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Noise Folding in Compressed Sensing
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Abstract—The literature on compressed sensing has focused
almost entirely on settings where the signal is noiseless and the
measurements are contaminated by noise. In practice, however,
the signal itself is often subject to random noise prior to mea-
surement. We briefly study this setting and show that, for the
vast majority of measurement schemes employed in compressed
sensing, the two models are equivalent with the important dif-
ference that the signal-to-noise ratio (SNR) is divided by a factor
proportional to , where is the dimension of the signal and
is the number of observations. Since is often large, this leads
to noise folding which can have a severe impact on the SNR.

Index Terms—Analog noise versus digital noise, compressed
sensing, matching pursuit, noise folding, sparse signals.

I. INTRODUCTION

The field of compressed sensing (CS), focused on recovery
of sparse vectors from few measurements, has been attracting
vast interest in recent years due to its potential use in numerous
signal processing applications [1]–[3]. The standard CS setup
assumes that we are given measurements

(1)

where is themeasurement vector, is the mea-
surement matrix with , and is additive noise. The
signal is assumed to be -sparse, so that no more than
elements of are nonzero. It is also common to assume that is
deterministic, an assumption we make throughout. To recover
from a variety of algorithms have been developed. These in-
clude greedy algorithms, such as thresholding and orthogonal
matching pursuit (OMP) [4], and relaxation methods, such as
basis pursuit [5] (also known as the Lasso) and the Dantzig se-
lector [6].
An important aspect of CS analysis is to develop bounds on

the recovery performance of these methods in the presence of
noise. Two standard approaches to modeling the noise is ei-
ther to assume that is deterministic and bounded [3], or that
is a white noise vector, typically Gaussian [6]–[9]. The former
setting leads to a worst-case analysis in which an estimator must
perform adequately even when the noise maximally damages
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the measurements. By contrast, if one assumes that the noise is
random, then better performance bounds can be obtained. We
therefore focus here on the random noise scenario.
Two standard measures used to analyze the behavior of CS re-

covery techniques are the coherence and the restricted isometry
property (RIP) [10]. If the coherence and RIP of the measure-
ment matrix are small enough, then standard recovery methods
such as basis pursuit, OMP and thresholding can recover from
with squared-error that is proportional to the sparsity level

and the noise variance , times a factor that is logarithmic in
the signal length [6]–[9].
In many practical settings, noise is introduced to the signal
prior to measurement. As an example, one of the applica-

tions of CS is to the design of sub-Nyquist A/D converters. In
this context represents the analog signal at the entrance to the
A/D converter, which is typically contaminated by noise [11].
Though important in practice, the prolific literature on CS has
not treated signal noise in detail. Recently, several papers raised
this important issue [12]–[16]—sometimes under other names
like ‘input’ or ‘background’ noise. These works all make the
point that noise present in can have a severe impact on the re-
covery performance.We analyze this setting in the context of the
finite-CS system (1)—in contrast to the analog setting treated in
[13]—and provide theoretical justification to these previous ob-
servations. In particular, we show that under appropriate condi-
tions on the measurement matrix , the effect of pre-measure-
ment noise is to degrade the signal-to-noise ratio (SNR) by a
factor of . In systems in which this degradation may
be severe.

II. NOISE FOLDING

A. Problem Formulation

The basic CS model (1) is adequate when the noise is intro-
duced at the measurement stage, so that represents the mea-
surement error or noise. However, in many practical scenarios,
noise is added to the signal to be measured, which is not ac-
counted for in (1). A more appropriate description in this case is

(2)

where represents the signal noise, i.e., additive noise that is
part of the signal beingmeasured. Our goal in this letter is to ana-
lyze the effect of pre-measurement noise on the behavior of CS
recovery methods. We assume throughout that is a zero-mean
white noise vector with covariance , and that similarly is
a zero-mean white noise vector with covariance , indepen-
dent of . (Here and elsewhere in the paper, denotes the iden-
tity matrix of relevant dimension.) Under these assumptions, we
show that the model in (2) is equivalent to

(3)
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where is a matrix whose coherence and RIP constants are
very close to those of , and is zero-mean white noise vector
with covariance matrix .
It follows that in order to study (2) we can apply the results de-

veloped for (1), with the important difference that the noise as-
sociated with (2) is larger by a factor proportional to . When

this leads to a large noise increase, or noise folding.
This effect is a result of the fact that the measurement matrix
aliases, or combines, all the noise elements in , even those cor-
responding to zero elements in , thus leading to a large noise
increase in the compressed measurements.

B. Equivalent Formulation

To establish our results, we note that (2) can be written as

(4)

with defined by

(5)

Under the assumption of white noise, the effective noise vector
has covariance , where

(6)

As can be seen, in general is no longer white, which compli-
cates the recovery analysis.
A simple special case is when is proportional to the

identity, so that is still white noise. As an example, suppose
that is the concatenation of orthonormal bases, i.e.,

, where each is an orthogonal
matrix—for example, we may want to analyze a signal with a
few bases (e.g., wavelets and sinusoids) as in [5]. In this case,

so that the noise covariance (6) becomes with

(7)

In this special case the models of (4) (or (2)) and (1) are iden-
tical, with the only difference being that the noise variance of
has increased by with respect to that of . Assuming that

the increase in noise is proportional to , a simple
case of noise folding.
In the next section we show that this result holds more gener-

ally. Namely, the models of (4) and (1) are roughly equivalent
with a noise increase of even when is not propor-
tional to the identity.

III. RIP AND COHERENCE WITH WHITENING

Consider now a more general CS setting, where is an ar-
bitrary matrix with low coherence or low RIP. To proceed, we
first whiten the noise in (4) by multiplying the linear system
by , where , obtaining the equivalent system

(8)

where

(In [16], the system is, instead, multiplied by , named
the “whitening filter.”) Now, the noise vector is white with
covariance matrix , just as in the case of proportional to
the identity. The main difference, however, is that the whitening
changed the measurement matrix from to . We quantify the
magnitude of these changes below via the RIP constants and the
coherence. As we show, for standard matrices used in CS, the
change is generally not very significant.
Our results hinge on approximating by even

when is arbitrary. Let

(9)

measure the quality of this approximation, where denotes
the standard operator norm on . In our derivations below
we assume that is small. Under this assumption we will show
that the coherence and RIP constants of and are very sim-
ilar.
To justify the assumption that is often small, note that when

the entries of are i.i.d. zero-mean, variance random vari-
ables with a sub-gaussian distribution (including the normal,
uniform, Bernoulli distributions), or when the column vectors
are i.i.d. uniform on the sphere, then with proba-
bility at least , for constants depending
only on the distribution of [17, Th. 39]. For example, when
the entries of are i.i.d. and is large enough:

(10)

with probability at least if
and [17, Cor. 35]. A similar result holds for other distri-
butions, including heavy-tailed distributions, the basic require-
ment being that the column vectors of are independent with
covariance [17]. These assumptions are standard in the CS
literature. Thus, in these prevalent settings, will be small with
high probability.

A. Restricted Isometry Analysis

We begin by showing that the restricted isometry constants
of and are similar assuming a small value of . The argu-
ments are based on a perturbation analysis, which is carried in
generality in [18].
For an index set of size , let denote the

submatrix of made of the column vectors indexed by . We
say that has the RIP with constants if

(11)

for any index set of size . ( denotes the
Euclidean norm of .) The following proposition relates
the RIP constants of and :
Proposition 1: Assume that in (9) and that sat-

isfies the RIP of order with constants . Then
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satisfies the RIP of order with constants and
, where .

Though the bound is valid for , the smaller RIP constant
for is only positive when , leading to our restriction.

Proof: The proof is based on the fact that is close to .
Indeed, by definition of in (9):

Next, we express as a power series

which converges since and is an
operator norm. Taking norms on both sides of the inequality and
using both the triangle inequality and again the fact that
is an operator norm, we obtain

(12)

Let be an index set of size and take any . Then

Since

we have that

Together with (11), we obtain

which concludes the proof.

B. Coherence Analysis

We now turn to analyze the coherence. Denoting by the
th column vector of , the coherence of is defined as

Proposition 2: Assume that in (9). Then

where is defined in Proposition 1 and

Note that and when .

Proof: To prove the proposition we develop an upper
bound on the numerator of , and a lower bound
on the denominator elements . For , we have

by (12).
We now lower bound in terms of and . In parallel

with the proof of Proposition 1, we express as a power
series

where are the coefficients in the Taylor expansion of
. Taking norms on both sides of the inequality, we obtain

Therefore

where . All together, we have

with by definition of .

IV. CONCLUSION

Though the CS literature is almost silent on the effect of
pre-measurement noise on recovery performance, in this letter
we made the point that it may have a substantial impact on
SNR. Indeed, we showed that, for the most common measuring
schemes used in CS, the model with pre-measurement noise is,
after whitening, equivalent to a standard model with only mea-
surement noise, modulo a change in measurement matrix and
an increase in the noise variance by a factor of . We pro-
vided bounds on the RIP constants and the coherence of the
new measurement matrix which show that, as with

, the constants are essentially unchanged. Since the
performance of standard recovery methods are often formulated
in terms of the RIP constants and the coherence, this shows that,
in this regime, these methods operate as usual, except with noise
folding leading to a noise variance multiplied by .

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their useful
comments, and in particular for pointing out an error in Propo-
sition 2.



IEEE SIGNAL PROCESSING LETTERS, VOL. 18, NO. 8, AUGUST 2011 481

REFERENCES

[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol.
52, no. 4, pp. 1289–1306, 2006.

[2] M. F. Duarte and Y. C. Eldar, “Structured Compressed sensing: Theory
and applications,” IEEE Trans. Signal Processing, to be published.

[3] E. J. Candès, J. Romberg, and T. Tao,, “Stable signal recovery from in-
complete and inaccurate measurements,” Commun. Pure Appl. Math.,
vol. 59, pp. 1207–1223, 2006.

[4] Y. Pati, R. Rezaiifar, and P. Krishnaprasad, “Orthogonal matching pur-
suit: Recursive function approximation with applications to wavelet
decomposition,” in Conf. Rec. Twenty-Seventh Asilomar Conf. Signals,
Systems and Computers, Nov. 1993, vol. 1, pp. 40–44.

[5] S. S. Chen, D. L. Donoho, andM.A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Sci. Comput., vol. 20, no. 1, pp. 33–61, 1998.

[6] E. Candes and T. Tao, “The Dantzig selector: Statistical estimation
when is much larger than ,” Ann. Statist., vol. 35, no. 6, pp.
2313–2351, 2007.

[7] P. Bickel, Y. Ritov, and A. Tsybakov, “Simultaneous analysis of Lasso
and Dantzig selector,” Ann. Statist., vol. 37, no. 4, pp. 1705–1732,
2009.

[8] Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Coherence-based perfor-
mance guarantees for estimating a sparse vector under random noise,”
Trans. Signal Process., vol. 58, pp. 5030–5043, Oct. 2010.

[9] Z. Ben-Haim and Y. C. Eldar, “The Cramér–Rao bound for estimating
a sparse parameter vector,” IEEE Trans. Signal Process., vol. 58, pp.
3384–3389, June 2010.

[10] E. J. Candès and M. B. Wakin, “An introduction to compressive
sampling [a sensing/sampling paradigm that goes against the common
knowledge in data acquisition],” IEEE Signal Process. Mag., vol. 25,
no. 2, pp. 21–30, Mar. 2008.

[11] M. Mishali and Y. C. Eldar, “Xampling: Compressed sensing for
analog signals,” in Compressed Sensing: Theory and Applications, Y.
C. Eldar and G. Kutyniok, Eds. Cambridge, U.K.: Cambridge Univ.
Press, 2011 [Online]. Available: http://arxiv.org/abs/1103.2960

[12] J. Treichler, M. Davenport, and R. Baraniuk, “Application of compres-
sive sensing to the design of wideband signal acquisition receivers,”
in Proc. 6th U.S./Australia Joint Workshop on Defense Applications of
Signal Processing (DASP), Lihue, HI, 2009.

[13] Z. Ben-Haim, T. Michaeli, and Y. C. Eldar, “Performance bounds and
design criteria for estimating finite rate of innovation signals,” IEEE
Trans. Inf. Theory, submitted for publication.

[14] B. Miller, J. Goodman, K. Forsythe, J. Sun, and V. Goyal, “A multi-
sensor compressed sensing receiver: Performance bounds and simu-
lated results,” in Conf. Rec. Forty-Third Asilomar Conf. Signals, Sys-
tems and Computers, 2009, pp. 1571–1575.

[15] S. Aeron, V. Saligrama, and M. Zhao, “Information theoretic bounds
for compressed sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 10, pp.
5111–5130, Oct. 2010.

[16] K. Krishnamurthy, R. Willett, and M. Raginsky, “Target detection
performance bounds in compressive spectral imaging,” IEEE Trans.
Signal Process., submitted for publication.

[17] R. Vershynin, Introduction to the Non-Asymptotic Analysis of Random
Matrices 2010 [Online]. Available: http://arxiv.org/abs/1011.3027

[18] M. Herman and T. Strohmer, “General deviants: An analysis of pertur-
bations in compressed sensing,” IEEE J. Sel. Topics Signal Process.,
vol. 4, no. 2, pp. 342–349, Apr. 2010.


