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Abstract— Massive multiple-input multiple-output (MIMO)
systems have been drawing considerable interest due to the
growing throughput demands on wireless networks. In the uplink,
massive MIMO systems are commonly studied assuming that
each base station (BS) decodes the signals of its user terminals
separately and linearly while treating all interference as noise.
Although this approach provides improved spectral efficiency
which scales with the number of BS antennas in favorable channel
conditions, it is generally sub-optimal from an information-
theoretic perspective. In this paper, we characterize the spectral
efficiency of massive MIMO when the BSs are allowed to jointly
decode the received signals. In particular, we consider four
schemes for treating the interference, and derive the achievable
average ergodic rates for both finite and asymptotic number
of antennas for each scheme. Simulation tests of the proposed
methods illustrate their gains in spectral efficiency compared with
the standard approach of separate linear decoding, and show that
the standard approach fails to capture the actual achievable rates
of massive MIMO systems, particularly when the interference is
dominant.

Index Terms— Massive MIMO, spectral efficiency, joint
decoding.

I. INTRODUCTION

A MAJOR challenge of future wireless systems is to meet
the growing throughput demand. A promising method

for increasing the spectral efficiency (SE) is to equip the base
stations (BSs) with a large number of antennas. Such systems,
referred to as massive multiple-input multiple-output (MIMO)
systems, were shown to provide improved throughput which
is scalable with the number of BS antennas [1], and are the
focus of considerable research attention in recent years.

Massive MIMO systems are traditionally noncooperative
multi-cell multi-user networks [2], where in each cell a set
of single-antenna user terminals (UTs) are served by a multi-
antenna BS. Each BS estimates the unknown channel to its
UTs in a time-division duplex (TDD) manner prior to data
transmission. The pioneering work of Marzetta [3] showed
that, in certain favorable channel conditions and fixed number
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of UTs in each cell, and when the BSs perform separate
linear decoding, the effects of channel estimation error and
channel noise are made negligible as the number of BS anten-
nas increases. Furthermore, performance is limited by pilot
contamination, which is the interference caused by pilot reuse
among cells. The impact of pilot contamination on SE was
further studied in [4] and [5]. The work [6] characterized the
SE of linear decoders under more general channel conditions,
when the number of UTs is proportional to the number of BS
antennas. The tradeoff between SE and energy efficiency was
studied in [7], while [8] treated the effect of UT allocation
on SE. UT allocation schemes were considered in [9].

Focusing on the uplink, namely, on the communications
from the UTs to the BSs, all the works above restricted the
BSs to separately decode the signal of each UT based on some
linear transformation of the channel output, such as matched
filtering or minimum mean-squared error (MMSE) filtering,
while interference is treated as noise. From an information-
theoretic perspective, this approach is sub-optimal, as the
massive MIMO network is a set of interfering multiple access
channels (MACs). The capacity region of interfering MACs
is unknown (In fact, even the capacity region of simple two
interfering point-to-point (PtP) channels is generally unknown
[10, Ch. 6]). Thus, while separate decoding and treating
interference as noise is generally a sub-optimal approach
for such channels [10, Ch. 6], it is not clear how far it
is from optimality. In fact, previous studies on the gap of
massive MIMO schemes from optimality assumed no intercell
interference, see, e.g., [1, Fig. 11] and [11, Fig. 4a]. Works
studying similar channels without restricting the BSs to decode
separately and treat interference as noise include [12], which
studied the achievable ergodic sum-rate of MIMO MACs
with interference and a-priori known channel in the asymp-
totic number of antennas regime; the works [13]–[15], which
studied block-fading MIMO PtP channels; and [16], which
focused on MIMO MACs with channel estimation and without
interference.

In this work we study noncooperative massive MIMO
systems, focusing on the uplink, without restricting the BSs
to decode separately. In addition, we do not collectively
treat interference as noise, and allow the BSs to decode the
interfering signals. We characterize the SE, measured as the
achievable average ergodic rate over the entire multi-cell
network, of three approaches for handling the intercell
interference, commonly studied in the network information
theoretic context of interference channels [10, Ch. 6]: In the
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first scheme, each BS jointly decodes the signals of its
corresponding UTs, and treats the intercell interference as
noise. In the second scheme, each BS decodes the signals
of all the UTs in the network. In the third scheme, the data
transmission phase is divided between the cells such that in
each time instance only the UTs of a single cell transmit to
their BS, thus effectively canceling the intercell interference.
Note that these schemes do not treat how the UTs encode the
transmitted signals, but only how the signals are decoded, and
how their transmission is synchronized. Unlike the standard
approach in the analysis of massive MIMO systems, we allow
the BSs to jointly decode the signals of their corresponding
UTs. For each approach we first characterize the SE for a
finite number of BS antennas, and then analyze the SE in the
massive MIMO regime, i.e., when the number of BS antennas
approaches infinity, using results from random matrix theory.
Next, we study an optimized network which combines all the
above schemes to maximize the SE, by allowing each BS to
decode some of the intercell interference while treating the
rest as noise, and dividing the transmission phase such that the
intercell interference is reduced but not necessarily canceled.

While these techniques are computationally more com-
plex than the traditional approach of separate decoding and
treating interference as noise, the characterization of their
achievable average ergodic rate quantifies how much can be
gained by removing the restrictions of the traditional approach
and by properly treating massive MIMO systems as a set
of interfering MACs. Furthermore, while the complexity of
optimal joint decoding is known to grow exponentially with
the number of UTs, its performance can be approached using
interference cancellation [17, pp. 540], whose complexity
only grows linearly with the number of UTs, i.e., the same
complexity order as separate linear decoding [18], at the cost
of increased decoding latency. Alternatively, recent develop-
ments in machine learning suggest that deep neural networks
can perform accurate joint decoding at reduced complexity
and latency, based on a sufficiently large training data, see,
e.g., [19]. Consequently, the proposed analysis allows future
communications engineers to understand exactly what can be
gained by joint-decoding, beyond mere intuition, and accord-
ingly to decide whether or not to implement such schemes,
in light of the cost.

Our numerical study demonstrates that substantial gains in
SE can be obtained by allowing the BSs to perform joint
decoding and by properly applying methods for handling the
interference. This indicates that the approach of separately
decoding a linear transformation of the channel output fails
to capture the fundamental limits of massive MIMO net-
works. For example, we illustrate that when the intercell
interference is dominant, a relevant scenario for future cellular
networks [20], the traditional approach results in a SE which
approaches zero, while, when the BSs are allowed to jointly
decode the interference, non-negligible average ergodic rates
are achieved.

The rest of this paper is organized as follows: Section II
presents the massive MIMO network model, and reviews
some relevant results from random matrix theory. Section III
derives the SE of the considered schemes. Section IV provides

simulation examples. Finally, Section V concludes the paper.
Proofs of the results stated in the paper are detailed in the
appendix.

Throughout the paper, we use boldface lower-case letters
for vectors, e.g., x; the i-th element of x is written as (x)i.
Matrices are denoted with boldface upper-case letters, e.g., M,
and we use (M)i,j to denote its (i, j)-th element. We use In

to denote the n×n identity matrix. Hermitian transpose, trans-
pose, complex conjugate, stochastic expectation, and mutual
information are written as (·)H , (·)T , (·)∗, E{·}, and I (· ; ·),
respectively. δk,l is the Kronecker delta, i.e., δk,l = 1 when
k = l and δk,l = 0 otherwise. We use Tr (·) to denote the trace

operator, ⊗ is the Kronecker product,
d= denotes equality in

distribution of two random variables (RVs), and C is the set of
complex numbers. Unless stated otherwise, all logarithms are
taken to base-2. Finally, for an n× n matrix X, x = vec (X)
is the n2 × 1 column vector obtained by stacking the columns
of X one below the other. The matrix X is recovered from x
via X = vec−1 (x).

II. PRELIMINARIES AND SYSTEM MODEL

A. Problem Formulation

We consider a noncooperative multi-cell multi-user MIMO
system with nc cells, focusing on the uplink. In each cell, a BS
equipped with nt antennas serves nu single-antenna UTs. We
assume that nt and nu are sufficiently large to carry out large
scale (asymptotic) analysis, and fix the ratio of the number of
UTs to the number of antennas κ � nu

nt
.

Let Dk,l be an nu×nu random diagonal matrix with positive
diagonal entries {Dk,l,m}nu

m=1 representing the attenuation
between the m-th UT of the l-th cell and the k-th BS,
k, l ∈ {1, 2, . . . , nc} � Nc. We assume that the attenuation
coefficients are mutually independent, and that for a fixed k, l,
the attenuation coefficients from the UTs of the l-th cell and
the k-th BS, {Dk,l,m}nu

m=1, are also identically distributed.
Furthermore, let Hk,l ∈ Cnt×nu be a random proper-complex1

zero-mean Gaussian matrix with i.i.d. entires of unit variance,
representing the instantaneous channel response between the
UTs of the l-th cell and the k-th BS, k, l ∈ Nc. For
each (k1, l1) �= (k2, l2), Hk1,l1 and Hk2,l2 are mutually
independent, and are also independent of {Dk,l}k,l∈Nc . Let
Gk,l = Hk,lDk,l be the random channel matrix from the UTs
in the k-th cell to the l-th BS. We assume a block-fading
model for {Hk,l}k,l∈Nc , in which the channel coefficients
{Hk,l}k,l∈Nc are unknown and remain constant only for a
coherence duration of τc symbols. As in, e.g., [8], each BS
knows its corresponding attenuation coefficients2 i.e., the k-th
BS knows {Dk,l}l∈Nc . Let wk[i] ∈ Cnt , k ∈ Nc, be an i.i.d.
zero-mean proper-complex Gaussian signal with covariance
matrix σ2

W Int , σ2
W > 0, representing the additive channel

noise at the k-th BS.

1Following [21, Definition 1], we use the term proper-complex for complex-
valued random vectors and matrices whose pseudo-covariance vanishes, thus
their second-order statistical moment is completely characterized by the
covariance matrix.

2Although the attenuation coefficients are assumed to vary slowly, we do
not assume that they are slow-fading, as we allow the codewords to span a
sufficiently large number of independent realizations of {Dk,l}k,l∈Nc .
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Channel estimation is carried out in a TDD fashion, where
the coherence duration τc is divided into a channel estimation
phase, consisting of τp pilot symbols, and a data transmission
phase, consisting of τd = τc − τp data symbols. During
the channel estimation phase, each UT sends a deterministic
orthogonal pilot sequence (PS), where the PSs are the same
in all cells. The BSs use the a-priori knowledge of the PSs to
estimate the channel. Letting sm[i] denote the i-th pilot symbol
of the m-th user in each cell, m ∈ {1, 2, . . . , nu} � Nu, i ∈
{1, 2, . . . , τp}, and defining s[i] � [s1[i], s2[i], . . . , snu [i]]T ,
the channel output at the k-th BS, k ∈ Nc, is given by

yk[i] =
nc∑

l=1

Gk,ls[i] + wk[i], i = 1, 2, . . . , τp. (1)

The orthogonality of the PSs implies that for all m1, m2 ∈ Nu,
τp∑

i=1

sm1 [i]s∗m2
[i] = τp · δm1,m2 . Furthermore, the PS

length, τp, must not be smaller than the number of UTs, nu

[3, Sec. III-A].
During data transmission, we assume equal unit power

Gaussian codebooks among all UTs, i.e., the transmitted signal
of the UTs in the k-th cell, k ∈ Nc, denoted xk[i] ∈ Cnu ,
is a zero-mean Gaussian vector with identity covariance. The
channel output at the k-th BS is given by

yk[i] =
nc∑

l=1

Gk,lxl[i]+wk[i], i=τp + 1, τp + 2, . . . , τc, (2)

where {xl[i]}l �=k represents the intercell interference.
Our goal is to characterize the SE of noncooperative multi-

cell multi-user MIMO systems, represented as the achievable
average ergodic rate. Letting rk,m be the achievable ergodic
rate of the m-th UT in the k-th cell, the achievable average
ergodic rate is defined as

r � τd

τc
· 1
nc · nu

nc∑

k=1

nu∑

m=1

rk,m, (3)

where the factor τd

τc
= 1− τp

τc
follows since only τd symbols of

each coherence interval are used for data transmission. Each
rk,m is computed by averaging the achievable rate over a large
number of independent realizations of the attenuation coeffi-
cients {Dk,l}k,l∈Nc . This approach corresponds to quasi-static
capacity analysis, which assumes multiple long transmission
bursts, where the SE is computed assuming that the attenuation
coefficients do not change during each burst, see [22, Sec. 4].
The resulting SE characterization yields a tight upper bound
to the throughput of a practical code with codelength that is
smaller than the coherence time of the attenuation coefficients.
In particular, we study the SE in the massive MIMO regime,
namely, when the number of BS antennas, nt, grows infinitely
large while κ, which denotes the ratio of the number of UTs,
nu, to the number of BS antennas, is kept fixed and finite.
As explained in [6, Sec. 3], this asymptotic analysis provides
tight approximations of the SE of practical massive MIMO
systems, where both nt and nu are large yet finite. This setup
is different from that considered in [3], where only nt is
assumed to be arbitrarily large.

The standard approach in the massive MIMO literature,
e.g., [3]–[8], is to restrict the BSs to separately decode the sig-
nal of each UT from some linear transformation of the channel
output. We henceforth refer to this approach as separate linear
decoding. Here, in order to recover the symbol of the m-th UT
in the k-th cell, the BS computes the inner product between
the received vector yk[i] and some linear filter qk,m ∈ Cnt ,
and uses the result to decode only the symbol of the m-th UT.
Letting γk,m be an RV representing the signal-to-interference-
and-noise ratio (SINR) of the channel relating the m-th UT
of the k-th cell and its corresponding BS, k ∈ Nc, m ∈ Nu,
the SE of this approach is given by

rSEP =
τd

τc
· 1
nc · nu

nc∑

k=1

nu∑

m=1

E {log (1 + γk,m)} . (4)

The stochastic expectation in (4) is carried out with respect to
the SINR RV γk,m. The SINR is determined by the filter qk,m,
the attenuation coefficients {Dk,l}l∈Nc , and the noise power
σ2

W , see, e.g., [6, Sec. II]. The randomness of the SINR
follows since the filter qk,m depends on the (random) esti-
mated channel, and from the randomness of the attenuation
coefficients {Dk,l}l∈Nc . The novel aspect of our analysis
is that we allow the BSs to use joint multi-user detection.
While multi-user detection is inherently more complex than
separate linear decoding, especially for a large number of UTs,
the resulting analysis captures the fundamental properties of
noncooperative massive MIMO systems, and quantifies how
much is lost, in terms of SE, due to the restriction to use
separate linear decoding. Furthermore, we emphasize that the
additional complexity is required only at the BSs, i.e., no
additional processing is required at the UTs. Finally, the per-
formance of optimal multi-user detection can be approached
at a significantly reduced complexity using deep learning
algorithms, as indicated in [19]. Alternatively, optimal multi-
user detection can be implemented using iterative algorithms,
whose complexity only grows linearly with the number of
UTs, at the cost of increased decoding delay, see, e.g., [18].

B. Results From Large Random Matrix Theory

In our study we rely on some existing results from the
theory of large random matrices. To formulate these results,
we first recall the definition of the empirical eigenvalue
cumulative distribution function (CDF): For an nt×nt random
Hermitian matrix A with eigenvalues {λi (A)}nt

i=1, the (ran-
dom) empirical CDF of its eigenvalues is given by FA(x) =
1
nt

nt∑
i=1

1 {λi (A) ≤ x}, where 1{·} is the indicator function.

Note that FA(x) is a random function of the real scalar x.
The following result, which is obtained from the Marčenko-
Pastur law for the asymptotic eigenvalue distribution of large
random matrices [23], is frequently used in our analysis:

Theorem 1 [24, Th. 2.39]: Let H ∈ Cnt×nu be a proper-
complex random matrix with i.i.d. entries with zero-mean and
unit variance, and let A ∈ Cnu×nu be a Hermitian non-
negative random matrix, independent of H, whose empirical
eigenvalue CDF converges almost surely to the nonrandom
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CDF of the real-valued non-negative scalar RV A. Then, for
fixed nu

nt
= κ, we have that as nt → ∞,

1
nt

log
∣∣∣∣Int +

1
nt

HAHH

∣∣∣∣
a.s.−→κ · E {log (1 + η · A)} − log η + (η − 1) log e

� ν(A, κ), (5)

where
a.s.−→ denotes almost sure convergence, and η ∈ (0, 1] is

the solution to κ = 1−η

1−E{ 1
1+η·A} .

We note that when A is the deterministic matrix Inu , (5)
specializes to the limit in [24, eq. (1.14)], which character-
izes the asymptotic capacity of Rayleigh fading PtP MIMO
channels. Furthermore, as the left-hand side of (5) is a non-
negative real-valued RV, the deterministic function ν(A, κ) is
also non-negative real-valued.

III. ACHIEVABLE AVERAGE ERGODIC RATES

In order to compute the SEs, namely, the achievable aver-
age ergodic rates, we recall that the uplink massive MIMO
system is inherently a set of interfering MACs. In particular,
in (2), yk[i] is the MAC output, the entries of xk[i] are the
MAC inputs, and {xl[i]}l �=k is the interference. Consequently,
we consider the following common approaches for handling
the intercell interference: treating intercell interference as
noise, simultaneous decoding, and time division between cells.
The first two schemes determine only how each BS treats
the intercell interference when decoding its input, while the
third approach eliminates the intercell interference without
modifying the transmitted signals, by synchronizing the cells
to avoid simultaneous transmission. We emphasize that these
methods do not treat how the transmitted data is encoded.

To study these approaches, we first elaborate on the channel
estimation phase in Subsection III-A. Then, in Subsections III-
B–III-D, we discuss each method and its SE for a finite number
of BS antennas and in the massive MIMO regime. Unlike
previous works, e.g., [3]–[8], we do not restrict our attention to
separate linear decoding, and allow the BSs to jointly decode
the signals of their UTs. The proofs of our results follow the
same outline for each approach:

• To characterize the SE for a finite number of BS antennas
we first divide the received signal into a signal which the
BS decodes and an uncorrelated signal which is consid-
ered as noise. Then, we compute the correlation matrix
of the equivalent noise, and use worst-case uncorrelated
noise arguments, see, e.g., [13], to obtain an expression
for the SE.

• To characterize the SE in the massive MIMO regime,
we prove that the expression for the SE for a finite num-
ber of BS antennas satisfies the conditions of Theorem 1.
Then, we apply Theorem 1 to explicitly obtain the SE in
the massive MIMO regime.

The detailed proofs are relegated to the appendix. Next,
in Subsection III-E, we provide an illustrative example for
which we analytically compare the SEs of the considered
approaches. In particular, this example indicates that treating
interference as noise is the best approach when the intercell

interference is weak, while simultaneous decoding is the
best approach when the interference is dominant. Finally,
in Subsection III-F, we propose a method for combining the
schemes for handling the intercell interference such that the
SE is optimized.

A. Channel Estimation

As stated in the system model, the first τp symbols of
each coherence interval are orthogonal PSs used by the BSs
to produce the MMSE estimate of their corresponding chan-
nel responses. Define the nt × τp random matrices Yk �[
yk[1], . . . ,yk[τp]

]
, Wk �

[
wk[1], . . . ,wk[τp]

]
, and the nu×

τp deterministic matrix S �
[
s[1], . . . , s[τp]

]
. From (1) we

have that for all k ∈ Nc:

Yk =
nc∑

l=1

Gk,lS + Wk. (6)

Since the PSs are orthogonal and τp ≥ nu, we have that
SSH = τp · Inu . Let M be an nt × nu zero-mean proper-
complex Gaussian random matrix with i.i.d. unit variance
entries independent of {Dk,l}k,l∈Nc , and define the RVs

Bk,l,m �
τpD

2
k,l,m

σ2
W + τp

nc∑
l′=1

D2
k,l′,m

, k, l ∈ Nc, m ∈ Nu, (7)

and the nu×nu diagonal matrices {Bk,l}k,l∈Nc with diagonal
entries {Bk,l,m}nu

m=1. The MMSE channel estimate and its
statistical characterization are stated in the following lemma:

Lemma 1: The MMSE estimate of Gk,l from Yk and
{Dk,l}l∈Nc is given by

Ĝk,l = τ−1
p YkSHBk,l. (8)

Furthermore, the MMSE estimate Ĝk,l is distributed as

Ĝk,l
d= MB1/2

k,l Dk,l and its estimation error G̃k,l � Gk,l −
Ĝk,l is distributed as G̃k,l

d= M (Inu − Bk,l)
1/2 Dk,l.

Proof: See Appendix A.

The remaining τd = τc − τp symbols of each coherence
interval are used for uplink data transmission. In the following
subsections we study the achievable average ergodic rates of
several schemes using the MMSE channel estimates (8).

B. Decoding Scheme 1 - Interference as Noise

We first study the SE when each BS treats the intercell
interference as noise. The intuition here is that the BSs only
decode their relevant messages, thus the transmission rate
of each UT should only guarantee reliable decoding by its
corresponding BS. In particular, the k-th BS, k ∈ Nc, jointly
decodes the signals transmitted by the UTs associated with
the k-th cell, xk[i], and treats the signals transmitted by all
UTs which are not associated with the k-th cell, {xl[i]}l �=k,
as noise. The fundamental difference between the decod-
ing scheme considered here and previous works on massive
MIMO systems, e.g., [3]–[8], which also assumed that the
BSs treat intercell interference as noise, is that these works
restricted each BS to decode the signals transmitted from each
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of its associated UTs separately, thus the channel from the UTs
to the BS is treated as a set of PtP channels, and the focus is
on characterizing the SINR of the channel from each UT to
its BS. Here, we allow the BSs to jointly decode the signals
transmitted by their UTs, exploiting the fact that the channel
from the UTs to their associated BS is a MAC.

Using the MMSE channel estimate Ĝk,k and its estimation
error G̃k,k, the received signal at the k-th BS during data
transmission (2) can be written as

yk[i] = Ĝk,kxk[i]+G̃k,kxk[i]+
nc∑

l=1,l �=k

Gk,lxl[i]+wk[i]. (9)

By treating interference as noise, the equivalent noise signal

is defined as vIAN
k [i] � G̃k,kxk[i]+

nc∑
l=1,l �=k

Gk,lxl[i]+wk[i],

and the received signal can be written as

yk[i] = Ĝk,kxk[i]+vIAN
k [i], i=τp + 1, τp + 2, . . . , τc.

(10)

To formulate the achievable average ergodic rate of (10),
define the RV

Tk �
nc∑

l=1

Tr
(
(Inu − Bk,l)D2

k,l

)
+ σ2

W , (11)

and the nu × nu random diagonal matrices

QNet
k � T−1

k Bk,kD−2
k,k

nc∑

l=1

D4
k,l; (12a)

and

QInt
k � T−1

k Bk,kD−2
k,k

nc∑

l=1,l �=k

D4
k,l. (12b)

The SE in the finite number of antennas regime is stated in
the following proposition:

Proposition 1: When the BSs treat intercell interference as
noise, the following average ergodic rate is achievable:

rIAN
nt

=
τd

τc
· 1
nc · nu

nc∑

k=1

(
E {log

∣∣Int + MQNet
k MH

∣∣}

−E {log
∣∣Int + MQInt

k MH
∣∣}
)
, (13)

where the expectations are carried out with respect to the
random matrices M and {QNet

k ,QInt
k }k∈Nc .

Proof: See Appendix B.

Next, we use Proposition 1 to characterize the achievable
average ergodic rate in the massive MIMO regime. To that
aim, define the following RVs

ANet
k �

Bk,k,1D
−2
k,k,1

nc∑
l=1

D4
k,l,1

κ
nc∑
l=1

E{(1 − Bk,l,1)D2
k,l,1}

; (14a)

and

AInt
k �

Bk,k,1D
−2
k,k,1

nc∑
l=1,l �=k

D4
k,l,1

κ
nc∑
l=1

E{(1 − Bk,l,1)D2
k,l,1}

, (14b)

for k ∈ Nc. Letting nt → ∞ in (13) while fixing nu

nt
= κ,

we obtain the achievable average ergodic rate in the massive
MIMO regime, stated in the following theorem:

Theorem 2: In the massive MIMO regime, the following
average ergodic rate is achievable when treating intercell
interference as noise:

rIAN � lim
nt→∞
nu
nt

=κ

rIAN
nt

=
τd

τc
· 1
nc · κ

nc∑

k=1

ν
(
ANet

k , κ
)− ν

(
AInt

k , κ
)
, (15)

where ν (·, ·) is defined in (5).

Proof: See Appendix C.

As detailed in Appendix B, Proposition 1 is proved by com-
puting the maximal achievable average ergodic rate, assuming
that the equivalent noise vIAN

k is Gaussian. In the standard
approach of separate linear decoding, this equivalent noise is
also assumed to be Gaussian, and the SE, given in (4), is com-
puted assuming that the decoder filters the received signal
in (9) and decodes each entry separately. Consequently, the SE
of the standard approach is always upper bounded by the SE
in (13) and (15). In the example presented in Subsection III-E
and in the numerical study detailed in Section IV we demon-
strate that the approach of treating intercell interference as
noise is most beneficial when the intercell interference is weak,
in agreement with the theory of two-user Gaussian interference
channels [10, Ch. 6.4.3].

C. Decoding Scheme 2 - Simultaneous Decoding

The opposite approach to treating interference as noise is
to decode the intercell interference. Specifically, each BS now
jointly decodes the signals transmitted by all UTs in the
network. The rationale of this scheme is that, by decoding
the intercell interference, each BS can cancel its effect when
decoding the desired messages of its corresponding UTs.
However, it requires each UT to set its rate such that its
message can be reliably decoded by all the BSs in the network.
This approach is known to be optimal in the two-user Gaussian
interference channel with strong interference [10, Ch. 6.4.2],
and thus we expect it to achieve the best performance in
networks where many UTs are not allocated to the BSs
with best connectivity (a scenario which is not uncommon
in wireless networks [9]). Consequently, while this approach
is more computationally complex than treating interference as
noise, deriving its SE gives an indication of the fundamental
performance limits of wireless networks with strong intercell
interference, which cannot be obtained using the standard
approach of treating interference as noise.

From (7) and (8), it follows that Ĝk,l = Ĝk,kD−2
k,kD

2
k,l.

Thus, given {Dk,l}l∈Nc , obtaining the MMSE estimate of
all cross-cell channels, {Ĝk,l}l∈Nc , is equivalent to obtaining
only Ĝk,k, and no additional pilots are required. The received
signal at the k-th BS (2) can be written as

yk[i] =
nc∑

l=1

Ĝk,lxl[i] +
nc∑

l=1

G̃k,lxl[i] + wk[i]. (16)
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When decoding the intercell interference along with the data,

the equivalent noise is vSD
k [i] �

nc∑
l=1

G̃k,lxl[i]+wk[i], and the

received signal can be written as

yk[i] = Ĝk,kD−2
k,k

nc∑

l=1

D2
k,lxl[i] + vSD

k [i], (17)

i = τp +1, τp +2, . . . , τc. The SE for finite nt of the proposed
approach is stated in the following proposition:

Proposition 2: When each BS decodes the intercell interfer-
ence along with the data signal, the following average ergodic
rate is achievable:

rSD
nt

=
τd

τc
· 1
nc · nu

min
k∈Nc

(E {log
∣∣Int + MQNet

k MH
∣∣}), (18)

where the expectations are carried out with respect to the
random matrices M and {QNet

k }k∈Nc .

Proof: See Appendix D.

Next, we use Proposition 2 to characterize the achievable
average ergodic rate in the massive MIMO regime. Letting
nt → ∞ in (18) while fixing nu

nt
= κ, we obtain the achievable

average ergodic rate in the massive MIMO regime, stated in
the following theorem:

Theorem 3: In the massive MIMO regime, the following
average ergodic rate is achievable when the BSs decode the
intercell interference:

rSD � lim
nt→∞
nu
nt

=κ

rSD
nt

=
τd

τc
· 1
nc · κ min

k∈Nc

ν
(
ANet

k , κ
)
, (19)

where ANet
k and ν (·, ·) are defined in (14) and (5), respec-

tively.

Proof: The proof follows similar arguments to the proof
of Theorem 2 and is thus omitted.

The minimization over the cells in (18)-(19) follows since
each BS decodes the signals of all the UTs in the network, thus
the UTs have to transmit at a rate which allows their message
to be reliably decoded by all BSs. Consequently, unlike the SE
of treating interference as noise stated in Thm. 2, which always
upper-bounds the SE of separate linear decoding, simultaneous
decoding can be outperformed by separate linear decoding,
especially in scenarios where the intercell interference is weak.
This behavior is also observed in the numerical study in
Section IV, where it is also demonstrated that simultaneous
decoding is most beneficial when the intercell interference
is dominant, in agreement with its optimality for two-user
Gaussian interference channels [10, Ch. 6.4.2].

D. Scheme 3 - Time Division

Another approach is to eliminate the intercell interference
by letting the UTs of different cells transmit at different
time intervals. Here, the data transmission phase is divided
into nc distinct intervals, each consisting of ζk · τd symbols,

where
nc∑

k=1

ζk = 1. Unlike the schemes discussed in

Subsections III-B–III-C, this method is not a decoding
scheme, but rather a method to convert the massive MIMO
network into a set of non-interfering MACs. The motivation

for this approach stems from the fact that, in some scenarios,
neither of the previous approaches, i.e., treating the intercell
interference as noise or decoding it, can lead to good
results, and it may be preferable to cancel the intercell
interference by boosting orthogonality. The drawback is that
each cell now utilizes only a portion of the data transmission
phase. We note that this scheme requires a basic level of
cooperation between the cells, as the UTs of different cells
know not to transmit at the same time. Nonetheless, this is
not the standard notation of cooperation as in [10, Ch. 1.4],
in the sense that no cooperative encoding or decoding is
carried out, as only a basic level of centralized network
control is required to allocate the time intervals between the
cells.

Since each UT in the k-th cell transmits in only ζk of the
data transmission phase, it can transmit at power of 1/ζk

instead of unit power, while maintaining an average unit
transmission power over the transmission phase. Consequently,
the transmitted signal in the k-th cell during the k-th trans-

mission interval is given by ζ
− 1

2
k xk[i], and the corresponding

channel output is

yk[i] = Ĝk,kζ
− 1

2
k xk[i] + G̃k,kζ

− 1
2

k xk[i] + wk[i]. (20)

As no intercell interference is present, the equivalent noise

is vTD
k [i] � G̃k,kζ

− 1
2

k xk[i] + wk[i], and the received signal
during the k-th transmission interval can be written as

yk[i] = Ĝk,kζ
− 1

2
k xk[i] + vTD

k [i]. (21)

To formulate the SE of this scheme, we define the nu × nu

random diagonal matrix

QTD
k (ζk) � 1

Tr
(
(Inu −Bk,k)D2

k,k

)
+ζk · σ2

W

Bk,kD2
k,k. (22)

The SE of the proposed scheme for a finite nt is stated in the
following proposition:

Proposition 3: When the data transmission phase is divided
into nc distinct intervals partitions via {ζk}k∈Nc , the follow-
ing average ergodic rate is achievable:

rTD
nt

({ζk}k∈Nc) =
τd

τc
· 1
nc · nu

nc∑

k=1

ζk

· E {log
∣∣Int + MQTD

k (ζk)MH
∣∣}, (23)

where the expectations are carried out with respect to the
random matrices M and {QTD

k }k∈Nc .

Proof: See Appendix E.

Next, we use Proposition 3 to characterize the achievable
average ergodic rate in the massive MIMO regime. To that
aim, define the set of RVs {ATD

k }k∈Nc such that

ATD
k �

Bk,k,1D
2
k,k,1

κ · E{(1 − Bk,k,1)D2
k,k,1}

. (24)

Letting nt → ∞ in (23) while fixing nu

nt
= κ, we obtain the

achievable average ergodic rate in the massive MIMO regime,
stated in the following theorem:

Theorem 4: In the massive MIMO regime, the following
average ergodic rate is achievable when the data transmission
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phase is divided into nc distinct interval via {ζk}k∈Nc:

lim
nt→∞
nu
nt

=κ

rTD
nt

({ζk}k∈Nc) =
τd

τc
· 1
nc · κ

nc∑

k=1

ζk · ν (ATD
k , κ

)
. (25)

Proof: The proof follows similar arguments to the proof
of Theorem 2 and is thus omitted.

Since for each k ∈ Nc, the non-negative real-valued
ν
(
ATD

k , κ
)

does not depend on the partitions {ζk}k∈Nc ,
the set of partitions which maximizes (25) is obtained using
the Cauchy-Schwartz inequality, resulting in the following
corollary:

Corollary 1: The achievable average ergodic rate when the
transmission phase is divided into nc intervals in the massive

MIMO regime (25) is maximized by setting ζo
k =

ν(ATD
k ,κ)

nc�

l=1
ν(ATD

l ,κ)
,

for all k ∈ Nc, and the resulting achievable average ergodic
rate is given by

rTD � lim
nt→∞
nu
nt

=κ

rTD
nt

({ζo
k}k∈Nc)

=
τd

τc
· 1
nc · κ ·

nc∑
k=1

ν2
(
ATD

k , κ
)

nc∑
k=1

ν
(
ATD

k , κ
) . (26)

E. Illustrative Example

In order to analytically illustrate the relationships between
SEs of the schemes discussed in the previous subsections,
we consider, as an example, a massive MIMO network con-
sisting of nc = 2 cells in the high signal-to-noise ratio (SNR)
regime, i.e., σ2

W → 0. To properly formulate this example,
let X ∈ [

xmin, xmax

]
and Y ∈ [

ymin, ymax

]
be mutually

independent RVs of finite support, where 0 < xmin < xmax

and 0 < ymin < ymax. For every m ∈ Nu, the attenuation
coefficients are distributed via D2

k,l,m
d= X for k = l and

D2
k,l,m

d= Y for k �= l. In particular, we consider two extreme
interference profiles: 1) ymax 	 xmin - this case represents
weak intercell interference. 2) xmax 	 ymin - this case
corresponds to dominant intercell interference. Note that these
interference profiles resemble the weak interference regime
and the strong interference regime, respectively, traditionally
defined for the two-user Gaussian non-fading interference
channel [10, Ch. 6.4]. The relationships between the asymp-
totic SEs in Theorems 2-3 and Corollary 1 for these scenarios
are stated in the following proposition:

Proposition 4: When ymax 	 xmin, the asymptotic SEs
satisfy rTD ≈ rSD and rIAN ≈ 2rSD, while for xmax 	 ymin,
these SEs satisfy rIAN ≈ 0 and rTD < rSD.

Proof: See Appendix F.

Proposition 4 agrees with the theoretical results for the two-
user Gaussian interference, for which it is known that treating
interference as noise is optimal in the weak interference
regime, while simultaneous decoding is optimal in the strong
interference regime [10, Ch. 6.4]. In the numerical study in

Section IV we demonstrate that time division can contribute
to increasing the SE when the interference is not too weak and
not too dominant. Furthermore, the proposition implies that in
the weak interference regime, the SE of treating interference
as noise is larger by a factor of approximately nc compared
to simultaneous decoding and time division. Since rIAN ≈ 0
when the intercell interference is dominant, Proposition 4
indicates that any approach that is based on treating intercell
interference as noise, including the standard separate linear
decoding approach, is expected to result in negligible SE when
the intercell interference is dominant, and cannot approach the
fundamental rate limits in such scenarios.

F. Optimized Scheme

To benefit from the advantages of Schemes 1–3 we propose
a method which combines them in order to optimize the
overall SE. Generally speaking, the proposed optimized
approach allows time division as in Scheme 3 by partitioning
the transmission phase where only some of the cells in
the network are active at each partition, and combines the
decoding schemes 1–2 by allowing each BS to jointly decode
some of the intercell interference, and treat the rest as noise.
Specifically, we let the transmission phase τd be divided into
np ≤ nc distinct intervals, with the q-th interval consisting

of ζq · τd symbols, q ∈ {1, 2, . . . , np}, where
np∑

q=1
ζq = 1. We

let Iq denote the set of active cells during the q-th interval,

such that
np⋃

q=1
Iq = Nc and Iq1

⋂ Iq2 = ∅ for every q1 �= q2.

During the q-th interval, only the UTs belonging to the set of
active cells Iq are allowed to transmit,3 and each UT transmits
at power of 1/ζq instead of unit power. Next, we divide
the active cells in each interval q into nq

cl ≤ |Iq| distinct

non-empty clusters, denoted {J s
q }nq

cl
s=1, such that

nq
cl⋃

s=1
J s

q = Iq .

During the q-th interval, each BS k ∈ J s
q treats the intercell

interference from the cells in the set J̄ s
q � Iq \ J s

q as noise,
and decodes the signals of the UTs of the cells J s

q .
In the following we characterize the SE for a fixed setting

of clusters {J s
q }nq

cl,np

s=1,q=1 in the massive MIMO regime. The
received signal at the k-th BS (2), k ∈ J s

q , can be written as4

yk[i] =
∑

l∈J s
q

Ĝk,lζ
− 1

2
q xl[i] +

∑

l∈J s
q

G̃k,lζ
− 1

2
q xl[i]

+
∑

l∈J̄ s
q

Gk,lζ
− 1

2
q xl[i] + wk[i]. (27)

When decoding the intercell interference from the cells
belonging to the set J s

q along with the data, the equivalent

3We note that the SE can further optimized by allowing the cells to be active
on more than one transmission interval, namely, by removing the restriction
Iq1 ∩ Iq2 = ∅ for each q1 �= q2. However, as the purpose of the scheme
is to show that the SE can be optimized by properly combining schemes 1-3,
we defer this generalization to future exploration.

4Since the sets {J s
q }n

q
cl,np

s=1,q=1 are distinct and span the set of cells Nc,
the values of the partition index q and the cluster index s are uniquely
determined by the cell index k, i.e., q = q(k) and s = s(k). For notational
simplicity, we omit the cell index k.
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noise is vOS
k [i] �

∑
l∈J s

q

G̃k,lζ
− 1

2
q xl[i] +

∑
l∈J̄ s

q

Gk,lζ
− 1

2
q xl[i] +

wk[i], and the received signal can be written as

yk[i] =
∑

l∈J s
q

Ĝk,lζ
− 1

2
q xl[i] + vOS

k [i]

= ζ
− 1

2
q Ĝk,kD−2

k,k

∑

l∈J s
q

D2
k,lxl[i] + vOS

k [i]. (28)

The representation (28) facilitates the characterization of the
SE. By defining the scalar RVs

AOS,N
k

(
{J s

q }nq
cl

s=1

)
�

Bk,k,1D
−2
k,k,1

∑
l∈Iq

D4
k,l,1

κ
∑

l∈Iq

E{(1 − Bk,l,1) D2
k,l,1}

;

AOS,I
k

(
{J s

q }nq
cl

s=1

)
�

Bk,k,1D
−2
k,k,1

∑
l∈J̄ s

q

D4
k,l,1

κ
∑

l∈Iq

E{(1 − Bk,l,1) D2
k,l,1}

,

and the deterministic quantity

ZOS
q

(
{J s

q }nq
cl

s=1

)
�

nq
cl∑

s=1

min
k∈J s

q

(
ν
(
AOS,N

k

(
{J s

q }nq
cl

s=1

)
, κ
)

− ν
(
AOS,I

k

(
{J s

q }nq
cl

s=1

)
, κ
))

,

we obtain the SE in the massive MIMO regime, as stated in
the following theorem:

Theorem 5: In the massive MIMO regime, the following
average ergodic rate is achievable for a fixed setting of clusters
{J s

q }nq
cl,np

s=1,q=1 and partitions {ζq}np

q=1:

rOS
(
{J s

q }nq
cl,np

s=1,q=1, {ζq}np

q=1

)

=
τd

τc
· 1
nc · κ

np∑

q=1

ζq · ZOS
q

(
{J s

q }nq
cl

s=1

)
. (29)

Proof: See Appendix G.

Note that Theorem 5 specializes Theorems 2–4 by properly
setting {J s

q }nq
cl,np

s=1,q=1. In particular:

• When np = 1 (i.e., I1 = Nc), and nq
cl = nc (i.e.,

each cluster J s
q contains only one cell), then AOS,N

k and
AOS,I

k coincide with ANet
k and AInt

k , respectively, and (29)
reduces to (15).

• For np = 1 (i.e., I1 = Nc), and nq
cl = 1 (i.e., a single

cluster which contains all the cells in the network,
J s

q = Nc), we have that AOS,N
k coincides with ANet

k ,
while AOS,I

k is zero with probability 1, and thus (29)
specializes to (19).

• By setting np = nc (i.e., only one active cell in each
partition), we have that AOS,N

k coincides with ATD
k ,

while AOS,I
k is zero with probability 1, and thus (29)

reduces to (25).

Furthermore, as in Corollary 1, the set of partitions {ζq}np

q=1

which maximizes (29) for a fixed set of clusters {J s
q }nq

cl,np

s=1,q=1

can be explicitly obtained using the Causchy-Schwartz

inequality as

ζo
q

(
{J s

q }nq
cl

s=1

)
=

ZOS
q

(
{J s

q }nq
cl

s=1

)

np∑
q′=1

ZOS
q′

(
{J s

q }nq
cl

s=1

) . (30)

Finally, we combine Theorem 5 and (30) to formulate an
optimization problem whose solution is the maximal SE by
any combination of the schemes 1–3, stated in the following
corollary:

Corollary 2: In the massive MIMO regime, the following
average ergodic rate is achievable:

rOS
max = max

np,{nq
cl}

np
q=1,{J s

q }n
q
cl,np

s=1,q=1

(
τd

τc
· 1
nc · κ

·

np∑
q=1

(
ZOS

q

(
{J s

q }nq
cl

s=1

))2

np∑
q=1

ZOS
q

(
{J s

q }nq
cl

s=1

)

)
, (31)

where 1 ≤ np ≤ nc, and {J s
q }nq

cl,np

s=1,q=1 are non-empty distinct
sets which span Nc.

The achievable average ergodic rate is given by the opti-
mization problem in (31), where the parameters over which
the optimization is carried out are the number of parti-
tions np, the number of clusters in each partitions {nq

cl}np

q=1,

and the cells allocated to each cluster {J s
q }nq

cl,np

s=1,q=1. Thus,
the optimization is carried out over a finite set, and can be
solved by searching over all possible combinations of np,

{nq
cl}np

q=1, and {J s
q }nq

cl,np

s=1,q=1. Note that (31) considers only
the overall SE. Other parameters which may be of interest in
practical networks, such as fairness [9], can be accounted for
by introducing additional constraints on the sets of clusters
and partitions. While solving (31) may be computationally
difficult, especially for a large number of cells, its solution
is expected to provide an indication of the underlying funda-
mental performance limits of uplink massive MIMO systems.
In particular, the gain of the optimized scheme stems from the
fact that it combines schemes 1-3, allowing each BS to decode
the signals from some cells, treat the signals from other cells
as noise, while canceling the interference from the rest of the
cells via time-division. Therefore, its gain over schemes 1-3 is
most notable in scenarios where the interference profiles vary
significantly between cells, and neither of the aforementioned
approaches is optimal, as also demonstrated in the numerical
study detailed in Section IV.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we evaluate the achievable average ergodic
rates of massive MIMO networks using the schemes discussed
in Section III in a simulations study, consisting of two parts:
First, in Subsection IV-A we numerically evaluate the number
of BS antennas which can be considered as the massive MIMO
regime, i.e., for which values of nt, our asymptotic analysis in
Theorems 2–4 accurately characterizes the achievable average
ergodic rates. In the second part in Subsection IV-B we
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compare the SEs of the schemes detailed in Section III to
the rates achievable using standard separate linear decoding
in the massive MIMO regime.

We consider a network consisting of nc = 5 cells. The
coherence duration is τc = 1000 symbols. For each Monte
Carlo simulation, the attenuation coefficients are generated
as Dk,l,m = Zk,l,m

C2
k,l,m

, where {Zk,l,m} are the shadow fading
coefficients, independently randomized from a log-normal
distribution with standard deviation of 8 dB, and {Ck,l,m}
represent the range between the m-th UT of the l-th cell and
the k-th BS, k, l ∈ Nc, m ∈ Nu [3, Sec. II-C]. In the first
part of our study we consider a synthetic model for {Ck,l,m},
which we discuss in the sequel, used to evaluate our results
while directly controlling the level of intercell interference.
In our final simulations study we use a realistic model which
more faithfully represents cellular networks.

To formulate the synthetic model for {Ck,l,m}, let ((·))nc be
the modulo nc operator, and {Uk,l,m} be i.i.d. RVs uniformly
distributed over [1, 2]. In order to capture various interference
profiles, we use three different distributions for the RVs
Ck,l,m:

• C2
k,l,m = e3((k−l))nc · Uk,l,m, we refer to this setting as

weak interference.
• C2

k,l,m = e0.25((k−l))nc · Uk,l,m, we refer to this setting
as moderate interference.

• C2
k,l,m = e−1((k−l))nc ·Uk,l,m, we refer to this setting as

strong interference.
Stochastic expectations are evaluated by averaging over
2000 Monte Carlo simulations. By controlling the distribution
of the distances between the UTs and the BSs, represented via
the RVs {Ck,l,m}, we simulate different intercell interference
profiles. For example, in the weak interference setting, the UTs
are significantly closer to their associated BS than to any of
the other BSs, resulting in a low level of intercell interference.
In the strong interference setting, each UT is likely to be closer
to a BS of a different cell than to the BS of its cell, resulting
in dominant intercell interference.

A. Massive MIMO Regime Evaluation

We first numerically evaluate the number of BS antennas
nt for which our asymptotic SE analysis in Theorems 2–4
coincide with their corresponding finite-antenna counterparts
in Propositions 1–3. To that aim, we fix the number of
pilot symbols used for channel estimation to τp = 100, the
number of UTs in each cell to nu = 40, and the SNR,
defined as 1/σ2

W , to 0 dB. The asymptotic SEs computed via
Theorems 2–4 compared to the non-asymptotic SEs computed
via Propositions 1–3 are depicted in Figures 1 and 2 for the
weak interference and for the moderate interference settings,
respectively. Since the optimal time partition for the time
division scheme is given in Corollary 1 only for the asymptotic
regime, the SEs of the time division scheme in Proposition 3
and Theorem 4 are computed with equal time partitions,
i.e., ζk = n−1

c , ∀k ∈ Nc.
Observing Figs. 1–2, we note an excellent match between

the non-asymptotic and asymptotic analysis for number of BS
antennas above nt = 160. Note that the asymptotic scheme

Fig. 1. Finite vs. asymptotic analysis, weak interference, nu = 40,
SNR = 0 dB.

Fig. 2. Finite vs. asymptotic analysis, moderate interference, nu = 40,
SNR = 0 dB.

detailed in Subsection III-F essentially combines schemes 1-3,
thus its asymptotic analysis also holds for such values of nt.
This indicates that the asymptotic analysis can be used to
characterize the achievable average ergodic rates when each
BS is equipped with a large, finite number of antennas, in the
order of hundreds or more BS antennas, which is the same
order as the conventional massive MIMO regime [2].

B. Asymptotic SE Comparison

We now compare the asymptotic SEs of the schemes
detailed in Section III to the corresponding rates achievable
using separate decoding with matched filtering and with
MMSE filtering, computed via (4), where the SINR is com-
puted using [6, Th. 3], by averaging over all generated channel
realizations. Here, the number of BS antennas is nt = 800,
and the number of UTs in each cell is nu = 80. The achievable
average ergodic rate of the time-division scheme is computed
assuming optimal time partition, namely, via Corollary 1.
Since time division can be considered as a form of cooperation
between the cells, we compute the SE of the optimized scheme
twice: once with optimal time division, via Corollary 2, and
once with no time division, by maximizing the SE in Theo-
rem 5 with np = 1. To evaluate the SE versus SNR, 1/σ2

W ,
we fix the number of symbols used for channel estimation to
τp = 100, and let the SNR vary from −30 dB to 30 dB.

The results for the weak interference, moderate interference,
and strong interference settings the are depicted in
Figs. 3, 4, and 5, respectively. As expected, the optimized
scheme obtains the highest SE in each setting over the entire
SNR range, providing an indication on the true fundamental
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Fig. 3. SE vs. SNR, weak interference.

Fig. 4. SE vs. SNR, moderate interference.

limits of massive MIMO systems. Furthermore, we observe
in Fig. 3 that in the weak interference setting, although both
the rates of Theorem 2 and [6, Th. 3] are computed assuming
that intercell interference is treated as noise, the achievable
average ergodic rates of Theorem 2 are higher, with gains of
2.2 bps/Hz and 0.45 bps/Hz compared to matched filtering and
MMSE filtering, respectively, at high SNRs, indicating that the
SE of massive MIMO networks can be improved by allowing
the BSs to perform joint decoding. We emphasize that an
average ergodic rate gain of 0.45 bps/Hz is translated into an
overall ergodic rate gain of over 100 bps/Hz in a cell with over
nu = 220 UTs. Additionally, the SE of treating interference
as noise coincides with that of the optimized scheme,
which settles with the known theoretical result that for the
two-user Gaussian interference, treating interference as noise
is optimal in the weak interference regime [10, Ch. 6.4.3].
Furthermore, as was also noted in the illustrative example in
Subsection III-E, in high SNRs, the performance of treating
interference as noise is larger by a factor of approximately
nc = 5 compared to simultaneous decoding and time division.

In the strong interference scenario, we observe in Fig. 5
that the optimized scheme as well as simultaneous decoding
achieve an average ergodic rate of 0.55 bps/Hz, while separate
decoding results in negligible achievable rates, again, in agree-
ment with the fact that simultaneous decoding is optimal in the
strong interference regime for the two-user Gaussian interfer-
ence channel, [10, Ch. 6.4.2]. Consequently, the fundamental
limits of such channels are substantially higher than those
achieved using standard separate linear decoding and treating
interference as noise.

Fig. 5. SE vs. SNR, strong interference.

For the moderate interference setting, none of the
schemes 1-3 achieves the performance of the optimized
scheme, and thus there is a clear gain in combining these
schemes using the optimized scheme of Subsection III-F. This
gain follows since in this case, the received signal at each
BS is impaired by notable intercell interference from some
cells, and is hardly effected by the interference caused by other
cells. Consequently, in this scenario, the fact that the optimized
scheme allows treating the intercell interference caused by
each cell differently is beneficial. For the weak interference
and strong interference settings, whose results are depicted
in Figs. 3 and 5, respectively, the optimized scheme does
not utilize time-division, i.e., np = 1 and {ζq}np

q=1 = {1}.
However, for the moderate interference setting, for which
some of the intercell interference is neither too weak nor too
dominant, it is observed in Fig. 4 that utilizing time-division
is beneficial. In particular, the optimized scheme here divides
the transmission phase into np = 2 intervals. The first interval,
which is utilized by 3 cells, consists of ζ1 ≈ 0.65 of the
transmission phase, while the remaining two cells utilize the
rest of the transmission phase. Using this assignment, in high
SNRs, the optimized scheme obtains a SE which is higher by
0.04 bps/Hz compared to treating interference as noise when
combining all three schemes, and by 0.018 when combining
only the decoding schemes 1-2, illustrating the benefit of
combining time division. We also note that for all schemes,
the achievable rates hardly vary with SNR at high SNRs,
settling with the observation in [3, Sec. IV].

Next, we numerically evaluate the dependence of the asymp-
totic SE on the number of pilot symbols. The purpose of
this study is to check whether increasing τp, which increases
the channel estimation accuracy at the cost of reducing the
portion of the coherence interval used for data transmission,
is beneficial in terms of SE. It is emphasized that increasing
τp can also contribute to reducing the effect of pilot contami-
nation by supporting different pilot reuse factors [4]. However,
to maintain consistency with the model used throughout the
paper, in the following study we keep the pilot reuse factor to
one, i.e., the same pilots are used in all the cells. In Fig. 6 we
depict the SE versus the number of pilot symbols τp at SNR
of 0 dB for the weak interference setting. Observing Fig. 6,
we note that, since the coherence duration is finite, for all the
considered schemes, increasing the number of pilots linearly
decreases the SE. A similar behavior was observed with the
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Fig. 6. SE vs. number of pilots, weak interference.

moderate interference and strong interference settings. We also
note that the ratios between the SEs of the different schemes
noted in Fig. 3 for τp = 100, is approximately maintained also
for larger values of τp.

In our last simulations study, we numerically evaluate how
the SE of each of the considered schemes depends on the
level of the intercell interference in practical massive MIMO
setups. To that aim, we consider an area of one square
kilometer, in which nc = 5 are placed such the cell of index
k = 1 is located in the center of the grid, and the rest of
the BSs are located at equally spaced points on a circle with
radius of 300 meters. Here, Ck,l,m represents the distance
from the m-th UT of the l-th cell to the k-th BS. The location
of each UT is uniformly distributed over the considered area.
Each UT is associated to a BS based on the following rule:
For a fixed p ∈ [0, 1], the UT is assigned with probability p to
the nearest BS, and with equal probability of 1−p

4 to either of
the other BSs. Such assignments can arise when the UT-cell
association rule accounts for additional objectives, aside from
the standard reference signal received power, see, e.g., [9]. An
illustration of a realization of such a network with nu = 10
UTs and p = 0.8 is depicted in Fig. 7. It is noted that as p
increases, it is more likely that each UT is associated with
its nearest BS, thus the intercell interference becomes less
dominant. Consequently, by letting p vary from 0 to 1, we are
able to control the level of intercell interference in the network.

In Fig. 8 we depict the SEs of the considered schemes
versus p for SNR of 0 dB. Observing Fig. 8 we note that,
as expected, for all values of p, the optimized scheme of Sub-
section III-F achieves the best performance. In particular, for
small values of p, its performance coincides with that of simul-
taneous decoding, as the intercell interference is dominant.
However, as p increases, the effect of intercell interference is
reduced, and treating interference as noise becomes optimal.
Furthermore, it is illustrated that the standard approach of
separate linear decoding achieves poor SE for most intercell
interference levels, and is able to provide reasonable perfor-
mance only for p ≥ 0.9, namely, only when each UT is
associated with its nearest BS with very high probability.

The results presented in this section demonstrate the
potential benefits in terms of SE of properly acknowledging
the nature of massive MIMO systems as interfering
MACs. Furthermore, our results indicate the fundamental
performance limits of such channels, and how far the

Fig. 7. Network layout with nu = 10 and p = 0.8.

Fig. 8. SE versus probability of association to nearest BS.

conventional approach for massive MIMO systems is from
capturing these characteristics.

The results presented in this section demonstrate the
potential benefits in terms of SE of properly acknowledging
the nature of massive MIMO systems as interfering
MACs. Furthermore, our results indicate the fundamental
performance limits of such channels, and how far the
conventional approach for massive MIMO systems is from
capturing these characteristics.

V. CONCLUSIONS

In this paper we studied the SE of uplink massive MIMO
systems when the BSs are allowed to jointly decode the
received signals. We characterized the achievable average
ergodic rates of three schemes for handling the intercell
interference, in both the finite and asymptotic antenna regimes,
and studied a method which combines these approaches for
handling the intercell interference, aimed at maximizing the
SE. Simulation results demonstrate the gains obtained by
allowing the BSs to perform joint decoding, and indicate that
in some scenarios, the standard approach of separate linear
decoding fails to capture the fundamental performance limits
of massive MIMO systems, especially when the interference
is dominant. The proposed analysis gives rise to a multitude
of research paths, including the study of the SE with joint
decoding under different system models, as well as the analysis
and the derivation of network decoding schemes in presence
of additional design objectives.

APPENDIX

A. Proof of Lemma 1
In order to obtain the MMSE estimate of Gk,l, we let

S̃p be the τp × τp unitary matrix (up to a fixed scal-
ing constant) obtained from the full basis expansion of S̃.
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Since S̃p is deterministic and non-singular, it holds that the
MMSE estimate satisfies

Ĝk,l = E {Gk,l|Yk, {Dk,l}} = E
{
Gk,l|YkS̃H

p , {Dk,l}
}

(a)
= E

{
Gk,l|YkS̃H , {Dk,l}

}
,

where (a) follows since, due the orthogonality of S̃p, the rows
of YkS̃H

p which do not belong to YkS̃H contain only noise
which, given {Dk,l}, is independent of YkS̃H , and {Gk,l}.
In particular, YkS̃H is a sufficient statistics of Gk,l from Yk

given {Dk,l} [30, Ch. 2.9].
Next, we note that by (6) it holds that YkS̃H =

τp

nc∑
l=1

Gk,l + WkS̃H . Thus, given {Dk,l}, the entries of

YkS̃H are mutually independent, and each entry of Ĝk,l

can be independently estimated from its corresponding entry
of YkS̃H . Since, given {Dk,l}, YkS̃H and Gk,l are jointly
Gaussian, the MMSE estimate of each entry is linear. Using
the definition of Bk,l in (7), it can be shown that Ĝk,l is given
by

Ĝk,l = YkSHτ−1
p Bk,l, (A.1)

thus proving (8). Next, we study the statistical characterization
of Ĝk,l. Note that by (A.1),

Ĝk,l
(a)
=

(
nc∑

l′=1

Gk,l′S + Wk

)
SHτ−1

p Bk,l

(b)
=

(
nc∑

l′=1

Hk,l′Dk,l′

)
Bk,l + τ−1

p WkSHBk,l, (A.2)

where (a) follows from the expression for Yk in (6), and
(b) follows since Gk,l = Hk,lDk,l and SSH = τpInu . Since
the entries of Wk are i.i.d. zero-mean Gaussian RVs with
variance σ2

W , the fact that SSH = τpInu implies that the
entries of the matrix WkSH are i.i.d. zero-mean Gaussian
RVs with variance σ2

W τp. Consequently, for a given realization
{Dk,l = D̄k,l} with diagonal coefficients {Dk,l,m = dk,l,m},
we have that the entries of the diagonal matrix Bk,l are given

by the deterministic values (Bk,l)m,m =
τpd2

k,l,m

σ2
W +τp

nc�

l′=1
d2

k,l′,m

�
(
B̄k,l

)
m,m

. It thus follows from (A.2) that the entries of

Ĝk,l are zero-mean mutually independent Gaussian RVs with
variance

E
{∣∣∣∣
(
Ĝk,l

)

m1,m2

∣∣∣∣
2

|{Dk,l = D̄k,l}l∈Nc

}

=

(
nc∑

l′=1

d2
k,l′,m2

+ σ2
W τ−1

p

)
⎛

⎜⎜⎝
τpd

2
k,l,m2

σ2
W + τp

nc∑
l′=1

d2
k,l′,m2

⎞

⎟⎟⎠

2

=
τpd

2
k,l,m2

σ2
W + τp

nc∑
l′=1

d2
k,l′,m2

d2
k,l′,m2

=
(
B̄k,l

)
m2,m2

(
D̄k,l

)2
m2,m2

. (A.3)

Accordingly, the conditional distribution of any set of
entries from Ĝk,l given {Dk,l = D̄k,l} is identical to the
conditional distribution of the corresponding set of entries
from MB1/2

k,l Dk,l given {Dk,l = D̄k,l}, recalling that M is
a zero-mean Gaussian random matrix with i.i.d. unit variance
entries independent of {Dk,l}l∈Nc . It thus follows from the

law of total probability [27, Ch. 8.2] that Ĝk,l
d= MB1/2

k,l Dk,l.

The proof that G̃k,l
d= M (Inu − Bk,l)

1/2 Dk,l is obtained
using similar arguments and is thus omitted for brevity.

B. Proof of Proposition 1

To prove the proposition, we first formulate the achiev-
able ergodic sum-rate for the k-th BS using the covariance
matrix of vIAN

k [i] conditioned on Ĝk,k and {Dk,l}, denoted
CvIAN

k |Ĝk,k,{Dk,l}. Then, we obtain an achievable ergodic

sum-rate which depends on the covariance matrix of vIAN
k [i]

conditioned only on {Dk,l}, denoted CvIAN
k |{Dk,l}. Finally,

we prove that the resulting achievable ergodic sum-rate yields
the achievable average ergodic rate given in (13).

Let us first consider the achievable ergodic sum-rate
of the MAC whose input-output relationship is given
in (10) for a fixed k ∈ Nc. During data transmission,
the k-th BS knows the attenuation coefficients {Dk,l}
and the estimated channel, Ĝk,k. Conditioned on these RVs,
the estimation error G̃k,k is zero-mean, since, by the law

of total expectation [27, Ch. 7.4], E
{
G̃k,k|Ĝk,k, {Dk,l}

}
=

E
{
E
{
Gk,k|Ĝk,k,Yk, {Dk,l

}
|Ĝk,k, {Dk,l}

}
− Ĝk,k, and

thus,

E
{
G̃k,k|Ĝk,k, {Dk,l}

}

= E
{
Gk,k − Ĝk,k|Ĝk,k, {Dk,l}

}

(a)
= E

{
E
{
Gk,k|Ĝk,k,Yk, {Dk,l}

}
|Ĝk,k, {Dk,l}

}
− Ĝk,k

(b)
= E

{
Ĝk,k|Ĝk,k, {Dk,l}

}
− Ĝk,k

= 0, (B.1)

where (a) follows since Ĝk,k is the MMSE estimate
of Gk,k given Yk, {Dk,l}, Consequently, the equivalent
noise vIAN

k [i] is orthogonal to xk[i], thus (10) represents
a MAC with an additive uncorrelated noise vIAN

k [i] and a
known channel matrix Ĝk,k . Since the worst-case additive
uncorrelated noise distribution is Gaussian [13, Th. 1],5 the
achievable ergodic sum-rate of the MAC (10) with Gaussian
vIAN

k [i] is also achievable with any other distribution
of vIAN

k [i].
By letting the codelength span a sufficiently large number

of realizations of {Dk,l} and {Hk,l}, noting that the BS
knows the channel attenuations and the MMSE estimate of
the channel, the following ergodic sum-rate is achievable for

5Although [13] considered PtP MIMO channels, for a fixed input distri-
bution, the achievable sum-rate of a MAC is equal to the achievable rate
of a PtP MIMO channel with the same input-output relationship. Hence,
[13, Th. 1] applies also to MACs.
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the MAC (10) [10, Ch. 23.5]:
nu∑

m=1

rk,m = I
(
xk;yk|Ĝk,k, {Dk,l}

)

(a)

≥ E
{
log
∣∣∣Int + Ĝk,kĜH

k,kC
−1

vIAN
k |Ĝk,k,{Dk,l}

∣∣∣
}

= E
{
log
∣∣∣CvIAN

k |Ĝk,k,{Dk,l} + Ĝk,kĜH
k,k

∣∣∣
}

−E
{
log
∣∣∣CvIAN

k |Ĝk,k,{Dk,l}
∣∣∣
}

, (B.2)

where (a) follows by computing the mutual information for
Gaussian additive uncorrelated noise vIAN

k [i] [10, Ch. 9.1],
as the worst-case additive noise is Gaussian.

Next, we explicitly express the matrix CvIAN
k |Ĝk,k,{Dk,l}.

Note that from (7) and (8), Ĝk,l = Ĝk,kD−2
k,kD

2
k,l, and there-

fore, vIAN
k [i] =

nc∑
l=1

G̃k,lxl[i] + Ĝk,kD−2
k,k

nc∑
l=1,l �=k

D2
k,lxl[i] +

wk[i]. As {G̃k,l} and Ĝk,k are jointly Gaussian and
uncorrelated given {Dk,l}, then, CvIAN

k |Ĝk,k,{Dk,l} =
nc∑
l=1

E
{
G̃k,lG̃H

k,l|{Dk,l}
}

+ Ĝk,kD−4
k,k

nc∑
l=1,l �=k

D4
k,lĜ

H
k,k +

σ2
W Int , which yields

CvIAN
k |Ĝk,k,{Dk,l}

(a)
= Tk ·Int+Ĝk,kD−4

k,k

nc∑

l=1,l �=k

D4
k,lĜ

H
k,k, (B.3)

where (a) follows from Lemma 1, as for any Q,
E{MQMH} = Tr (Q) Int [29, Sec. III-B].

Substituting (B.3) into (B.2), recalling that Ĝk,k
d=

MB1/2
k,k Dk,k, where Bk,k and Dk,k are diagonal matrices with

strictly positive diagonal entries, results in
nu∑

m=1

rk,m ≥ E {log
∣∣Int + MQNet

k MH
∣∣}

−E {log
∣∣Int + MQInt

k MH
∣∣}, (B.4)

where QNet
k ,QInt

k are defined in (12). This proves that rIAN
nt

given in (13) is achievable.

C. Proof of Theorem 2

We prove the theorem by applying Theorem 1 to character-
ize (13) in the limit nt → ∞ with nu

nt
= κ. To that aim, we first

show that the conditions of Theorem 1 are satisfied, and then
we apply Theorem 1 to obtain (15). We now explicitly derive
lim

nt→∞ E
{

1
nt

log
∣∣Int + MQNet

k MH
∣∣
}

; the derivation of this

limit with QNet
k replaced by QInt

k is similar and thus omitted
for brevity.

As the entries of M are i.i.d. unit variance RVs independent
of QNet

k , the matrix MQNet
k MH = 1

nt
M
(
nt · QNet

k

)
MH

satisfies the conditions of Theorem 1 when the empirical
eigenvalue distribution of nt · QNet

k converges to a non-
random limit almost surely. Since nt · QNet

k is a diagonal
matrix, its eigenvalues are given by its diagonal entries

(
nt ·QNet

k

)
m,m

=
Bk,k,mD−2

k,k,m

nc�

l=1
D4

k,l,m

κ
nc�

l=1

(
1

nu

nu�

m′=1
(1−Bk,l,m′)D2

k,l,m′
)
+ 1

nt
σ2

W

,

for m ∈ Nu. From (7), it follows that for any

k, l ∈ Nc the RVs
{

(1 − Bk,l,m′)D2
k,l,m′

}
m′∈Nu

are
i.i.d., and thus, by the strong law of large numbers

[28, Ch. 2.4], 1
nu

nu∑
m′=1

(1 − Bk,l,m′)D2
k,l,m′ converges almost

surely to E{(1 − Bk,l,1)D2
k,l,1}. Consequently, it follows

from [31, Ch. 20.6] that for sufficiently large nt with
fixed nu

nt
= κ, the distribution of the eigenvalues of nt ·

QNet
k approaches the distribution of the set of i.i.d. RVs

{ Bk,k,mD−2
k,k,m

nc�

l=1
D4

k,l,m

κ
nc�

l=1
E{(1−Bk,l,1)D2

k,l,1}

}

m∈Nu

. It therefore follows from

[28, Th. 2.4.7] that the empirical CDF of the eigenvalues of
nt ·QNet

k converges almost surely to the non-random CDF of
the random variable ANet

k defined in (14), and that the random
matrix MQNet

k MH satisfies the conditions of Theorem 1.
Consequently, in the massive MIMO regime, the achievable
average ergodic rate in (13) can be written as in (15).

D. Proof of Proposition 2

When each BS decodes the messages of all UTs in the
network, the input-output relationship (17) represents a set
of nc MACs with nc · nu transmitters. Thus, letting the
codelength span a sufficiently large number of realizations
of {Dk,l} and {Hk,l}, as the BS knows the attenuation
coefficients and the MMSE channel estimate, every sum-rate
which satisfies
nc∑

l=1

nu∑

m=1

rl,m ≤ I
(
x1,x2, . . . ,xnc ;yk|Ĝk,k, {Dk,l}

)
, (D.1)

∀k ∈ Nc, is an achievable ergodic sum-rate [10, Ch. 23.5].
Let CvSD

k |{Dk,l} and CvSD
k |Ĝk,k,{Dk,l} be the covari-

ance matrices of vSD
k [i] conditioned on {Dk,l} and

on Ĝk,k, {Dk,l}, respectively. Repeating the arguments
in (B.1), we have that the equivalent noise vSD

k [i] =
nc∑
l=1

G̃k,lxl[i] + wk[i] is orthogonal to xl[i] for every

k, l ∈ Nc. Since the worst-case additive uncorrelated noise
distribution is Gaussian [13, Th. 1], by computing the
mutual information (D.1) with Gaussian vSD

k [i] we have

that [10, Ch. 9.1] I
(
x1,x2, . . . ,xnc ;yk|Ĝk,k, {Dk,l}

)
≥

E
{

log
∣∣∣∣Int + Ĝk,kD−4

k,k

nc∑
l=1

D4
k,lĜ

H
k,kC

−1

vSD
k |Ĝk,k{Dk,l}

∣∣∣∣

}
. As

{Dk,l} are diagonal matrices with strictly positive diagonal
entries, and since given {Dk,l}, each MMSE estimate Ĝk,l is
jointly Gaussian and uncorrelated with the estimation error
G̃k,l, it follows that vSD

k [i] is independent of Ĝk,k given
{Dk,l}, and thus

I
(
x1,x2, . . . ,xnc ;yk|Ĝk,k, {Dk,l}

)

≥ E
{
log
∣∣∣Int + Ĝk,kD−2

k,k

nc∑

l=1

D2
k,l

(
Ĝk,kD−2

k,k

nc∑

l=1

D2
k,l

)H

×C−1

vSD
k |Ĝk,k,{Dk,l}

∣∣∣
}

(a)
= E

{
log
∣∣∣Int +Ĝk,kD−4

k,k

nc∑

l=1

D4
k,lĜ

H
k,kC

−1
vSD

k |{Dk,l}

∣∣∣
}

, (D.2)
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Next, repeating the arguments used in (B.3) to
compute CṽIAN

k
|{Dk,l}, we have that CvSD

k
|{Dk,l} =

nc∑
l=1

Tr
(
(Inu − Bk,l)D2

k,l

)
Int + σ2

W Int = T−1
k · Int .

Consequently, from Lemma 1 and (12), we have that

Ĝk,kD−4
k,k

nc∑
l=1

D4
k,lĜ

H
k,kC

−1
vSD

k |{Dk,l}
d= MQNet

k MH ,

Combining this with (D.2) yields

I
(
x1,x2, . . . ,xnc ;yk|Ĝk,k, {Dk,l}

)

≥ E {log
∣∣Int + MQNet

k MH
∣∣}. (D.3)

It thus follows from (D.1) and (D.3) that
min
k∈Nc

E {log
∣∣Int + MQNet

k MH
∣∣} is an achievable ergodic

sum-rate for the MACs given by (17), and thus, rSD
nt

given
in (18) is an achievable average ergodic rate when the BSs
decode the intercell interference, proving the proposition.

E. Proof of Proposition 3
When the intercell interference is eliminated using time-

division, the input-output relationship (21) represents a set of
nc MACs, each with nu transmitters. Thus, letting the code-
length span a sufficiently large number of realizations of the
attenuation coefficients {Dk,l} and channel matrices {Hk,l},
as the BS knows the attenuation coefficients and the MMSE
channel estimate, the following ergodic sum-rate is achievable
for the k-th MAC (21), k ∈ Nc [10, Ch. 23.5]:

nu∑

m=1

rk,m ≤ I
(
xk;yk|Ĝk,k, {Dk,l}

)
. (E.1)

Let CvTD
k |{Dk,l} be the covariance matrices of

vTD
k [i] conditioned on {Dk,l}. Note that vTD

k =
G̃k,kζ

− 1
2

k xk[i] + wk[i] is independent of the MMSE
estimate Ĝk,k given {Dk,l}, and orthogonal to xk[i] for
every k ∈ Nc. Since the worst-case additive uncorrelated
noise distribution is Gaussian [13, Th. 1], by computing (E.1)
with Gaussian vTD

k [i] we have that [10, Ch. 9.1]

I
(
xk;yk|Ĝk,k, {Dk,l}

)

≥ E
{
log
∣∣∣Int + ζ−1

k Ĝk,kĜH
k,kC

−1
vTD

k |{Dk,l}

∣∣∣
}
. (E.2)

Next, repeating the arguments used in (B.3) to compute
CṽIAN

k |{Dk,l}, we have that CvTD
k |{Dk,l} = ζ−1

k Tr(
(Inu − Bk,k)D2

k,k

)
Int + σ2

W Int . Thus, from Lemma 1

and (22), ζ−1
k Ĝk,kĜH

k,kC
−1
vTD

k |{Dk,l}
d= MQTD

k (ζk)MH .

From (E.1), we have that E {log
∣∣Int + MQTD

k (ζk)MH
∣∣}

is an achievable ergodic sum-rate for the MAC whose
input-output relationship is given in (21). As each MAC uses
only ζk of the data transmission phase, the SE is given
in (23), proving the proposition.

F. Proof of Proposition 4

To prove the proposition, we first express the RVs ANet
k ,

AInt
k , and ATD

k , for the considered setup, and the correspond-
ing SEs rIAN, rSD, and rTD. Then, we use these expressions

to characterize the relationships between the asymptotic SEs
when ymax 	 xmin and when xmax 	 ymin.

First, we note that for the considered setup, the RVs Bk,l,m

defined in (7) are distributed via Bk,l,m
d= τpX

σ2
W +τp(X+Y )

for

k = l and Bk,l,m
d= τpY

σ2
W +τp(X+Y )

for k �= l, for each m ∈ Nu.

Consequently, by defining μX,Y � E{ σ2
W +τp·XẎ

σ2
W +τp(X+Y )

}
=

σ2
W →0

E{ X·Y
X+Y

}
, for each k = 1, 2, ANet

k defined in (14) satisfies

ANet
k =

Bk,k,1D−2
k,k,1(D4

k,1,1+D4
k,2,1)

κ(E{(1−Bk,1,1)D2
k,1,1}+E{(1−Bk,2,1)D2

k,2,1})
, and thus

ANet
k

d=
τp

κ · μX,Y

X2 + Y 2

σ2
W + τp(X + Y )

(a)
=

1
κ · μX,Y

X2 + Y 2

X + Y
, (F.1)

where (a) follows since σ2
W → 0. Similarly, the RVs AInt

k and
ATD

k satisfy

AInt
k

d=
1

κ · μX,Y

Y 2

X + Y
, ATD

k
d=

1
κ · μX,Y

X2

X + Y
, (F.2)

for each k = 1, 2. It follows (F.1)-(F.2) that the distribution
of the RVs ANet

k , AInt
k , and ATD

k does not depend on k, and
thus the asymptotic SEs in (15), (19), and (26), satisfy for any
k = 1, 2

rIAN =
τd

τc · κ
(
ν
(
ANet

k , κ
)− ν

(
AInt

k , κ
))

; (F.3a)

rSD =
τd

2τc · κν
(
ANet

k , κ
)
; (F.3b)

rTD =
τd

2τc · κν
(
ATD

k , κ
)
. (F.3c)

To characterize the relationship between rSD and rIAN, we
use the following lemma:

Lemma F.1: For an RV A satisfying Pr (0 ≤ A < amax) =
1, if κ · E

{
η·A

1+η·A
}

< 1
2 , where η ∈ (0, 1] is given in Theo-

rem 1, then ν (A, κ) ≤ κ·log(1+amax)+log e·
(
κ · amax

1+amax

)2

.

Proof: Note that η = 1 − κ · E
{

η·A
1+η·A

}
. For κ ·

E
{

η·A
1+η·A

}
< 1

2 , plugging this into (5) yields

ν (A, κ)
= κ·E {log(1 + η · A)} + log e

·
(
−κ · E

{
η ·A

1 + η · A
}
− loge

(
1 − κ·E

{
η ·A

1 + η · A
}))

(a)

≤ κ·E {log(1 + η ·A)} + log e·
(
κ·E

{
η ·A

1 + η ·A
})2

, (F.4)

where (a) follows since for α ∈ [0, 1
2 ], −α−α2 ≤ loge(1−α).

As α
1+α and log(1+α) are monotonically non-decreasing and

η · A ≤ amax, (F.4) proves the lemma.
We can now prove that when ymax 	 xmin, rIAN ≈ 2rSD.

From (F.3) we have that rIAN = 2·rSD− τd

τc·κν
(
AInt

k , κ
)
. Next,

we prove that AInt
k satisfies the conditions of Lemma F.1. note

that AInt
k ≤ 1

κ·μX,Y

y2
max

ymax+xmin
� amax with probability one,

and thus κ · E
{

η·AInt
k

1+η·AInt
k

}
≤ κ · amax

1+amax
. Furthermore, since

Y 	 X with probability one, we have that μX,Y ≈ E{Y }, and
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I
(
{xl}l∈J s

q
;yk|Ĝk,k, {Dk,l}

)
≥ E

{
log
∣∣∣∣Int + ζ−1

q Ĝk,kD−4
k,k

∑

l∈J s
q

D4
k,lĜ

H
k,kC

−1

vOS
k |Ĝk,k,{Dk,l}
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}

= E
{

log
∣∣∣∣CvOS

k |Ĝk,k,{Dk,l} + ζ−1
q Ĝk,kD−4

k,k

∑

l∈J s
q

D4
k,lĜ

H
k,k

∣∣∣∣

}

−E
{
log
∣∣∣CvOS

k |Ĝk,k,{Dk,l}
∣∣∣
}

. (G.2)

CvOS
k |Ĝk,k,{Dk,l} = ζ−1

q

∑

l∈Iq

E
{
G̃k,lG̃H

k,l|Ĝk,k, {Dk,l}
}

+ ζ−1
q Ĝk,kD−4

k,k

∑

l∈J̄ s
q

D4
k,lĜ

H
k,k + σ2

W Int

(a)
= ζ−1

q

(∑

l∈Iq

Tr
(
(Inu − Bk,l)D2

k,l

)
+ ζqσ

2
W

)
Int + ζ−1

q Ĝk,kD−4
k,k

∑

l∈J̄ s
q

D4
k,lĜ

H
k,k, (G.3)

thus amax ≈ ymax
κ·E{Y }

ymax
xmin

. Consequently, since ymax 	 xmin

then amax ≈ 0, and thus κ · E
{

η·AInt
k

1+η·AInt
k

}
< 1

2 . Thus,

AInt
k satisfies the conditions of Lemma F.1, and therefore,

ν
(
AInt

k , κ
) ≤ κ · log(1 + amax) + log e ·

(
κ · amax

1+amax

)2 (a)≈ 0,

where (a) follows since amax tends to zero. Consequently,
rIAN ≈ 2rSD.

Lastly, we consider the case in which xmax 	 ymax.
Here, we have that X 	 Y with probability one. In this
case it follows from (F.1) and (F.2) that for any k = 1, 2,
the distribution of the RVs ANet

k and AInt
k approaches

the distribution of the RV Y
κ·μX,Y

. Consequently, by (F.3),
we have that rIAN ≈ 0. Similarly, the distribution of
ATD

k approaches the distribution of the RV 1
κ·μX,Y

X2

Y .

Consequently, by (F.3), rSD ≈ τd

2τc·κν
(

Y
κ·μX,Y

, κ
)

,

and rTD ≈ τd

2τc·κν
(

1
κ·μX,Y

X2

Y .κ
)

, Now, by considering
the same network in which the UTs of cell
k = 1 are allocated to to cell k = 2 and vice versa,
we have that the SE of treating interference as noise,
which is strictly positive, is given by τd

τc·κ
(
ν
(

Y
κ·μX,Y

, κ
)
−

ν
(

1
κ·μX,Y

X2

Y .κ
) )

> 0. Thus, rSD > rTD.

G. Proof of Theorem 5

To prove the theorem, we first obtain the SE in the
finite antenna regime, and then we let nt tend to infinity
and use Theorem 1 to obtain (29). From the representation
in (28), by treating vOS

k as noise and decoding the interference
{xl}l∈J s

q ,l �=k, we have that yk is the output of a MAC
with |J s

q | · nu transmitters. Consequently, by repeating the
arguments in the proofs of Propositions 1-3, we have that for
each cluster J s

q , every sum-rate with satisfies that

∑

l∈J s
q

nu∑

m=1

rl,m ≤ I
(
{xl}l∈J s

q
;yk|Ĝk,k, {Dk,l}

)
, (G.1)

∀k ∈ J s
q , is an achievable ergodic sum-rate [10, Ch. 23.5].

Let CvOS
k |Ĝk,k,{Dk,l} be the covariance matrix of the

equivalent noise vOS
k given Ĝk,k, {Dk,l}. By worst-

case additive uncorrelated noise arguments, recalling that

yk[i] = ζ
− 1

2
q Ĝk,kD−2

k,k

∑
l∈J s

q

D2
k,lxl[i] + vOS

k [i], we have that

the conditional mutual information is bounded as in (G.2),
as shown at the top of this page. Next, we note that the
covariance matrix CvOS

k |Ĝk,k,{Dk,l} can be written as in (G.3),
as shown at the top of this page, where (a) follows from
Lemma 1 and since for any Q, E{MQMH} = Tr (Q) Int

[29, Sec. III-B]. Thus, by defining T̃k �
∑

l∈Iq

Tr
(
(Inu −

Bk,l)D2
k,l

)
+ ζq · σ2

W , Q̃Net
k � T̃−1

k Bk,kD−2
k,k.

∑
l∈Iq

D4
k,l,

and Q̃Int
k � T̃−1

k Bk,kD−2
k,k.

∑
l∈J̄ s

q

D4
k,l, and substitut-

ing (G.3) into (G.2), I
(
{xl}l∈J s

q
;yk|Ĝk,k, {Dk,l}

)
≥

E
{
log
∣∣∣Int + MQ̃Net

k MH
∣∣∣
}
− E

{
log
∣∣∣Int + MQ̃Int

k MH
∣∣∣
}

.
Combining this with (G.1) implies that

∑

l∈J s
q

nu∑

m=1

rl,m = min
k∈J s

q

(
E{ log

∣∣Int + MQ̃Net
k MH

∣∣}

−E{ log
∣∣Int + MQ̃Int

k MH
∣∣}
)

is an achievable ergodic sum-rate. Consequently, as each MAC
uses only ζq of the data transmission phase, then

rOS
nt

� τd

τc
· 1
nc · nt

np∑

q=1

ζq

nq
cl∑

s=1

min
k∈J s

q

(
E {log |Int

+ MQ̃Net
k MH
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}
− E

{
log
∣∣∣Int + MQ̃Int

k MH
∣∣∣
})

,

is achievable. It can be shown by repeating the arguments
in the proof of Theorem 2 that the random matrices M

(
nt ·

Q̃Net
k

)
MH and M

(
nt · Q̃Int

k

)
MH satisfy the conditions of

Theorem 1, and thus, for nt → ∞, rOS
nt

equals the right hand
side of (29), proving the theorem.
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