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Abstract—Sparse modeling is a powerful framework for data
analysis and processing. Traditionally, encoding in this frame-
work is performed by solving an �-regularized linear regression
problem, commonly referred to as Lasso or Basis Pursuit. In this
work we combine the sparsity-inducing property of the Lasso at
the individual feature level, with the block-sparsity property of the
Group Lasso, where sparse groups of features are jointly encoded,
obtaining a sparsity pattern hierarchically structured. This results
in the Hierarchical Lasso (HiLasso), which shows important prac-
tical advantages. We then extend this approach to the collaborative
case, where a set of simultaneously coded signals share the same
sparsity pattern at the higher (group) level, but not necessarily at the
lower (inside the group) level, obtaining the collaborative HiLasso
model (C-HiLasso). Such signals then share the same active groups,
or classes, but not necessarily the same active set. This model is
very well suited for applications such as source identification and
separation. An efficient optimization procedure, which guarantees
convergence to the global optimum, is developed for these new
models. The underlying presentation of the framework and op-
timization approach is complemented by experimental examples
and theoretical results regarding recovery guarantees.

Index Terms—Collaborative coding, hierarchical models, sparse
models, structured sparsity.

I. INTRODUCTION AND MOTIVATION

S PARSE signal modeling has been shown to lead to nu-
merous state-of-the-art results in signal processing, in ad-

dition to being very attractive at the theoretical level. The stan-
dard model assumes that a signal can be efficiently represented
by a sparse linear combination of atoms from a given or learned
dictionary. The selected atoms form what is usually referred to
as the active set, whose cardinality is significantly smaller than
the size of the dictionary and the dimension of the signal.

In recent years, it has been shown that adding structural con-
straints to this active set has value both at the level of repre-
sentation robustness and at the level of signal interpretation (in
particular when the active set indicates some physical proper-
ties of the signal); see [1]–[4] and references therein. This leads
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to group or structured sparse coding, where instead of consid-
ering the atoms as singletons, the atoms are grouped, and a few
groups are active at a time. An alternative way to add structure
(and robustness) to the problem is to consider the simultaneous
encoding of multiple signals, requesting that they all share the
same active set. This is a natural collaborative filtering approach
to sparse coding; see, for example, [5]–[10].

In this work, we extend these approaches in a number of di-
rections. First, we present a hierarchical sparse model, where
not only a few (sparse) groups of atoms are active at a time,
but also each group enjoys internal sparsity.1 At the conceptual
level, this means that the signal is represented by a few groups
(classes), and inside each group only a few members are active at
a time. A simple example of this is a piece of music (numerous
applications in genomics and image processing exist as well),
where only a few instruments are active at a time (each instru-
ment is a group), and the sound produced by each instrument
at each instant is efficiently represented by a few atoms of the
subdictionary/group corresponding to it. Thereby, this proposed
hierarchical sparse coding framework permits to efficiently per-
form source identification and separation, where the individual
sources (classes/groups) that generated the signal are identified
at the same time as their representation is reconstructed (via the
sparse code inside the group). An efficient optimization proce-
dure, guaranteed to converge to the global optimum, is proposed
to solve the hierarchical sparse coding problems that arise in
our framework. Theoretical recovery bounds are derived, which
guarantee that the output of the optimization algorithm is the
true underlying signal.

Next, we go one step beyond. Continuing with the above ex-
ample, if we know that the same few instruments will be playing
simultaneously during different passages of the piece, then we
can assume that the active groups at each instant, within the
same passage, will be the same. We can exploit this information
by applying the new hierarchical sparse coding approach in a
collaborative way, enforcing that the same groups will be active
at all instants within a passage (since they are of the same in-
struments and then efficiently representable by the same subdic-
tionaries), while allowing each group for each music instant to
have its own unique internal sparsity pattern (depending on how
the sound of each instrument is represented at each instant). We
propose a collaborative hierarchical sparse coding framework
following this approach, (C-HiLasso), along with an efficient
optimization procedure. We then comment on results regarding
the correct recovery of the underlying active groups.

1While we consider only two levels of sparsity, the proposed framework is
easily extended to multiple levels.
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The proposed optimization techniques for both HiLasso
and C-HiLasso is based on the Proximal Method [11], more
specifically, on its particular implementation for sparse prob-
lems, Sparse Reconstruction by Separable Approximation
(SpaRSA) [12]. This is an iterative method which solves a sub-
problem at each iteration which, in ourcase,hasa closed form and
can be solved in linear time. Furthermore, this closed form solu-
tion combines a vector thresholding and a scalar thresholding,
naturally yielding to the desired hierarchical sparsity patterns.

The rest of the paper is organized as follows. Section II
provides an introduction to traditional sparse modeling and
presents our proposed HiLasso and C-HiLasso models. We
discuss their relationship with the recent works of [2] and
[13]–[17]. In Section III we describe the optimization tech-
niques applied to solve the resulting sparse coding problems
and we discuss its relationship with other optimization methods
recently proposed in the literature [16], [18]. Theoretical
recovery guarantees for HiLasso in the noiseless setting are
developed in Section IV, demonstrating improved performance
when compared with Lasso and Group Lasso. We also comment
on existing results regarding correct recovery of group-sparse
patterns in the collaborative case. Experimental results and
simulations are given in Section V, and finally concluding
remarks are presented in Section VI.

II. COLLABORATIVE HIERARCHICAL SPARSE CODING

A. Background: Lasso and Group Lasso

Assume we have a set of data samples
, and a dictionary of atoms in , assembled as a

matrix . Each sample can
be written as , that is, as a
linear combination of the atoms in the dictionary plus some
perturbation , satisfying . The basic underlying
assumption in sparse modeling is that, for all or most , the
“optimal” has only a few nonzero elements. Formally, if
we define the cost as the pseudo-norm counting the number
of nonzero elements of , then
we expect that and for all or most .
Seeking the sparsest representation is known to be NP-hard.
To determine in practice, a multitude of efficient algorithms
have been proposed, which achieve high correct recovery rates.
The -minimization method is the most extensively studied
recovery technique. In this approach, the nonconvex norm is
replaced by the convex norm, leading to

(II.1)

The use of general purpose or specialized convex optimization
techniques allows for efficient reconstruction using this strategy.
The above approximation is known as the Lasso [19] or Basis
Pursuit [20], [21]. A popular variant is to use the unconstrained
version

(II.2)

where is an appropriate parameter value, usually found by
cross-validation, or based on statistical principles [22].

The fact that the regularizer induces sparsity in the solu-
tion is desirable not only from a regularization point of view,
but also from a model selection perspective, where one wants to
identify the relevant factors (atoms) that conform each sample

. In many situations, however, the goal is to represent the rel-
evant factors not as singletons but as groups of atoms. For a
dictionary of atoms, we define groups of atoms through their
indices, . Given a group of indexes, we de-
note the subdictionary of the columns indexed by them as ,
and the corresponding set of reconstruction coefficients as .
Define to be a partition of .2 In
order to perform model selection at the group level (relative to
the partition ), the Group Lasso problem was introduced in [1],

(II.3)

where is the Group Lasso regularizer defined in terms of
as . The function can be seen as
a generalization of the regularizer, as the latter arises from
the special case (the groups are sin-
gletons), and as such, its effect on the groups of is also a nat-
ural generalization of the one obtained with the Lasso: It “turns
on/off” atoms in groups.

We can always consider the “noiseless” sparse coding
problem , for a generic regularizer

, as the limit of the Lagrangian sparse coding problem

when . In the re-
mainder of this section, as well as in Section III, we only
present the corresponding Lagrangian formulations.

B. The Hierarchical Lasso

The Group Lasso trades sparsity at the single-coefficient level
with sparsity at a group level, while, inside each group, the
solution is generally dense. Let us consider for example that
each group is a subdictionary trained to efficiently represent,
via sparse modeling, an instrument, a type of image, or a given
class of signals in general. The entire dictionary is then ap-
propriate to represent all classes of the signal as well as mix-
tures of them, and Group Lasso will properly represent (dense)
mixtures with one group or subdictionary per class. At the same
time, since each class is properly represented in a sparse mode
via its corresponding group or subdictionary, we expect sparsity
inside its groups as well (which is not achieved by Group Lasso,
whose solutions are dense inside each group). This will become
even more critical in the collaborative case, where signals will
share groups because they are of the same class, but will not
necessarily share the full active sets, since they are not the same
signal. To achieve the desired in-group sparsity, we simply rein-
troduce the regularizer together with the group regularizer,
leading to the proposed Hierarchical Lasso (HiLasso) model,3

(II.4)

2While in this paper we concentrate and develop the important nonoverlap-
ping case, it will be clear that the concepts of collaborative hierarchical sparse
modeling introduced here apply to the case of overlapping groups as well.

3We can similarly define a hierarchical sparsity model with � instead of � .
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Fig. 1. Sparsity patterns induced by HiLasso (left) and C-HiLasso (right) model selection programs. Notice that the C-HiLasso imposes the same group-sparsity
pattern in all the samples (same class), whereas the in-group sparsity patterns can vary between samples (samples themselves are different).

Fig. 2. Effect of different combinations of � and � on the solutions of the HiLasso coding problem. Three cases are given in which we want to recover a sparse
signal (red crosses) � by means of the solution � of the HiLasso problem (blue dots). In this example we have two active groups out of ten possible (the sub
dictionaries associated to each group have 30 atoms) and � � � (four nonzero coefficient per active group). The estimate that is closest to � in � norm is shown
in the top left. As the ratio increases (bottom left), the level sets of the regularizer � ��� become rounder, thus encouraging denser solutions. This is depicted
in the rightmost figure for a simple case of � � � groups. Increasing � again (bottom right) increases sparsity, although here the final effect is too strong and
some nonzero coefficients are not detected.

The hierarchical sparsity pattern produced by the solutions of
(II.4) is depicted in Fig. 1 (left). For simplicity of the descrip-
tion, we assume that all the groups have the same number of
elements. The extension to the general case is obtained by multi-
plying each group norm by the square root of the corresponding
group size. This model then achieves the desired effect of pro-
moting sparsity at the group/class level while at the same time
leading to overall sparse feature selection. As mentioned above,
additional levels of hierarchy can be considered as well, e.g.,
with groups inside the blocks. This is relevant for example in
audio analysis.

As with models such as Lasso and Group Lasso, the optimal
parameters and are application and data dependent.
In some specific cases, closed form solutions exist for such
parameters. For example, for signal restoration in the presence
of noise using Lasso , the GSURE method provides
a simple way to compute the optimal [22]. As extending

such methods to HiLasso (or the C-HiLasso model presented
next) is beyond the scope of this work, we rely on cross-
validation for the choice of such parameters. The selection
of and has an important influence on the sparsity of
the obtained solution. Intuitively, as increases, the group
constraint becomes dominant and the solution tends to be more
sparse at a group level but less sparse within groups (see Fig. 2).
This relation allows in practice to intuitively select a set of
parameters that performs well. We also noticed empirically
that the selection of the parameters is quite robust, since small
variations in their numerical value don’t change considerably
the obtained results.

Some recent modeling frameworks for sparse coding do not
rely on the selection of such model parameters, e.g., following
the minimum description length criterion in [23], or nonpara-
metric Bayesian techniques in [24]. Applying such techniques
to the here proposed models is subject of future research.
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C. Collaborative Hierarchical Lasso

In numerous applications, one expects that certain collections
of samples share the same active components from the dictio-
nary, that is, that the indexes of the nonzero coefficients in are
the same for all the samples in the collection. Imposing such de-
pendency in the regularized regression problem gives rise to
the so called collaborative (also called “multitask” or “simulta-
neous”) sparse coding problem [5], [9], [10], [25]. Considering
the coefficients matrix associated
with the reconstruction of the samples

, this model is given by

(II.5)

where is the th row of , that is, the vector of
the different values that the coefficient associated to the th
atom takes for each sample . If we now extend
this idea to the Group Lasso, we obtain a collaborative Group
Lasso (C-GLasso) formulation

(II.6)

where , and is the submatrix
formed by all the rows belonging to group . This regularizer
is the natural collaborative extension of the regularizer in (II.3).

In this paper, we take an additional step and treat this together
with the hierarchical extension presented in the previous sec-
tion. The combined model that we propose, C-HiLasso, is given
by

(II.7)

The sparsity pattern obtained using (II.7) is shown in Fig. 1
(right). The C-GLasso is a particular case of our model when

. On the other hand, one can obtain independent Lasso
solutions for each by setting . We see that (II.7) en-
courages all the signals to share the same groups (classes), while
the active set inside each group is signal dependent. We thereby
obtain a collaborative hierarchical sparse model, with collabo-
ration at the class level (all signals collaborate to identify the
classes), and freedom at the individual levels inside the class to
adapt to each particular signal. This new model is particularly
well suited, for example, when the data vectors have missing
components. In this case combining the information from all the
samples is very important in order to obtain a correct represen-
tation and model (group) selection. This can be done by slightly
changing the data term in (II.7). For each data vector one
computes the reconstruction error using only the observed ele-
ments. Note that the missing components do not affect the other
terms of the equation. Examples will be shown in Section V.

D. Relationship to Recent Literature

A number of recent works have addressed hierarchy, grouping
and collaboration within the sparse modeling community. We
now discuss the ones most closely related to the proposed Hi-
Lasso and C-HiLasso models.

In [2], the authors propose a general framework in which
one can define a regularization term to encourage a variety of
sparsity patterns, and provide theoretical results (different to
the ones developed here) for the single-signal case. The Hi-
Lasso model presented here, in the single signal scenario, can
be seen as a particular case of that model (where the groups in
[2] should be blocks and singletons), although the particularly
and important case of hierarchical structure introduced here is
not mentioned in that paper. In [13] the authors simultaneously
(see [26]) proposed a model that coincides with ours again in
the single-signal scenario. None of these approaches develop
the collaborative framework introduced here, nor the theoretical
guarantees. The recovery of mixed signals with optimization
was addressed in [17]. This model does not include block spar-
sity (no hierarchy), collaboration, or the theoretical results we
obtain here.

The special case of C-HiLasso when , C-GLasso, is
investigated in [27], where a theoretical analysis of the signal
recovery properties of the model is developed. Collaborative
coding with structured sparsity has also been used recently in the
context of gene expression analysis [14], [15]. In [14], the au-
thors propose a model, that can be interpreted as a particular case
of the collaborative approach presented here, in which a set of
signals is simultaneously coded using a small (sparse) number
of atoms of the dictionary. They modify the classical collabora-
tive sparse coding regularization so that each signal can use any
subset of the detected atoms. This is equivalent to our model
when the groups have only one element and therefore there is
no hierarchy in the coding. A collaborative model is presented
in [15], where signals sharing the same active atoms are grouped
together in a hierarchical way by means of a tree structure. The
regularization term proposed is analogous to the one proposed
in our work, but it is used to group signals rather than atoms
(features), having once again no hierarchical coding.

Tree-based sparse coding has also been used recently to learn
dictionaries [16], [18]. Under this model, if a particular learned
atom is not used in the decomposition of a signal, then none of
its descendants (in terms of the given tree structure) can be used.
Although not explicitly considered in these works, the HiLasso
model is an important particular case, among the wide spectrum
of hierarchical sparse models considered in this line of work,
where the hierarchy has two levels and no single atoms are in
the upper level.

To conclude, while particular instances of the proposed C-Hi-
Lasso have been recently reported in the literature, none of them
are as comprehensive. C-HiLasso includes both collaboration, at
a block/group level, and hierarchical coding. Such collaborative
hierarchical structure is novel and fundamental to address new
important problems such as collaborative source identification
and separation. The new theoretical results presented here ex-
tend the block sparsity results of [3], [28], complementing the
modeling and algorithmic work.

III. OPTIMIZATION

A. Single-Signal Problem: Hilasso

In the last decade, optimization of problems of the form of
(II.2) and (II.3) have been deeply studied, and there exist very
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efficient algorithms for solving them. Recently, Wright et al.
[12] proposed a framework, spaRSA, for solving the general
problem

(III.8)

be a smooth and convex function, while only needs
to be finite and convex in . This formulation, which is a par-
ticular case of the Proximal Method framework developed by
Nesterov [11], includes as important particular cases the Lasso,
Group , Lasso and HiLasso problems by setting as the re-
construction error and then choosing the corresponding regular-
izers for . When the regularizer, , is group separable, the
optimization can be subdivided into smaller problems, one per
group. The framework becomes powerful when these subprob-
lems can be solved efficiently. This is the case of the Lasso and
Group Lasso (with non overlapping groups) settings, and also of
the HiLasso, as we will show later in this Section. In all cases, the
solution of the subproblems are obtained in linear time.

The spaRSA algorithm generates a sequence of iterates
that, under certain conditions, converges to the solu-

tion of (III.8). At each iteration, is obtained by solving

(III.9)

for a sequence of parameters , , where
and need to be chosen properly for the algorithm

to converge (see [12] for details). It is easy to show that (III.9)
is equivalent to

(III.10)

where . In this new formulation,
it is clear that the first term in the cost function can be sepa-
rated elementwise. Thus, when the regularization function
is group separable, so is the overall optimization, and one can
solve (III.10) independently for each group, leading to

being the corresponding variable for the group. In the case
of HiLasso, this becomes

(III.11)
where we have defined . Problem (III.11) is a second
order cone program (SOCP), for which one could use generic
solvers. However, since it needs to be solved many times within
the spaRSA iterations, it is crucial to solve it efficiently. It turns
out that (III.11) admits a closed form solution with cost linear
in the dimension of . By inspecting the subgradient of (III.11)
for the case where the optimum ,

where we have defined and . If we now

define , we observe that each element of

is the solution of the well known scalar soft thresh-
olding operator

(III.12)

where we have defined , the
result of the scalar thresholding of . Taking squares on both
sides of (III.12) and summing over we obtain

from which the equality follows. Since all
terms are positive, this can only hold as long as ,
which gives us a vector thresholding condition on the solution

in terms of . It is easy to show that is a
sufficient condition for . Thus, we obtain

(III.13)

The above expression requires scalar thresholding operations,
and one vector thresholding, which is also linear with respect to
the group size . Therefore, for all groups, the cost of solving
the subproblem (III.11) is linear in , the same as for Lasso and
Group Lasso. The complete HiLasso optimization algorithm is
summarized in Algorithm 1. The parameter has very little in-
fluence in the overall performance (see [12] for details); we used

in all our experiments. Note that, as expected, the solution
to the subproblem for the cases or , corresponds
respectively to scalar soft thresholding and vector soft thresh-
olding. In particular, when , the proposed optimization
reduces to the Iterative Soft Thresholding algorithm [29].

Algorithm 1: HiLasso Optimization Algorithm

Input Data , dictionary , group set , constants ,
, ,

Output The optimal point

Initialize

while stopping criterion is not satisfied do

choose

set ;

while stopping criterion is not satisfied do

//Here we use the group separability of (III.10) and solve
(III.11) for each group

for do

Compute as the solution to (III.13);

end

set ;

end

set ;

end
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B. Optimization of the Collaborative Hilasso

The multisignal (collaborative) case is equivalent to the one-
dimensional case where the signal is a concatenation of the
columns of , and the dictionary is an block-di-
agonal matrix, where each of the blocks is a copy of the
original dictionary . However, in practice, it is not needed
to build such (possibly very large) dictionary, and we can op-
erate directly with the matrices and to find . If we de-
fine the matrix whose th column is given by

, we get the following SpaRSA iter-
ates:

which again is group separable, so that it can be solved as
independent problems in the corresponding bands of ,

The correspondent closed form solutions for these subproblems,
which are obtained in an analogous way to (III.12)–(III.13), are
given by

(III.14)

and we have defined . As mentioned in
Section II-D, [18] addresses a wide spectrum of hierarchical
sparse models for coding and dictionary learning. They pro-
pose a proximal method optimization procedure that, when
restricted to the formulation of HiLasso, is very similar to
the one developed in Section III-A. The main difference with
our method is that they solve the subproblem (III.10) using
a dual approach (based on conic duality) that finds the exact
solution in a finite number of operations. Our method, being
tailored to the specific case of HiLasso, provides such solution
in closed form, requiring just two thresholdings, both linear in
the dimension of , .

IV. THEORETICAL GUARANTEES

In our current theoretical analysis, we study the case of a
single measurement vector (signal) (we comment on the col-
laborative case at the end of this section), and assume that there
is no measurement noise or perturbation, so that .
Without loss of generality, we further assume that the cardinality

, that is, all groups in have the same
size. The goal is to recover the code , from the observed , by
solving the noise-free HiLasso problem:

(IV.15)

Note that we have replaced the two regularization parameters
and by a single parameter , since scaling does not effect the
optimal solution. Therefore, we can always assume that

.
Our goal is to develop conditions under which the HiLasso

program of (IV.15) will recover the true unknown vector . As
we will see, the resulting set of recoverable signals is a superset
of those recoverable by Lasso, that is, HiLasso is able to recover
signals for which Lasso (or Group Lasso) will fail to do so.

We assume throughout this section that has group spar-
sity , namely, no more than of the group vectors

, have nonzero norm. In addition, within each group,
we assume that not more than elements are non zero, that is,

.
For , (IV.15) reduces to the Group Lasso problem,

(II.3), whereas with , (IV.15) becomes equivalent to the
Lasso problem, (II.2). Both cases have been treated previously
in the literature and sufficient conditions have been derived on
the sparsity levels and on the dictionary to ensure that the re-
sulting optimization problem recovers the true unknown vector

. For example, in [3], [30], [31], conditions are given in terms
of the restricted isometry property (RIP) of . In an alternative
line of work, recovery conditions are based on coherence mea-
sures, which are easier to compute [28], [32]. Here, we follow
the same spirit and consider coherence bounds that ensure re-
covery using the HiLasso approach. We also draw from [10]
to briefly describe conditions under which the probability of
error of recovering the correct groups, using the special case
of the C-HiLasso with (C-GLasso), falls exponen-
tially to 0 as the number of collaborating samples grows. Fi-
nally, recent theoretical results on block sparsity were reported
in [33]. In particular, bounds on the number of measurements
required for block sparse recovery were developed under the
assumption that the measurement matrix has a basis of the
null-space distributed uniformly in the Grassmanian. The model
is a block-sparse model, without hierarchical or collaborative
components.

In this section, we extend the groupwise indexing notation
to refer both to subsets of rows and columns of arbitrary
matrices as . This is,

, where and are the identity matrices
of the column and row spaces of , respectively. We define
the sets and , and use
to denote the complement of a set of indexes , either with
respect to or , depending on the context. The set difference
between and is denoted as , represents the empty
set, and denotes the cardinality of .

A. Block-Sparse Coherence Measures

We begin by reviewing previously proposed coherence mea-
sures. For a given dictionary , the (standard) coherence is de-
fined as � . This coherence was extended
to the block-sparse setting in [28], leading to the definition of
block coherence:

�
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where is the spectral norm, that is, � ,
with denoting the largest eigenvalue of the positive
semi-definite matrix . An alternate atomwise measure of
block coherence is given by the cross coherence

(IV.16)
When (each block is a singleton), , so that
as expected, . While and quantify global
properties of the dictionary , local block properties are char-
acterized by the subcoherence, defined as

(IV.17)

We define for . Clearly, if the columns of
are orthonormal for each group , then . Assuming the
columns of have unit norm, it can be easily shown that , ,

and all lie in the range . In addition, we can easily
prove that . In our setting, is block sparse, but
has further internal structure: each subvector of is also sparse.
In order to quantify our ability to recover such signals, we ex-
pect that an appropriate coherence measure will be based on the
definition of block sparsity, but will further incorporate the in-
ternal sparsity as well. Let � denote the Gram matrix
of . Then, the standard block coherence is defined in terms
of the largest singular value of an off-diagonal subblock of

. In a similar fashion, we will define sparse block coherence
measures in terms of sparse singular values. As we will see,
two different definitions will play a role, depending on where
exactly the sparsity within the block enters. To define these, we
note that the spectral norm of a matrix can be defined as

�

Alternatively, we can define as the largest singular value
of , �

� � �

We now develop sparse analogs of and � . As we
will see, the simple square-root relation no longer holds in this
case. The largest sparse singular value is defined as [34]

�

(IV.18)

Similarly, the largest sparse eigenvalue of � is defined as
[34]–[36]

� � �

(IV.19)
The sparse matrix norm is then given by

� (IV.20)

Note that, in general, is not equal to . It is easy
to see that . For any matrix ,

and , where are subsets

of of size , chosen to maximize the corre-
sponding singular value. Using (IV.18) and (IV.20), we define
two sparse block coherence measures:

� (IV.21)

� (IV.22)

The choice of scaling is to ensure that .
Note that, while (also referred to in the literature

as sparse principal component analysis (SPCA)) and
are in general NP-hard to compute, in many cases they can be
computed exactly, or approximated, using convex programming
techniques [34]–[36].

The following proposition establishes some relations between
these new definitions and the standard coherence measures.

Proposition 1: The sparse block-coherence measures
satisfy

(IV.23)

Proof: The inequalities follow immediately
from the definition. We obtain the upper bounds by rewriting

and and then using the Geršgorin theorem,

�

(IV.24)

�

(IV.25)

where and are the elements of � and
� , and , are a consequence of Geršgorin’s disc

theorem.
The entries of � for have absolute value

smaller than or equal to , and the size of is . Therefore,
and . Substituting these values into

(IV.24) and (IV.25) concludes the proof of the upper bounds on
and .

B. Recovery Proof

Our main recovery result is stated as follows. Suppose that
is a block -sparse vector with blocks of length , where each
block has sparsity exactly ,4 and let . We rearrange the
columns in and the coefficients in so that the first groups,

correspond to the nonzero (active) blocks.
Within each block , the first indices, represented by
the set , correspond to the nonzero coefficients in that block,
and the index set represents its inactive
elements, so that . The set contains
the indexes of all the active blocks of , whereas

4These conditions are nonlimiting, since we can always complete the vector
with zeros.
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Fig. 3. Top: Indexing conventions, here shown for � � �, � � �, and � � �.
Shaded regions correspond to active elements/atoms. Active blocks are light-
colored, and active elements/coefficients are dark colored. Here, � represents
an alternate representation of �, � � �� . Blocks and atoms that are not
part of the true solution � are marked in red. Bottom: Partitioning of a ma-
trix � performed by the measure � ��� with � � �� �� � and � �
�� � � � � �, where �� � � � and �� � � �.

contains the inactive ones. Similarly, contains the
indexes of all the active coefficients/atoms in and respec-
tively, indexes the inactive coefficients/atoms in

, and indexes the inactive coefficients/atoms
within the active blocks. These indexing conventions are ex-
emplified in Fig. 3 (top). With these conventions we can write

.
An important assumption that we will rely on throughout,

is that the columns of must be linearly indepen-
dent for any as defined above. Under this assumption,

� is invertible and we can define the pseudo-inverse
� For reasons that will become

clear later, we will also need a second, oblique pseudo-in-
verse, � � , where
is an orthogonal projection onto the range of , that is,

. It is easy to check that

and

(IV.26)

Equipped with these definitions we can now state our main
result.

Theorem 1: Let be a block -sparse vector with blocks of
length , where each block has sparsity . Let for a
given matrix . A sufficient condition for the HiLasso algo-
rithm (IV.15) to recover from is that, for some ,

(IV.27)

(IV.28)

(IV.29)

Here , is the block
spectral norm defined in [28], the blocks defined by the sets
of index sets and [see Fig. 3 (bottom)]. We also define

, and
. Finally, ,

where is the th column of .
The above theorem can be interpreted as follows. With

, the conditions (IV.28)–(IV.29) are sufficient both for Lasso
and HiLasso to recover . However, if there exists a

for which condition (IV.28) holds, then HiLasso will be
able to recover in a situation where Lasso is not guaranteed
to do so. The idea is that, for , HiLasso trades off
between the minimization of its and terms, by tightening
the term to improve group recovery, while loosening
the term . Also, although not yet clear from condi-
tions (IV.27)–(IV.29), we will see in Theorem 2 that the final
data independent bounds are also a relaxation of the ones cor-
responding to Group Lasso when the solutions are block-dense.
Therefore, the proposed model outperforms both standard Lasso
and Group Lasso with regard to recovery guarantees. This is
also reflected in the experimental results presented in the next
section.

The sufficient conditions (IV.27)–(IV.29) depend on
and therefore on the nonzero blocks in , , and the nonzero
locations within the blocks, , which, of course, are not known
in advance. Nonetheless, Theorem 2 provides sufficient condi-
tions ensuring that (IV.27)–(IV.29) hold, which are independent
of the unknown signals, and depend only on the dictionary .

We now prove Theorem 1.
Proof: To prove that (IV.15) recovers the correct vector ,

let be an alternative solution satisfying . We will
show that .
Let the set contain the indexes of all elements in the active
blocks of . Let contain the indexes of the active blocks in

. Then .
By our assumptions, in each block of there are exactly

nonzero values. Let the set contain the indexes of all
nonzero elements in . We thus have . Using (IV.26)
we can write

(IV.30)

To proceed, we separate into two parts: ,
and , so that and

. We can now rewrite (IV.30) as

(IV.31)

and use the triangle inequality to obtain

(IV.32)

We now analyze the two terms in the right-hand side of (IV.32)
using [28, Lemma3]:
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Lemma 1: Let be a vector, be a matrix,
be a partition of , and a partition of

. We then have that, .5

Since , it follows from (IV.27) that
(here is the set of the blocks

that comprise ). To analyze , we use its
definition

(IV.33)

and analyze each of its terms. By definition of , each
corresponds to some for some . We can
thus write . Then, by
recalling that we see that for
all . Now, when we have , thus

. When , ,
and in that case. From (IV.33),
we conclude that . Plugging into (IV.32)
leads to

(IV.34)

For the term, we follow the same path as (IV.30) and
(IV.31), now using the Moore-Penrose pseudo-inverse
instead, yielding , from

which follows.

Using the fact that [32], we

get .

Now, since , and , we have that
. Together with condition (IV.29) this yields

(IV.35)

Combining (IV.34) and (IV.35) into the HiLasso cost func-
tion we get

(IV.36)

5Note that the statement of Lemma 1 as shown here is actually a slight gen-
eralization of [28, Lemma3], where the groups in the partitions need not have
the same size.

Now, to finish the proof, we need to bound the right-hand side
of (IV.36) by , in order to show that the
alternate is not a minimum of the HiLasso problem. For any

satisfying

we have

(IV.37)

where we have used the fact that

and . To obtain a signal inde-
pendent relationship between and , we bound in

terms of ,

resulting in the condition

which completes the proof.
We conclude that we can guarantee recovery for every choice

of as long as (IV.27)–(IV.29) are satisfied. Note that when
(Lasso mode) we get , and, as expected, (IV.28)–(IV.29)

reduce to the Lasso recovery condition. Also, if we have
, meaning that we must tighten the constrains related to

the part of the cost function in order to relax the part. For
, the HiLasso conditions are a relaxation of the Lasso con-

ditions, thus allowing for more signals to be correctly recovered.
Theorem 2 below provides signal independent replacements

of the conditions (IV.27)–(IV.29). The signal independent
bound for (IV.27) derived here, depends on coherence mea-
sures between the dictionary and its image under the
projection , . Since depends on ,

itself is signal dependent. Thus, we need to maximize also
over all possible sets . These are defined as (IV.38)–(IV.41),
shown at the bottom of the page. We are now in position to
state the theorem.

�

� �
(IV.38)

� (IV.39)

� (IV.40)

� (IV.41)
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Theorem 2: Let , , , and be the coherence mea-
sures defined respectively in (IV.16) and (IV.38)–(IV.41). Then
the conditions (IV.27)–(IV.29) are satisfied if

(IV.42)

(IV.43)

(IV.44)

We also require the denominators in (IV.42)–(IV.44) to be pos-
itive. Note that, although the interpretation of (IV.42) is rather
counter-intuitive, it is easy to check that . This
can be seen when (a case included in our theorems),
in which case , , and . There-
fore, the condition (IV.42) is a relaxation of the standard (dense)
block-sparse recovery one [28, Theorem 2].

Proof: Recall that

� �

Since is submultiplicative, [28],6

� � (IV.45)

Applying the definitions of and , we have

� �

�

(IV.46)

where the last inequality in (IV.46) derives from (IV.39) and the
fact that each belongs to some , and , thus
playing the role of the set in the definition of . Our goal is
now to obtain a bound for � . To this end,
we define � , and rewrite it as

. Here is a block-diagonal scaling matrix
to be defined later. Assume for now that .
This allows us to apply the following result from [28]:

Lemma 2: Suppose that . Then
.

By applying Lemma 2 to we can write
. With this,

6There is a slight abuse of notation here, in that, in our case of nonsquare
blocks, each norm � ��� in the right-hand side of the submultiplicativity in-
equality (IV.45) is actually a different norm. However, it is easy to see that the
referred inequality holds in this case as well.

(IV.47)

where in and , we applied the submultiplicativity of
, is a consequence if the triangle inequality, and

is the limit of the geometric series, which is finite when
.

We now bound . First, note that, since
is block-diagonal, we have that

. We then choose to be a diagonal ma-
trix with � . With this choice, we have that
the diagonal elements of are
equal to 1 for all , and the off-diagonal elements are bounded
by . Using Geršgorin Theorem we then have that

(IV.48)

As for the off-diagonal blocks of , we have
. We then have

(IV.49)

where in we used the submultiplicativity of , and
derives from the definition of , and the fact that, with our
choice of we have for all . Now we can write
the definition of and bound its summation
using (IV.48)–(IV.49):

(IV.50)

By our choice of , and for
. Therefore, as well. Using this together

with (IV.50) in (IV.47), we obtain

(IV.51)

To ensure that , we need the denominator
in the above equation to be positive. Now (IV.42) follows by
plugging (IV.46) and (IV.51) into (IV.45),
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TABLE I
SIMULATED SIGNAL RESULTS. IN EVERY ��� CELL CONTAINS THE MSE ���� � AND HAMMING DISTANCE (MSE/HAMMING) FOR LASSO (TOP, LEFT),

GLASSO (TOP, RIGHT), HILASSO (BOTTOM, LEFT), AND C-HILASSO (BOTTOM, RIGHT). IN THE FIRST CASE (LEFT) WE VARY THE NOISE � WHILE KEEPING � � �
AND � � � FIXED. IN THE SECOND AND THIRD CASES, WE HAVE � � �. FOR THE SECOND EXPERIMENT (CENTER), WE FIXED � � � WHILE CHANGING �.

IN THE THIRD CASE, WE FIX � � �� AND VARY THE NUMBER OF GROUPS �. BOLD BLUE INDICATES THE BEST RESULTS, ALWAYS OBTAINED FOR THE

PROPOSED MODELS. IN ALL CASES, THE NUMBER OF ACTIVE GROUPS IS � � �

Finally, we use the same ideas to bound and
derive (IV.43). Specifically

� �

(IV.52)
Now

� � (IV.53)

where follows from the definition of and the
fact that . It remains to develop a bound on

� . To this end we express �

, and bound

� �

(IV.54)

since for all , and all , the first sum has
nonzero elements bounded by , and the second sum has

elements bounded by . Now, by requiring
we can apply Lemma 2 to and follow the same

path as the one that leads to (IV.50), now using the matrix norm
properties of , to obtain

� (IV.55)

Again, is implicit in the requirement
that the above denominator be positive. Plugging (IV.55) and
(IV.53) into (IV.52) yields (IV.43).

The proof for (IV.44) is analogous to that of (IV.43), only
that now the upper bound on � , is .
Continuing as before leads to (IV.44).

Theorems 1 and 2 are for the noncollaborative case. For the
collaborative case there exist results that show that both the
C-Lasso [10] and C-GLasso [27] will recover the true shared
active set with a probability of error that vanishes exponen-
tially with . Since the in-group active sets are not necessarily
equal for all samples in , C-HiLasso could only help in recov-
ering the group sparsity pattern. Since the C-GLasso is a special
case of C-HiLasso when , we can conjecture that when

, the accuracy of the C-HiLasso in recovering the cor-
rect groups will improve with larger . Furthermore, since our
results for HiLasso improve on those of the Group Lasso, it is to

be expected that the accuracy of C-HiLasso, for an appropriate
, will be better than that of C-GLasso.

As an intuitive explanation to why this may happen, the
proofs in [10] and [27] assume a continuous probability dis-
tribution on the nonzero coefficients of the signals, and give
recovery results for the average case. On the other hand, the
in-group sparsity assumption of C-HiLasso implies that only

out of samples will be nonzero within each group. This
implies that, for the same group sparsity pattern, there will
be much less (exactly a fraction ) nonzero elements in the
possible signals compared to the ones that can occur under
the hypothesis of C-GLasso. Since any assumed distribution
of the signals under the in-group sparsity hypothesis has to
be concentrated on this much smaller set of possible signals,
they should be easier to recover correctly from solutions to
the C-HiLasso program, compared to the dense group case of
C-GLasso.

V. EXPERIMENTAL RESULTS

In this section we show the strength of the proposed HiLasso
and C-HiLasso models. We start by comparing our model with
the standard Lasso and Group Lasso using synthetic data. We
created dictionaries, , with atoms
of dimension , and i.i.d. Gaussian entries. The columns
were normalized to have unit norm. We then randomly chose

groups to be active at each time (on all the signals). Sets
of normalized testing signals were generated, one per
active group, as linear combinations of elements of the
active dictionaries, . The mixtures were created by
summing these signals and (eventually) adding Gaussian noise
of standard deviation . The generated testing signals have a hi-
erarchical sparsity structure and while they share groups, they
do not necessarily share the sparsity pattern inside the groups.
We then built a single dictionary by concatenating the subdic-
tionaries, , and used it to solve the Lasso,
Group Lasso, HiLasso, and C-HiLasso problems. Table I sum-
marizes the mean-square error (MSE) and Hamming distance of
the recovered coefficient vectors . We observe
that our model is able to exploit the hierarchical structure of the
data as well as the collaborative structure. Group Lasso selects
in general the correct blocks but it does not give a sparse solu-
tion within them. On the other hand, Lasso gives a solution that
has nonzero elements belonging to groups that were not active
in the original signal, leading to a wrong model/class selection.
HiLasso gives a sparse solution that picks atoms from the correct
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TABLE II
NOISY DIGIT MIXTURES RESULTS. FOUR DIFFERENT CASES ARE SHOWN: WHEN EACH SIGNAL IS A SINGLE DIGIT AND WHEN IT IS THE MIXTURE OF TWO

DIFFERENT (RANDOMLY SELECTED) DIGITS, WITH AND WITHOUT ADDITIVE GAUSSIAN NOISE WITH STANDARD DEVIATION 10% OF THE PEAK VALUE. FOR THE

2-DIGITS CASE, RESULTS ARE THE AVERAGE OF EIGHT RUNS (IN EACH ROUND, A NEW PAIR OF DIGITS WAS RANDOMLY SELECTED). IN THE SINGLE-DIGIT

CASE, THE RESULT IS THE AVERAGE OF THE TEN POSSIBLE SITUATIONS. BOTH AMSE AND HAMMING DISTANCE ARE SHOWN, WITH BOLD BLUE INDICATING

BEST. WITHOUT NOISE, BOTH C-GLASSO AND C-HILASSO YIELD VERY GOOD RESULTS. HOWEVER, IN THE NOISY CASE, C-HILASSO IS CLEARLY SUPERIOR,
SHOWING THE ADVANTAGE OF ADDING REGULARIZATION INSIDE THE GROUPS FROM A ROBUSTNESS PERSPECTIVE. SEE ALSO FIG. 4

groups but still presents some minor mistakes. For the collabo-
rative case, in all the tested configurations, no coefficients were
selected outside the correct active groups, and the recovered co-
efficients are consistently the best ones.

In all the examples, and for each method, the regularization
parameters were the ones for which the best results were ob-
tained. One can scale the parameter to account for different
number of signals. This situation is analogous to a change in
the size of the dictionary, thus, should be proportional to the
square root of the number of signals to code.

We then experimented with the USPS digits dataset, which
has been shown to be well represented in the sparse modeling
framework [37]. Here the signals are vectors containing the
unwrapped gray intensities of 16 16 images .
We obtained each of the samples in the testing data
set as the mixture of two randomly chosen digits, one from
each of the two drawn sets of digits. In this case we only
have ground truth at the group level. We measure the recovery
performance in terms of the average MSE of the recovered
signals, , where is
the component corresponding to source in the signal , and

is the recovered one.
Using the usual training-testing split for USPS, we first

learned a dictionary for each digit. We then created a single
dictionary by concatenating them. In Table II we show the

obtained while summing different digits. We also
consider the situation were only one digit is present. C-HiLasso
automatically detects the number of sources while achieving
the best recovery performance. As in the synthetic case, only
the collaborative method was able to successfully detect the
true active classes. In Fig. 4 we relax the assumption that all
the signals have to contain exactly the same type and amount
of classes in the mixture, further demonstrating the flexibility
of the proposed C-HiLasso model.

We also used the digits dataset to experiment with missing
data. We randomly discarded an average of 60% of the pixels
per mixed image and then applied C-Hilasso. The algorithm is
capable of correctly detecting which digits are present in the
images. Some example results for this case are shown in Fig. 5.
Note that this is a quite different problem than the one com-
monly addressed in the matrix completion literature. Here we do
not aim to recover signals that all belong to a unique unknown
subspace, but signals that are the combination of two nonunique
spaces to be automatically identified from the available dictio-
nary. Such unknown spaces have common models/groups for all

Fig. 4. In this example, we used C-HiLasso to analyze mixtures where the data
set contains different number and types of sources/classes. We used a set con-
taining 180 mixtures of digit images. The first 150 images are obtained as the
sum/mixture of a number “3” and an number “5” (randomly selected). Each of
the last 30 images in the set are the mixture of three numbers: “3” ,“5”, and
“7” (the 180 images are of course presented at random, the algorithm is not a
priori aware which images contain two sources and which contain three). The
figure shows the active sets of the recovered coefficients matrix � as a binary
matrix the same size as � (atom indexes in the vertical and sample indexes in
the horizontal), where black dots indicate nonzero coefficients. C-HiLasso man-
aged to identify the active blocks while the subdictionary corresponding to “7”
is mostly active for the last 30 images. The accuracy of this result depends on
the relationship between the subdictionaries corresponding to each digit.

the signals in question (the coarse level of the hierarchy), but not
necessarily the exact same atoms inside the groups and therefore
do not necessarily belong to the same subspaces. Both levels of
the hierarchy are automatically detected, e.g., the groups corre-
sponding to “3” and “5,” and the corresponding reconstructing
atoms (subspaces) in each group, these last ones possibly dif-
ferent for each signal in the set. While we consider that the pos-
sible subspaces are to be selected from the provided dictionary
(learned off-line from training data), in Section VI we discuss
learning such dictionaries as part of the optimization as well (see
also [38], [39]). In such cases, the standard matrix completion
problem becomes a particular case of the C-HiLasso framework
(with a single group and all the signals having the same active
set, subspace, in the group), naturally opening numerous theo-
retical questions for this new more general model.7

7Prof. Carin and collaborators have new results on the case of a single group
and signals in possible different subspaces of the group, an intermediate model
between standard matrix completion and C-HiLasso (personal communication).
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Fig. 5. Example of recovered digits (3 and 5) from a mixture with 60% of missing components. From left to right: noiseless mixture, observed mixture with
missing pixels highlighted in red, recovered digits 3 and 5, and active set recovered for all samples using the C-HiLasso and Lasso, respectively. In the last two
figures, the active sets are represented as in Fig. 4. The coefficients blocks for digits 3 and 5 are marked as pink bands. Notice that the C-HiLasso exploits efficiently
the hypothesis of collaborative group-sparsity, succeeding in recovering the correct active groups in all the samples. The Lasso, which lacks this prior knowledge,
is clearly not capable of doing so, and active sets are spread over all the groups.

Fig. 6. Texture separation results. Left to right: Sample mixture, corresponding C-HiLasso separated textures, and comparison of the active set diagrams obtained
by the Lasso (as in Fig. 5). The one for Lasso is shown on top, where all groups are wrongly active, and the one for C-HiLasso on bottom, showing that only the
two correct groups are selected.

TABLE III
TEXTURE SEPARATION RESULTS. THE ROWS AND COLUMNS INDICATE THE ACTIVE TEXTURES IN EACH CELL. THE UPPER TRIANGLE CONTAINS THE AMSE
���� � RESULTS, WHILE THE LOWER TRIANGLE SHOWS THE HAMMING ERROR IN THE GROUP-WISE ACTIVE SET RECOVERY. WITHIN EACH CELL, RESULTS

ARE SHOWN FOR THE LASSO (TOP LEFT), GROUP LASSO (BOTTOM LEFT), COLLABORATIVE GROUP LASSO (TOP RIGHT) AND COLLABORATIVE HIERARCHICAL

LASSO (BOTTOM RIGHT). THE BEST RESULTS ARE IN BLUE BOLD. NOTE THAT, BOTH FOR THE AMSE AND HAMMING DISTANCE, IN 26 OUT OF 28 CASES,
OUR MODEL OUTPERFORMS PREVIOUS ONES

We also compared the performance of C-HiLasso, Lasso,
GLasso and C-GLasso (without hierarchy) in the task of sepa-
rating mixed textures in an image. In this case, the set of signals

corresponds to all 12 12 patches in the (single) image to
be analyzed. We chose eight textures from the Brodatz dataset
and trained one dictionary for each one of them using one half
of the respective images (these form the groups of the
dictionary). Then, we created an image as the sum of the other
halves of the textures. One can think of this experiment
as a generalization to the texture separation problem proposed
in [40] (without additive noise), where only two textures are
present. The experiment was repeated for all possible combina-
tions of two textures from the eight possible ones. The results
are summarized in Table III. A detailed example is shown in

Fig. 6. For each algorithm, the best parameters were chosen
using grid search, ensuring that those were not in the edges
of the grid. For Lasso and C-HiLasso, the best is 0.0625.
For GLasso and C-GLasso, the best was, respectively, 0.05
and 75 (for the collaborative setting, we heuristically scale

with the number of signals as . In this experiment,
, leading to such large value of ). From Table III,

we can conclude that the C-HiLasso is significantly better than
the competing algorithms, both in the MSE of the recovered
signals (we show the AMSE of recovering both active signals),
and in the average Hamming distance between the recovered
groupwise active sets and the true ones. In the latter case, we
observe that, in many cases, the C-HiLasso active set recovery
performance is perfect (Hamming distance 0) or near perfect,
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Fig. 7. Speaker identification results. Each column corresponds to the sources
identified for a specific time frame, the true ones marked by yellow dots. The ver-
tical axis indicates the estimated activity of the different sources, where darker
colors indicate higher energy. For each possible combination of speakers, ten
frames (15 seconds of audio) were evaluated.

whereas the other methods seldom approach a Hamming dis-
tance lower than 1.

Finally, we use C-HiLasso to automatically identify the
sources present in a mixture of audio signals [41]. The goal
is to identify the speakers talking simultaneously on a single
recording. Here, the task is not to fully reconstruct each of the
unmixed sources from the observed signal but to identify which
speakers are active. In this case, since the original sources do
not need to be recovered, the modeling can be done in terms
of features extracted from the original signals in a linear but
nonbijective way.

Audio signals have in general very rich structures and their
properties rapidly change over time. A natural approach is to
decompose them into a set of overlapping local time-windows,
where the properties of the signal remain stable. There is a
straightforward analogy with the approach explained above for
the texture segmentation case, where images were decomposed
into collections of overlapping patches. These time-windows
will collaborate in the identification.

A challenging aspect when identifying audio sources is to
obtain features that are specific to each source and at the same
time invariant to changes in the fundamental frequency (pitch)
of the sources. In the case of speech, a common choice is to use
the short-term power spectrum envelopes as feature vectors [42]
(refer to [41] for details on the feature extraction process and
implementation). The spectral envelope in human speech varies
along time, producing different patterns for each phoneme. Thus,
a speaker does not produce an unique spectral envelope, but a set
of spectral envelopes that live in a union of manifolds. Since such
manifolds are well represented by sparse models, the problem of
speaker identification is well suited for the proposed C-HiLasso
framework, where each block in the dictionary is trained for the
features corresponding to a given speaker, and the overlapping
time-windows collaborate in detecting the active blocks.

For this experiment, we use a dataset consisting of record-
ings of five different German radio speakers, two female and
three male. Each recording is six minutes long. One quarter
of the samples were used for dictionary training, and the rest
for testing. For each speaker, we learned a subdictionary from
the training dataset. For testing, we extracted ten nonoverlap-
ping frames of 15 seconds each (including silences made by the
speakers while talking), and encoded them using C-HiLasso.
The experiment was repeated for all possible combinations of
two speakers, and all the speakers talking alone. The results are
presented in Fig. 7. C-HiLasso manages to detect automatically

the number of sources very accurately, as well as the actual ac-
tive speakers. Again, refer to [41] for comparisons with other
sparse modeling methods (showing the clear advantage of C-Hi-
Lasso) and results obtained for the identification of wind instru-
ments in musical recordings.

VI. DISCUSSION

We introduced a new framework of collaborative hierarchical
sparse coding, where multiple signals collaborate in their en-
coding, sharing code groups (models) and having (possible dis-
joint) sparse representations inside the corresponding groups.
An efficient optimization approach was developed, which guar-
antees convergence to the global minimum, and examples il-
lustrating the power of this framework were presented. At the
practical level, we are currently continuing our work on the ap-
plications of this proposed framework in a number of direc-
tions, including collaborative instruments separation in music,
signal classification, and speaker recognition, following the here
demonstrated capability to collectively select the correct groups/
models.

At the theoretical level, a whole family of new problems is
opened by this proposed framework, some of which we already
addressed in this work. A critical one is the overall capability of
selecting the correct groups in the collaborative scenario, with
missing information, and thereby of performing correct model
selection and source identification and separation. Results in this
direction will be reported in the future.

Finally, we have also developed an initial framework for
learning the dictionary for collaborative hierarchical sparse
coding, meaning the optimization is simultaneously on the dic-
tionary and the code. As it is the case with standard dictionary
learning, this is expected to lead to significant performance
improvements (see [37] for the particular case of this with a
single group active at a time).
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