈ E

A∗ = min(D4)/2 and B∗ = max(D3). (63)

When 2N is a perfect square, there is a single solution

A∗ =
√

2N

2
, B∗ = √

2N . (64)

Proof: Here, we provide the proof only for the special
case when 2N is a perfect square. The proof for the general
case is detailed in Appendix C.

Problem (59) is equivalent to

A∗, B∗ = arg min
A,B∈N, B>1

2A + B

s.t. AB = N. (65)

Once more, using the inequality of arithmetic and geometric
means, we get

√
2AB ≤ 2A + B

2
. (66)

Consequently, the objective value is lower bounded by 2
√

2N .
This bound is attained by choosing A = √

(N/2) and
B = √

2N .
Theorem 2 indicates that SCOBAR requires a minimal

number of sensors that are on the order of
√

2N . The beam-
formed signal can be obtained in complexity O(N) similar
to SCOBA. Note, however, that while SCOBAR demonstrates
almost twofold improvement in resolution, the increase in the
number of elements, compared with SCOBA, is roughly only
by a factor of

√
2.

F. Minimal Physical Aperture

With the purpose of reducing cost and size, one may desire
to design a compact probe with a small physical aperture.
While the size of the physical aperture using COBA and
SCOBAR is fixed and given by L = (2N − 1)d , for SCOBA,
it is equal to L̃ = 2A(B − 1)d , where B > 1, and thus can
be minimized using an appropriate choice of A and B . This
objective can be formulated as follows:

A∗, B∗ = arg min
A,B∈N, B>1

A(B − 1)

s.t. AB = N. (67)

The solution to (67) is given by Theorem 3.
Theorem 3: Consider a nonprime number N ∈ N

+. Denote
by D the set of the nontrivial divisors of N , defined as

D = {m ∈ N : m|N, 1 < m < N}. (68)
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Fig. 8. (a) Axial profiles of all four methods at the center image line. (b) Lateral cross sections of all four techniques at a focal depth of 50 mm.

Fig. 9. Images of simulated on-axis and off-axis point targets obtained by (a) DAS (127), (b) COBA (127), (c) SCOBA (29), and (d) SCOBAR (43). Number
in brackets refers to the number of elements used.

Then, the optimal solution to (67) is

A∗ = max(D), B∗ = min(D). (69)

Proof: Using the fact that A(B − 1) = N − A,
we rewrite (67) as

A∗, B∗ = arg max
A,B∈N, B>1

A

s.t. AB = N. (70)

It is easy to see from (70) that the optimal A is the maximal
nontrivial divisor of N , i.e., A∗ = max(D). Consequently,
B∗ = (N/A∗) = min(D), which concludes the proof.

Theorem 3 implies that when N = 2M with M ∈ N
+,

the optimal choice is A = M and B = 2, which leads to
a ULA with a physical aperture that is twice of that of the
original ULA. In other words, performing SCOBA on a given

ULA is equivalent to performing COBA on a ULA with half
the size. Note, however, that the number of elements in this
case is 2M+1 = N+1, which is much larger than the minimal
number achieved by Theorem 1.

V. EVALUATION RESULTS

We now verify the performance of the proposed beamform-
ers in comparison with DAS. The resolution and contrast are
first evaluated using Field II simulator [62], [63] in MATLAB.
Following that, we apply the methods on phantom data,
scanned using a Verasonics imaging system, and on in vivo
cardiac data acquired from a healthy volunteer.

In the following experiments, we do not apply apodization
upon reception for DAS and COBA. For a fair comparison,
we employ weights in SCOBA to create an effective apodiza-
tion of ones as in DAS. For SCOBAR, we apply weights to
yield an effective triangle-shaped apodization as in COBA.
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Fig. 10. Images of simulated anechoic cyst phantom obtained by (a) DAS (127), (b) COBA (127), (c) SCOBA (29), and (d) SCOBAR (43). The dashed
line marks the lateral cross section presented in Fig. 11. The dashed circles indicate the region used for computing the CRs. Number in brackets refers to the
number of elements used.

The full transducer array is used for transmission, and element
reduction is performed only on the receiving end.

A. Simulations

In both simulations presented here, we used an array con-
sisting of 127 elements with an element width of 440 μm,
a height of 6 mm, and a kerf of 0.0025 mm. During transmis-
sion, the transducer generated a Hanning-windowed 2-cycle
sinusoidal pulse with a center frequency of 3.5 MHz and a
focal depth of 50 mm.

In COBA, SCOBA, and SCOBAR, a BP filter was applied
using a Hanning window. The window frequency boundaries
were empirically determined to well isolate the signal band
to be preserved (see Fig. 6). The sampling frequency was
100 MHz. For SCOBA and SCOBAR, we used A = B = 8,
which leads to the minimal numbers of 29 (23%) and 43 (34%)
elements, respectively, according to Theorems 1 and 2.

1) Resolution: We evaluate resolution using a
point-reflector simulated phantom with isolated scatterers
distributed in an anechoic background. Fig. 7 presents the
results of DAS, COBA, SCOBA, and SCOBA. As seen
from the images, SCOBA has achieved a comparable lateral
resolution to that of DAS while using fewer elements. COBA
outperforms DAS in terms of lateral resolution, which is seen
clearly in the focal depth and beyond it. SCOBAR obtains
similar results to COBA using fewer elements. For a closer
look, the center image line and the lateral cross section of the
scattering point placed at the transmission focus in 50 mm are
shown in Fig. 8. One can observe from Fig. 8(a) that all four
methods have a similar axial resolution. In terms of lateral
resolution, the performance of SCOBA is the same as DAS,
while SCOBAR is better than DAS and COBA outperforms
them all. Fig. 9 shows the similar results obtained through

Fig. 11. Lateral cross sections of the cyst obtained by all four techniques.

a simulation that includes on-axis targets as well as off-axis
targets.

2) Contrast: For contrast evaluation, we use a simulated
phantom of an anechoic cyst embedded in a speckle back-
ground. Fig. 10 displays the images obtained with DAS,
COBA, SCOBA, and SCOBAR and provides a qualitative
impression of the contrast achieved by each method. In addi-
tion, lateral cross sections of the cyst at a depth of 64 mm
(dashed line in Fig. 10) are presented in Fig. 11, showing
that SCOBA and DAS have a similar contrast, SCOBAR
demonstrates an improvement over the latter, and COBA
achieves the best performance.

A quantitative measure of contrast is the contrast ratio
(CR) [17]

CR = 20 log10

(
μcyst

μbck

)
(71)

where μcyst and μbck are the mean image intensities, prior
to log-compression, computed over small regions inside the
cyst and in the surrounding background, respectively. The
regions selected are designated by the dashed circles in Fig. 10.
Consistent with the previous results, the CR of DAS is
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Fig. 12. Images of GAMMEX 403GSLE which include pin and cystic targets obtained with (a) DAS (63), (b) COBA (63), (c) SCOBA (21), and (d) SCOBAR
(29). Number in brackets refers to the number of elements used.

Fig. 13. Images of GAMMEX 404GSLE which include pin and resolution targets obtained with (a) DAS (63), (b) COBA (63), (c) SCOBA (21), and
(d) SCOBAR (29). Number in brackets refers to the number of elements used.

Fig. 14. Images of GAMMEX 403GSLE which include resolution and cystic targets obtained with (a) DAS (63), (b) COBA (63), (c) SCOBA (21), and
(d) SCOBAR (29). Number in brackets refers to the number of elements used.

Fig. 15. Zoomed-in view on the resolution targets shown in Fig. 14.

Fig. 16. Zoomed-in view on the cystic targets displayed in Fig. 14.
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Fig. 17. Cardiac images obtained with (a) DAS (63), (b) COBA (63), (c) SCOBA (21), and (d) SCOBAR (29). Number in brackets refers to the number of
elements used.

−30.1 dB and the CR of SCOBA is similar and equal to
−30 dB. The CR of SCOBAR and COBA is −34 and −44 dB,
receptively. These results emphasize the superiority of COBA
and demonstrate that a similar and improved performance to
that of DAS can be obtained while using much fewer elements.

B. Phantom Scans

We next proceed to evaluate the proposed beamformers
using experimental data. To that end, phantom data were
acquired by a Verasonics Vantage 256 system. Tissue mim-
icking phantoms Gammex 403GSLE and 404GSLE were
scanned by a 64-element phased array transducer P4-2v with
a frequency response centered at 2.9 MHz and a sampling
frequency of 11.9 MHz. The parameters for SCOBA and
SCOBAR were chosen to be A = 4 and B = 8, resulting
in 21 and 27 elements, respectively. The results obtained
from different phantom scans are presented in Figs. 12–14
and include on-axis and off-axis targets, various cysts, and
resolution target groups. Zoomed-in view on areas of cysts
and resolution targets is shown in Figs. 15 and 16, respec-
tively. As can be seen, COBA exhibits an improvement over
DAS in terms of contrast and resolution, and SCOBA and
SCOBAR achieve a similar performance to DAS and COBA,
respectively, while using fewer elements.

C. In Vivo Acquisition

Finally, we apply the proposed methods on in vivo cardiac
data. The acquisition was performed with a GE breadboard
ultrasonic scanner where 63 acquisition channels were used.
The radiated depth was 16 cm, the probe carrier frequency was
3.4 MHz, and the system sampling frequency was 16 MHz.
For COBA, SCOBA, and SCOBAR, a Hanning window-based

Fig. 18. Fourier transforms of the impulse response of the Hanning-based
high-pass filter (dashed line) and the signal given by (21), which corresponds
to the central in vivo image line.

high-pass filter was used (rather than a BP) with a cutoff
frequency of 5 MHz, as shown in Fig. 18. The parameters for
SCOBA and SCOBAR were set to A = 4 and B = 8, leading
to the minimal numbers of elements that can be obtained as
stated in Theorems 1 and 2. Consequently, 21 and 27 elements
out of 63 were used by SCOBA and SCOBAR, respectively.

The results are presented in Fig. 17. Clearly, COBA out-
performs DAS in terms of image quality; the background
noise is reduced and the anatomical structures are better
highlighted. SCOBA achieves a similar resolution as DAS,
whereas SCOBAR yields notable resolution improvement.
Moreover, both the sparse beamformers obtain a low noise
floor compared with DAS, and thus, the heart walls are
better defined. These results validate that using the proposed
techniques, a reduction in the number of elements can be
attained without compromising and even improving the image
quality in comparison with the standard DAS.

VI. CONCLUSION

In this paper, we proposed three techniques for beamform-
ing upon reception. First, we introduced a beamformer called



2404 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 65, NO. 12, DECEMBER 2018

COBA, which is based on convolution of the RF signals and
is implemented efficiently using FFT. Then, we introduced the
concept of sum coarray to analyze the beam pattern generated
by COBA, showing that it yields twofold enhancement in
lateral resolution, compared with standard DAS, and provides
contrast improvement. This was validated using qualitative and
quantitative measurements in simulations, which emphasized
that COBA leads to an increase in resolution, contrast, and
noise suppression. In addition, an in vivo scan was provided
for visual assessment of the resulting image quality.

Based on COBA and the sum coarray, we next presented
two sparse beamformers, SCOBA and SCOBAR, which utilize
a reduced number of elements. SCOBA requires much fewer
elements without degrading image quality compared with
DAS, whereas SCOBAR offers an improvement of resolution
and contrast at the expense of a smaller, yet sizable, element
reduction. The minimal number of elements in both algorithms
is proportional to the square root of the number used with a
full array. In addition, SCOBA may allow for a probe with
a smaller physical aperture. The performance of SCOBA and
SCOBAR was studied using both simulated and experimental
data, verifying that only a small number of elements can be
used while maintaining or improving the image quality com-
pared with DAS. Images of in vivo cardiac scans demonstrate
that SCOBA and SCOBAR are suitable for clinical use.

To conclude, the proposed methods provide a prominent
improvement of contrast and lateral resolution in comparison
with DAS. In addition, they allow for a significant ele-
ment reduction while preserving or enhancing image quality.
While the full aperture is required for transmission, most of
receive electronics can be discarded using this approach. Thus,
it enables the design of cheap, portable probes, and low-power
ultrasound systems with a low computational load, paving the
way to 3-D imaging and wireless operation.

APPENDIX A
DISCRETE CONVOLUTION

Consider two discrete sequences a and b of length N + 1
and M + 1, respectively. The discrete linear convolution of a
and b is a sequence c of length L = N + M +1 whose entries
are given by

cs =
s∑

i=0

as−ibi , s = 0, 1, . . . , L − 1 (72)

where a and b are zero padded to be of length L.
Let f and g be two polynomials defined by

f (p) =
N∑

n=0

an pn, g(p) =
M∑

m=0

bm pm . (73)

Their product is

h(p) � f (p)g(p) =
N∑

n=0

M∑

m=0

anbm pn pm . (74)

The latter can be viewed as a sum of single powers of p by
substituting s = n + m

h(p) =
L−1∑

s=0

⎛

⎝
∑

(n,m): n+m=s

anbm

⎞

⎠ ps . (75)

The coefficients cs of this polynomial are given by the inner
summation, which can be expressed as

cs =
∑

(n,m): n+m=s

anbm =
s∑

i=0

as−ibs (76)

where the second equality is obtained by zero padding a and
b to be of length L. Thus, the coefficients of h(p) are the
linear convolution of a and b.

APPENDIX B
PROOF OF THEOREM 1

We consider the equivalent problem given by (57). It is clear
from the constraints that A and B are both divisors of N and
we can express B using A as B = (N/A). Without loss of
generality, we assume that A ≤ B that leads to the following
formulation:

A∗ = arg min
m∈D1

m + N

m
. (77)

Next, we define a function g : [1,
√

N ] → R
+ over a

continuous domain

g(x) = x + N

x
.

The function g(x) is continuous and differentiable over the
open domain (1,

√
N ). Its derivative is given by

dg

dx
= 1 − N

x2 < 0

and hence, g(x) is monotonically decreasing. Using the fact
that D1 ⊆ [1,

√
N ] and denoting n = max(D1), it holds that

g(n) < g(m), m ∈ D1, m 
= n.

Therefore, the optimal solution is given by A∗ = n =
max(D1) and B∗ = min(D2) accordingly. The solution
for B ≤ A is established with the same arguments by
interchanging the roles of A and B. �

Notice that when N is a perfect square, we have that
max(D1) = min(D2), leading to the single solution described
earlier. In general, there are two optimal solutions; however,
the solution in which B ≥ A is superior to the second one in
terms of mutual coupling.

APPENDIX C
PROOF OF THEOREM 2

We consider the equivalent problem (65). Denoting M =
2A ∈ E, we rewrite it as

M∗, B∗ = arg min
M,B∈N, B>1

M + B

s.t. M B = 2N

M ∈ E. (78)
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Ignoring for a moment the last constraint, problem (78) is
similar to (57) with 2N replacing N . Hence, by similar
arguments to those presented in the proof of Theorem 1,
we have that

M∗ = max(D3) and B∗ = min(D4)

M∗ = min(D4) and B∗ = max(D3). (79)

Now, we enforce the constraint M ∈ E. Since
max(D3) min(D4) = 2N either max(D3) or min(D4)
are even, or both, therefore, at least one of the optimal
solutions in (79) is valid. Thus, taking into account that
A∗ = M∗/2, we get the optimal solutions presented for each
one of the three cases. �

Notice that when 2N is a perfect square, we have that
max(D3) = min(D4) = √

2N ∈ E and the solution is
A = √

(N/2), B = √
2N , as presented before.
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