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Abstract—In this paper, we consider the problem of estimating
finite rate of innovation (FRI) signals from noisy measurements,
and specifically analyze the interaction between FRI techniques
and the underlying sampling methods. We first obtain a funda-
mental limit on the estimation accuracy attainable regardless of the
sampling method. Next, we provide a bound on the performance
achievable using any specific sampling approach. Essential differ-
ences between the noisy and noise-free cases arise from this anal-
ysis. In particular, we identify settings in which noise-free recovery
techniques deteriorate substantially under slight noise levels, thus
quantifying the numerical instability inherent in such methods.
This instability, which is only present in some families of FRI sig-
nals, is shown to be related to a specific type of structure, which
can be characterized by viewing the signal model as a union of sub-
spaces. Finally, we develop amethodology for choosing the optimal
sampling kernels for linear reconstruction, based on a generaliza-
tion of the Karhunen–Loève transform. The results are illustrated
for several types of time-delay estimation problems.

Index Terms—Cramér–Rao bound (CRB), finite rate of innova-
tion (FRI), sampling, time-delay estimation, union of subspaces.

I. INTRODUCTION

T HE field of digital signal processing hinges on the avail-
ability of techniques for sampling analog signals, thus

converting them to discrete measurements. The sampling mech-
anism aims to preserve the information present in the analog do-
main, ideally permitting flawless recovery of the original signal.
For example, one may wish to recover a continuous-time signal

from a discrete set of samples. The archetypical manifes-
tation of this concept is the Shannon sampling theorem, which
states that a -bandlimited function can be reconstructed from
samples taken at the Nyquist rate [1].
Recently, considerable attention has been devoted to the ex-

tension of sampling theory to functions having a finite rate of in-
novation (FRI). These are signals determined by a finite number
of parameters per time unit [2]. Such a definition encompasses
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a rich variety of signals, including splines, shift-invariant sig-
nals, multiband signals, and pulse streams. In many FRI set-
tings, several existing algorithms are guaranteed to recover the
signal from samples taken at rate [2]–[9]. In other words,
signals which correspond to the FRI model can be reconstructed
from samples taken at the rate of innovation, which is potentially
much lower than their Nyquist rate.
Real-world signals are often contaminated by continuous-

time noise and thus do not conform precisely to the FRI model.
Furthermore, like any mathematical model, the FRI framework
suffers from mismodeling errors, i.e., the model holds only ap-
proximately in practical scenarios [10]. It is, therefore, of in-
terest to quantify the effect of noise and mismodeling errors on
FRI techniques. In the noisy case, it is no longer possible to per-
fectly recover the original signal from its samples. Nevertheless,
one might hope for an appropriate finite-rate technique which
achieves the best possible estimation accuracy, in the sense that
increasing the sampling rate conveys no further performance
benefits. For example, to recover a -bandlimited signal con-
taminated by continuous-time white noise, one can use an ideal
low-pass filter with cutoff prior to sampling at a rate of .
This strategy removes all noise components with frequencies
larger than , while leaving all signal components intact. Con-
sequently, any alternative method which does not zero out fre-
quencies above can be improved upon, whereas methods
which zero out some of the signal frequencies can suffer from an
arbitrarily large reconstruction error. Thus, sampling at a rate of
is indeed optimal in the case of a -bandlimited signal, if the

signal is corrupted by continuous-time noise prior to sampling.
Sampling at a rate higher than can be beneficial only when
the sampling process itself introduces additional noise into the
system, e.g., as a result of quantization.
By contrast, empirical observations indicate that, for some

noisy FRI signals, substantial performance improvements are
achievable when the sampling rate is increased beyond the
rate of innovation [4], [7], [8]. This phenomenon has also
been studied in the specific setting of time-delay estimation
of rectangular pulses [11]. Thus, in some cases, there appears
to be a fundamental difference between the noiseless and
noise-corrupted settings, in terms of the required sampling
rate. Our first goal in this paper will be to provide an analytical
justification and quantification of these empirical findings. As
we will see, the fact that oversampling improves performance is
not merely indicative of flaws in existing algorithms; rather, it
is a consequence of the inherent difficulty of reconstructing FRI
signals under noise. Indeed, we will demonstrate that for some
FRI signals, unless considerable oversampling is employed,
performance will necessarily deteriorate by several orders of
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magnitude relative to the optimal achievable reconstruction
capability. Such effects occur even when the noise level is
exceedingly low. Our analysis will also enable us to identify
and characterize the types of signals for which oversampling is
necessary.
To demonstrate these results, we first derive the Cramér–Rao

bound (CRB) for estimating a finite-duration segment of an
FRI signal directly from continuous-time measurements

, where is a Gaussian white noise
process. This yields a lower bound on the accuracy whereby

can be recovered by any unbiased technique, regardless of
its sampling rate.
The continuous-time measurement setting we study is to

be distinguished from previous bounds in the FRI literature
[12], [13] in four respects. First and most importantly, the
measurements are a continuous-time process and the
bound, therefore, applies regardless of the sampling method.
Second, in our model, the noise is added prior to sampling.
Thus, as will be shown later, even sampling at an arbitrarily
high rate will not completely compensate for the noise. Third,
we bound the mean-squared error (MSE) in estimating and
not the parameters defining it, since we seek to determine the
accuracy with which itself can be recovered. Such a bound
does not depend on the specific parametrization of the signal,
and, consequently, possesses a simpler analytical expression.
Fourth, contrary to previous work, our analysis does not assume
a specific FRI family. In particular, we do not limit ourselves
to periodic time-delay estimation settings.
In practice, rather than processing the continuous-time signal
, it is typically desired to estimate from a discrete set

of samples of . In this scenario, in addition to the
continuous-time noise , digital noise may arise from the
sampling process itself, for example, due to quantization. To
quantify the extent to which sampling degrades the ability to
recover the signal, we next derive the CRB for estimating
from the measurements . This analysis depends on the rel-
ative power of the two noise factors. When only digital noise
is present, oversampling can be used to completely overcome
its effect. On the other hand, when there exists only contin-
uous-time noise, the bound converges to the continuous-time
CRB as the sampling rate increases. In some cases, these bounds
coincide at a finite sampling rate, which implies that the sam-
pling scheme has captured all of the information present in the
continuous-time signal, and any further increase in the sam-
pling rate is useless. Conversely, when the continuous-time and
sampled CRBs differ, the gap between these bounds is indica-
tive of the degree to which information is lost in the sampling
process. Our technique can then be used to plot the best pos-
sible performance as a function of the sampling rate, and thus
provide the practitioner with a tool for evaluating the benefits
of oversampling.
When a certain sampling technique achieves the performance

of continuous-time measurements, it can be identified using the
method described previously. However, in some cases no such
technique exists, or the sampling rate it requires may be pro-
hibitive. In these cases, it is desirable to determine the optimal
sampling scheme having an allowed rate. Since different signals
are likely to be recovered successfully with different sampling

kernels, a Bayesian or average-case analysis is well suited for
this problem. Specifically, we assume that the signal has
a known prior distribution over the class of signals, and deter-
mine the linear sampling and reconstruction technique which
minimizes the MSE for recovering from its measurements.
While nonlinear reconstruction techniques are commonly used
and typically outperform the best linear estimator, this approach
provides a simplemeans for identifying an appropriate sampling
method. The resulting method can then be used in conjunction
with standard nonlinear FRI recovery algorithms.
We demonstrate our results via the problem of estimating

a finite-duration sequence of pulses having unknown positions
and amplitudes [2], [4], [5], [8]. In this case, a simple sufficient
condition is obtained for the existence of a sampling scheme
whose performance bound coincides with the continuous-time
CRB. This scheme is based on sampling the Fourier coefficients
of the pulse shape, and is reminiscent of recent time-delay
estimation algorithms [7], [8]. However, while the sampling
scheme is theoretically sufficient for optimal recovery of ,
we show that in some cases there is room for substantial
improvement in the reconstruction stage of these algorithms.
Finally, we demonstrate that the Fourier domain is also optimal
(in the sense of minimizing the reconstruction MSE) when
the sampling budget is limited. Specifically, given an allowed
number of samples , the reconstruction MSE is minimized
by sampling the highest variance Fourier coefficients of the
signal .
The rest of this paper is organized as follows. The problem

setting is defined in Section II, and some examples of sig-
nals conforming to this model are presented in Section III.
We then briefly summarize our main results in Section IV.
In Section V, we provide a technical generalization of the
CRB to general spaces. This result is used to obtain bounds
on the achievable reconstruction error from continuous-time
measurements (see Section VI) and using a sampling mech-
anism (see Section VII). Next, in Section VIII a Bayesian
viewpoint is introduced and utilized to determine the optimal
sampling kernels having a given rate budget. The results are
demonstrated for the specific signal model of time-delay esti-
mation in Section IX.

II. DEFINITIONS

A. Notation

The following notation is used throughout this paper. A bold-
face lowercase letter denotes a vector, while a boldface upper-
case letter denotes a matrix. is the identity matrix.
For a vector , the notation indicates the Euclidean norm,
and is the element. Given a complex number , the
symbols and denote the complex conjugate and the real
part of , respectively. For an operator , the range space and
null space are and , respectively, while the trace
and adjoint are denoted, respectively, by and . The
Kronecker delta, denoted by , equals 1 when and
0 otherwise. The expectation of a random variable is written
as .



BEN-HAIM et al.: PERFORMANCE BOUNDS AND DESIGN CRITERIA 4995

The Hilbert space of square-integrable complex-valued func-
tions over is denoted or simply . The corre-
sponding inner product is

(1)

and the induced norm is . For an ordered set
of functions in , we define the associated set
transformation as

(2)

By the definition of the adjoint, it follows that

(3)

B. Setting

In this study, we are interested in the problem of estimating
FRI signals from noisy measurements. To define FRI signals
formally, let the -local number of degrees of freedom
of a signal at time be the number of parameters defining
the segment . The -local rate
of innovation of is then defined as [2]

(4)

We say that is an FRI signal if is finite for all sufficiently
large values of . In Section III, we will give several examples
of FRI signals and compute their rates of innovation.
For concreteness, let us focus on the problem of estimating

the finite-duration segment , for some con-
stant , and let denote the number of param-
eters defining this segment. We then have

(5)

where is a set of functions parameterized by the vector , and
is an open subset of .
We wish to examine the random process

(6)

where is continuous-timewhite Gaussian noise. Recall that
formally, it is not possible to define Gaussian white noise over a
continuous-time probability space [14]. Instead, we interpret (6)
as a simplified notation for the equivalent set of measurements

(7)

where is a standard Wiener process (also called Brownian
motion) [15]. It follows that can be considered as a random
process such that, for any , the inner products

and are zero-mean jointly Gaussian random
variables satisfying [14]. The subscript

in is meant as a reminder of the fact that is continuous-
time noise. By contrast, when examining samples of the random
process , we will also consider digital noise which is added
during the sampling process.
In this paper, we consider estimators which are functions ei-

ther of the entire continuous-time process (6) or of some subset
of the information present in (6), such as a discrete set of sam-
ples of . To treat these two cases in a unified way, let F
be a measurable space and let be a family of
probability measures over F . Let U be a measurable
space, and let the random variable denote the mea-
surements. This random variable can represent either itself
or samples thereof.
An estimator can be defined in this general setting as a mea-

surable function . The MSE of an estimator at
is defined as

(8)
An estimator is said to be unbiased if

(9)
In the next section, we demonstrate the applicability of our

model by reviewing several scenarios which can be formulated
using the FRI framework. Some of these settings will also be
used in the sequel to exemplify our theoretical results.

III. TYPES OF FRI SIGNALS

Numerous FRI signal structures have been proposed and an-
alyzed in the sampling literature. Whereas most of these can be
treated within our framework, some FRI structures do not con-
form exactly to our problem setting. Thus, before delving into
the derivation of the CRB, we first provide examples for sce-
narios that can be analyzed via our model and discuss some of
its limitations.

A. Shift-Invariant Spaces

Consider the class of signals that can be expressed as

(10)

with some arbitrary square-integrable sequence ,
where is a given pulse in and is a given
scalar. This set of signals is a linear subspace of , which
is often termed a shift-invariant (SI) space [16], [17]. The class
of functions that can be represented in the form (10) is quite
large. For example, choosing leads to the
subspace of -bandlimited signals. Other important exam-
ples include the space of spline functions (obtained by letting

be a B-spline function) and communication signals such as
pulse-amplitude modulation (PAM) and quadrature-amplitude
modulation (QAM). Reconstruction in SI spaces from noiseless
samples has been addressed in [18] and [19] and extended to
the noisy setting in [20]–[22].
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Intuitively, every signal lying in a SI space with spacing
has one degree of freedom per seconds (corresponding to one
coefficient from the sequence ). It is thus tempting to re-
gard the rate of innovation of such signals as . However,
this is only true in an asymptotic sense and for compactly sup-
ported pulses . For any finite window size , the -local
rate of innovation is generally larger. Specifically, suppose
that the support of is contained in and consider in-
tervals of the form , where is an integer. Then,
due to the overlaps of the pulses, for any such interval we can
only assure that there are no more than co-
efficients affecting the values of . Thus, the -local rate
of innovation of signals of the form (10) is given by

(11)

In particular, signals of the form (10) having a generator
which is not compactly supported have an infinite -local rate
of innovation, for any finite . This is the case, for example,
with bandlimited signals, which are, therefore, not FRI func-
tions under our definition. As will be discussed in the sequel,
this is not a flaw of the definition we use for the rate of inno-
vation. Rather, it reflects the fact that it is impossible to recover
any finite-duration segment of such signals from a finite
number of measurements.

B. Nonlinearly Distorted SI Spaces

In certain communication scenarios, nonlinearities are intro-
duced in order to avoid amplitude clipping, an operation known
as companding [23]. When the original signal lies in a SI space,
the resulting transmission takes the form

(12)

where is a nonlinear, invertible function. Clearly, the
-local rate of innovation of this type of signals is the

same as that of the underlying SI function, and is thus given
by (11). The recovery of nonlinearly distorted SI signals from
noiseless samples was treated in [23]–[26]. We are not aware
of research work treating the noisy case.

C. Union of Subspaces

Much of the FRI literature treats signal classes which are
unions of subspaces [5], [7], [10], [27]. We now give examples
of a few of these models.
Finite Union of Subspaces: There are various situations in

which a continuous-time signal is known to belong to one of a
finite set of spaces. One such signal model is described by

(13)

where are a set of generators. In this model,
it is assumed that only out of the sequences

are not identically zero [28].
Therefore, the signal is known to reside in one of
spaces, each of which is spanned by an -element subset of

the set of generators . This class of functions can
be used to describe multiband signals [27], [29]. However,
the discrete nature of these models precludes analysis using
the differential tools employed in the remainder of this paper.
Therefore, in this paper we will focus on infinite unions of
subspaces.
Single-Burst Channel Sounding: In certain medium identifi-

cation and channel sounding scenarios, the echoes of a trans-
mitted pulse are analyzed to identify the positions and re-
flectance coefficients of scatterers in the medium [8], [30]. In
these cases, the received signal has the form

(14)

where is the number of scatterers and the amplitudes
and time delays correspond to the reflectance and
location of the scatterers. Such signals can be thought of as be-
longing to a union of subspaces, where the parameters
determine an -dimensional subspace, and the coefficients

describe the position within the subspace. In contrast
with the previous example, however, in this setting we have
a union of an infinite number of subspaces, since there are
infinitely many possible values for the parameters .
In this case, for any window of size

, the -local rate of innovation is given by

(15)

Periodic Channel Sounding: Occasionally, channel sounding
techniques consist of repeatedly probing the medium [31]. As-
suming that the medium does not change throughout the exper-
iment, the result is a periodic signal

(16)

As before, the set of feasible signals is an infinite union of
finite-dimensional subspaces in which determine the
subspace and define the position within the subspace.
The -local rate of innovation in this case coincides with (15).
Semiperiodic Channel Sounding: There are situations in

which a channel consists of paths whose amplitudes change
rapidly, but the time delays can be assumed constant throughout
the duration of the experiment [5], [31], [32]. In these cases,
the output of a channel sounding experiment will have the form

(17)

where is the amplitude of the path at the probing
experiment. This is, once again, a union of subspaces, but here
each subspace is infinite dimensional, as it is determined by the
infinite set of parameters . In this case, the -local
rate of innovation can be shown to be

(18)
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Fig. 1. Overview of the results presented in this paper.

Multiband Signals: Multiuser communication channels are
often characterized by a small number of utilized subbands in-
terspersed by large unused frequency bands [29]. The resulting
signal can be described as

(19)

where is the data transmitted by the th user, and
is the corresponding carrier frequency. In some cases the

transmission frequencies are unknown [27], [29], resulting in
an infinite union of infinite-dimensional subspaces. This set-
ting is analogous in many respects to the semiperiodic channel
sounding case; in particular, the -local rate of innovation
can be shown to be the same as that given by (18).

IV. SUMMARY OF MAIN RESULTS

In this section, we provide a high-level description of our
main contributions and summarize the resulting conclusions. An
overview of the dependences between the remaining sections in
this paper is provided in Fig. 1.
The overarching objective of this paper is to design and an-

alyze sampling schemes for reconstructing FRI signals from
noisy measurements. This goal is accomplished in four stages.
We first derive a general form of the CRB suitable for the estima-
tion of continuous-time signals (see Section V). We then apply
this result to identify the best achievable MSE for estimating an
FRI signal from its continuous-time measurements

, providing a fundamental lower bound which is in-
dependent of the sampling method (Section VI). Next, we com-
pare this continuous-time bound with the lowest possible MSE
for a given sampling scheme, thus measuring the loss entailed
in any particular technique (see Section VII). Finally, we pro-
vide a mechanism for choosing the optimal sampling kernels
(in a specific Bayesian sense), under the assumption of a linear
reconstruction scheme (see Section VIII). Our results can be
applied to specific families of FRI signals, but they also yield
some general conclusions as to the relative difficulty of various
classes of estimation problems. These general observations are
summarized later.
It should be noted that our CRB analysis is focused on unbi-

ased estimators. This is a standard assumption which is required
in order to obtainmeaningful bounds [33]. For high values of the
signal-to-noise ratio (SNR), unbiased estimators are optimal,
and the CRB is then of practical relevance. However, under low

SNR, it is quite possible for techniques to outperform the CRB.
These effects are further discussed in Section IX, where we
show that the CRB typically predicts the performance of prac-
tical techniques very accurately, but does occasionally fail to do
so in specific cases.

A. Continuous-Time Bound

Our first goal in this paper is to derive the continuous-time
CRB, which defines a fundamental limit on the accuracy with
which an FRI signal can be estimated, regardless of the sam-
pling technique. This bound turns out to have a particularly
simple closed-form expression which depends on the rate of in-
novation, but not on the class of FRI signals being estimated.
Specifically, as we show in Theorem 2 in Section VI, the MSE
of any unbiased estimator satisfies

(20)

Thus, the rate of innovation can be given a new interpretation as
the ratio between the best achievable MSE and the noise vari-
ance . This is to be contrasted with the characterization of the
rate of innovation in the noise-free case as the lowest sampling
rate allowing for perfect recovery of the signal; indeed, when
noise is present, perfect recovery is no longer possible.

B. Bound for Sampled Measurements

In Section VII, we consider lower bounds for estimating
from samples of the signal . In this setting, the samples in-
herit the noise embedded in the signal , and may suffer
from additional discrete-time noise, for example, due to quan-
tization. We derive the CRB for estimating from sampled
measurements in the presence of both types of noise. However,
since the discrete-time noise model has been previously ana-
lyzed [12], [13], we only discuss the fundamental distinctions
between both models and mostly focus in this paper on the as-
sumption that the sampling noise is negligible.
In this setting, the sampled CRB can be designed so as to

converge to the continuous-time bound as the sampling rate
increases. Moreover, if the family of FRI signals is con-
tained in a finite-dimensional subspace of , then a sam-
pling scheme achieving the continuous-time CRB can be con-
structed. Such a sampling scheme is obtained by choosing ker-
nels which span the subspace , and yields samples which
fully capture the information present in the signal . Contrari-
wise, if is not contained in a finite-dimensional subspace, then
no finite-rate sampling method achieves the continuous-time
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CRB. In this case, any increase in the sampling rate can im-
prove performance, and the continuous-time bound is obtained
only asymptotically.
It is interesting to examine this distinction from a union

of subspaces viewpoint. Suppose that, as in the examples in
Section III-C, the family can be described as a union of an
infinite number of subspaces indexed by the continuous
parameter so that

(21)

In this case, a finite sampling rate captures all of the information
present in the signal if and only if

(22)

where is the dimension of the subspace . By con-
trast, in the noise-free case, it has been previously shown [34]
that the number of samples required to recover is given by

(23)

i.e., the largest dimension among sums of two subspaces be-
longing to the union. In general, the dimension of (22) will be
much higher than (23), illustrating the qualitative difference be-
tween the noisy and noise-free settings. For example, if the sub-
spaces are finite dimensional, then (23) is also necessarily
finite, whereas (22) need not be.
Nevertheless, one may hope that the structure embodied in
will allow nearly optimal recovery using a sampling rate

close to the rate of innovation. This is certainly the case in
many noise-free FRI settings. For example, there exist tech-
niques which recover the pulse stream (14) from samples taken
at the rate of innovation, despite the fact that in this case is
typically not contained in a finite-dimensional subspace. How-
ever, this situation often changes when noise is added, in which
case standard techniques improve considerably under oversam-
pling. This empirical observation can be quantified using the
CRB: as we show, the CRB for samples taken at the rate of in-
novation is substantially higher in this case than the optimal,
continuous-time bound. This demonstrates that the sensitivity to
noise is a fundamental aspect of estimating signals of the form
(14), rather than a limitation of existing algorithms. On the other
hand, other FRI models, such as the semiperiodic pulse stream
(17), exhibit considerable noise resilience, and indeed in these
cases the CRB converges to the continuous-time value much
more quickly.
As we discuss in Section IX-E, the different levels of robust-

ness to noise can be explained when the signal models are ex-
amined in a union of subspaces context. In this case, the param-
eters defining can be partitioned into parameters defining
the subspace and parameters pinpointing the position within
the subspace. Our analysis hints that estimation of the position
within a subspace is often easier than estimation of the subspace
itself. Thus, when most parameters are used to select an intra-
subspace position, estimation at the rate of innovation is suc-
cessful, as occurs in the semiperiodic case (17). By contrast,
when a large portion of the parameters define the subspace in

use, a sampling rate higher than the rate of innovation is nec-
essary; this is the case in the nonperiodic pulse stream (14),
wherein is evenly divided among subspace-selecting parame-
ters and intrasubspace parameters . Thus, we see that
the CRB, together with the union of subspaces viewpoint, pro-
vides valuable insights into the relative degrees of success of
various FRI estimation techniques.

C. Choosing the Sampling Kernels

In some cases, one may choose the sampling system ac-
cording to design specifications, leading to the question: What
sampling kernels should be chosen given an allotted number of
samples? We tackle this problem in Section VIII by adopting
a Bayesian framework, wherein the signal is a com-
plex random process distributed according to a known prior
distribution. We further assume that both the sampling and
reconstruction techniques are linear. While nonlinear recon-
struction methods are typically used for estimating FRI signals,
this assumption is required for analytical tractability, and is
used only for the purpose of identifying sampling kernels. Once
these kernels are chosen, they can be used in conjunction with
nonlinear reconstruction algorithms (though in this case no
analytic optimality conditions can be provided).
Under these assumptions, we identify the sampling kernels

yielding the minimal MSE. An additional advantage of our as-
sumption of linearity is that in this case, the optimal kernels de-
pend only on the autocorrelation

(24)

of the signal , rather than on higher order statistics. Indeed,
given a budget of samples, the optimal sampling kernels are
given by the eigenfunctions of corresponding to the
largest eigenvalues. This is reminiscent of the Karhunen–Loève
transform (KLT), which can be used to identify the optimal sam-
pling kernels in the noiseless setting. However, in our case,
shrinkage is applied to the measurements prior to reconstruc-
tion, as is typically the case with Bayesian estimation of signals
in additive noise.
A setting of particular interest occurs when the autocorrela-

tion is cyclic, in the sense that

(25)

for some . This scenario occurs, for example, in the periodic
pulse stream (16) and the semiperiodic pulse stream (17), as-
suming a reasonable prior distribution on the parameters . It is
not difficult to show that the eigenfunctions of are given, in
this case, by the complex exponentials

(26)

Furthermore, in the case of the periodic and semiperiodic pulse
streams, the magnitudes of the eigenvalues of are directly
proportional to the magnitudes of the respective Fourier co-
efficients of the pulse shape . It follows that the optimal
sampling kernels are the exponentials (26) corresponding to the
largest Fourier coefficients of . This result is encouraging in
light of recently proposed FRI reconstruction techniques which
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TABLE I
CRB SETTINGS

utilize exponential sampling kernels [7], and demonstrate the
suitability of the Bayesian approach for designing practical es-
timation kernels.

V. MATHEMATICAL PREREQUISITES: CRB FOR

GENERAL PARAMETER SPACES

In statistics and signal processing textbooks, the CRB is typ-
ically derived for parameters belonging to a finite-dimensional
Euclidean space [33], [35], [36]. However, this result is insuffi-
cient when it is required to estimate a signal belonging to other
Hilbert spaces, such as the space defined previously. When
no knowledge about the structure of is available, a bound for
estimation from measurements contaminated by colored noise
was derived in [37]. However, this bound does not hold when
the noise is white. Indeed, in the white noise case, it can be
shown that no finite-MSE unbiased estimators exist, unless fur-
ther information about is available. For example, the naive
estimator has an error equal to ,
whose variance is infinite.
In our setting, we are given the additional information that

belongs to the constraint set of (5). To the best of our knowl-
edge, the CRB has not been previously defined for any type of
constraint set , a task which will be accomplished in
this section. As we show below, a finite-valued CRB can be con-
structed by requiring unbiasedness only within the constraint set
, as per (9). As we will see, the CRB increases linearly with

the dimension of the manifold . Thus, in particular, the CRB is
infinite when . However, for FRI signals, the dimension
of is finite by definition, implying that a finite-valued CRB
can be constructed. Although the development of this bound in-
vokes some deep concepts from measure theory, it is a direct
analog of the CRB for finite-dimensional parameters [33, Th.
2.5.15].
Table I summarizes the various CRB settings treated in the

literature and in this paper.
To derive the bound in the broadest setting possible, in this

section we temporarily generalize the scenario of Section II,
and consider estimation of a parameter belonging to an ar-
bitrary measurable and separable Hilbert space . The MSE
of an estimator in this setting is defined as

. The concept of bias can similarly be extended
if one defines expectation in the Pettis sense [38]. Specifically,
the Pettis expectation of a random variable is
defined as an element such that for
any . If no such element exists, then the expectation is
said to be undefined.
The derivation of the CRB requires the existence of a “prob-

ability density” (more precisely, a Radon–Nikodym
derivative of the probability measure) which is differentiable

with respect to , and such that its differentiation with respect
to can be interchanged with integration with respect to .
The CRB also requires the mapping from to to be
nonredundant and differentiable. The formal statement of these
regularity conditions is provided below. For the measurement
setting (6), with reasonable mappings , these conditions are
guaranteed to hold, as we will demonstrate in the sequel; in
this section, however, we list these conditions in detail so that
a more general statement of the CRB will be possible.

P1) There exists a value such that the measure
dominates . In other words, there exists a
Radon–Nikodym derivative such that,
for any event U,

(27)

P2) For all such that , the functions and
are continuously differentiable with respect to .

We denote by and the column
vectors of the gradients of these two functions.
P3) The support of is indepen-
dent of .
P4) There exists ameasurable function such
that for all sufficiently small , for all ,
for all , and for all ,

(28)

and such that for all ,

(29)

In (28), represents the column of the identity
matrix.
P5) For each , the Fisher information matrix (FIM)

(30)

is finite and invertible.
P6) is Fréchet differentiable with respect to , in the
sense that for each , there exists a continuous linear oper-
ator such that

(31)

P7) The null space of the mapping contains only
the zero vector. This assumption is required to ensure that
the mapping from to is nonredundant, in the sense that
there does not exist a parametrization of in which the
number of degrees of freedom is smaller than .

We are now ready to state the CRB for the estimation of a
parameter parameterized by a finite-dimensional
vector . The proof of this theorem is given in Appendix A.

Theorem 1: Let be a deterministic parameter, where
is an open set in . Let be a measurable, separable Hilbert
space and let be a signal defined by the mapping

, as in (5). Let be a family of probability
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measures over a measurable space F , and let
be a random variable, where is a measurable Hilbert space.
Assume regularity conditions P1–P6. Let be an
unbiased estimator of from the measurements such that

(32)

Then, the MSE of satisfies

(33)

where is the FIM (30).
Theorem 1 enables us to obtain a lower bound on the es-

timation error of based on the FIM for estimating . The
latter can often be computed relatively easily since is a fi-
nite-dimensional vector. Even more conveniently, the trace on
the right-hand side of (33) is taken over a matrix, de-
spite the involvement of continuous-time operators. Thus, the
computation of (33) is often possible either analytically or nu-
merically, a fact which will be used extensively in the sequel.

VI. CRB FOR CONTINUOUS-TIME MEASUREMENTS

We now apply Theorem 1 to the problem of estimating a
deterministic signal from continuous-time measurements
given by (6).

Theorem 2: Let be a deterministic function defined by (5),
where is an unknown deterministic parameter and is
an open subset of . Let be a measurement signal given by
(6). Suppose that Assumptions P6–P7 are satisfied. Then, the
MSE of any unbiased, finite-variance estimator of from is
bounded by

(34)

The bound of Theorem 2 can be translated to units of the rate
of innovation if we assume that the segment under
analysis achieves the maximum (4), i.e., this is a segment con-
taining the maximum allowed number of degrees of freedom.
In this case, , and any unbiased estimator
satisfies

(35)

In the noisy setting, loses its meaning as a lower bound on
the sampling rate required for perfect recovery, since the latter
is no longer possible at any sampling rate. On the other hand, it
follows from (35) that the rate of innovation gains an alternative
meaning; namely, is a lower bound on the ratio between
the average MSE achievable by any unbiased estimator and the
noise variance , regardless of the sampling method.
Before formally proving Theorem 2, note that (34) has an in-

tuitive geometric interpretation. Specifically, the constraint set
is a -dimensional differential manifold in . In other

words, for any point , there exists a -dimensional sub-
space tangent to at . We refer to as the feasible direction
subspace [39]: any perturbation of which remains within the

constraint set must be in one of the directions in . Formally,
can be defined as the range space of .
If one wishes to use the measurements to distinguish be-

tween and its local neighborhood, then it suffices to observe
the projection of onto . Projecting the measurements onto
removes most of the noise, retaining only independent

Gaussian components, each having a variance of . Thus, we
have obtained an intuitive explanation for the bound of in
Theorem 2. To formally prove this result, we apply Theorem 1
to the present setting, as follows.

Proof of Theorem 2: The problem of estimating the pa-
rameters from a continuous-time signal of the form (6)
was examined in [15, Example I.7.3], where the validity of As-
sumptions P1–P4 was demonstrated. It was further shown that
the FIM for estimating from is given by [15, ibid]:

(36)

Our goal will be to use (36) and Theorem 1 to obtain a bound
on estimators of the continuous-time function . To this end,
observe that the FIM is finite since, by Assumption P6, the
operator is a bounded operator into . Furthermore, by
Assumption P7, has a trivial null space, and thus
is invertible. Therefore, Assumption P5 has been demonstrated.
We may consequently apply Theorem 1, which yields

(37)

thus completing the proof.

To illustrate the use of Theorem 2 in practice, let us consider
as a simple example a signal belonging to a finite-dimen-
sional subspace . Specifically, assume that

(38)

for some coefficient vector and a given
set of linearly independent functions spanning . This in-
cludes, for example, families of SI subspaces with a compactly
supported generator (see Section III-A). From Theorem 2, the
MSE of any unbiased estimator of is bounded by , where
is the dimension of the subspace . We now demonstrate that

this bound is achieved by the unbiased estimator

(39)

where is the orthogonal projector onto the subspace .
To verify that (39) achieves the CRB, let denote the set

transformation (2) associated with the functions . One
may then write and . Thus, (39)
becomes

(40)
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and therefore

(41)

Since is a -dimensional subspace, it is spanned by a set of
orthonormal1 functions . Thus

(42)

which demonstrates that indeed achieves the CRB in this case.
In practice, a signal is not usually estimated directly from its

continuous-time measurements. Rather, the signal is typ-
ically sampled and digitally manipulated. In the next section,
we will compare the results of Theorem 2 with the performance
achievable from sampled measurements, and demonstrate that
in some cases, a finite-rate sampling scheme is sufficient to
achieve the continuous-time bound of Theorem 2.

VII. CRB FOR SAMPLED MEASUREMENTS

In this section, we consider the problem of estimating of
(5) from a finite number of samples of the process given by
(6). Specifically, suppose our measurements are given by

(43)
where are sampling kernels, and is
a discrete white Gaussian noise process, independent of ,
having mean zero and variance . Note that the model (43) in-
cludes both continuous-time noise, which is present in the signal

prior to sampling, and digital noise , which
arises from the sampling process, e.g., as a result of quantiza-
tion. In this section, we will separately examine the effect of
each of these noise components.
From (6) and (43), it can be seen that the measurements

are jointly Gaussian with mean

(44)

and covariance

(45)

A somewhat unusual aspect of this estimation setting is that
the choice of the sampling kernels affects not only the
measurements obtained, but also the statistics of the noise. One
example of the impact of this fact is the following. Suppose
first that no digital noise is present, i.e., , and consider
a modified set of sampling kernels which are an
invertible linear transformation of , so that

(46)

where is an invertible matrix. Then, the resulting
measurements are given by , and similarly the original
measurements can be recovered from . It follows that these

1We require the new functions since the functions
are not necessarily orthonormal. The choice of nonorthonormal functions

will prove useful in the sequel.

settings are equivalent in terms of the accuracy with which
can be estimated. In particular, the FIM for estimating in the
two settings is identical [15, Th. I.7.2].
When digital noise is present in addition to continuous-time

noise, the sampling schemes and are no longer
necessarily equivalent, since the gain introduced by the transfor-
mation will alter the ratio between the energy of the signal and
the digital noise. The two estimation problems are then equiva-
lent if and only if is a unitary transformation.
How should one choose the space

spanned by the sampling kernels? Suppose for a moment that
there exist elements in the range space of which are
orthogonal to . This implies that one can perturb in such a
way that the constraint set is not violated, without changing
the distribution of themeasurements . This situation occurs, for
example, when the number of measurements is smaller than
the dimension of the parametrization of . While it may still
be possible to reconstruct some of the information concerning
from these measurements, this is an undesirable situation from
an estimation point of view. Thus, we will assume, henceforth,
that

(47)

As an example of the necessity of condition (47), consider
again the signal (38), which belongs to a -dimensional sub-
space spanned by the functions . In this case
it is readily seen that for any vector

(48)

Since the functions span the space , this implies that
, and therefore condition (47) can be written as

(49)

which is a standard requirement in the design of a sampling
system for signals belonging to a subspace [40].
By virtue of Theorem 1, a lower bound on unbiased estima-

tion of can be obtained by first computing the FIM for
estimating from . This yields the following result. For sim-
plicity of notation, in this theorem we assume that the function
and the sampling kernels are real. If complex sampling

kernels are desired (as will be required in the sequel), the result
below can still be used by translating each measurement to an
equivalent pair of real-valued samples.

Theorem 3: Let be a deterministic real function defined by
(5), where is an unknown deterministic parameter and
is an open subset of . Assume regularity conditions P6

and P7, and let be an unbiased estimator of from the real
measurements of (43). Then, the FIM
for estimating from is given by

(50)

where is the set transformation corresponding to the functions
. If (47) holds, then is invertible. In this case,
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any finite-variance, unbiased estimator for estimating from
satisfies

(51)

Proof: In the present setting, the FIM is given by
[35]

(52)

where the matrix is defined by (45) and the matrix
is given by

(53)

with defined in (44).
By the definition of the set transformation, the th element

of the matrix is given by

(54)

where is the column of the identity matrix. There-
fore, we have

(55)

Similarly, observe that

(56)
where is the column of the identity matrix. Thus

(57)

Substituting (55) and (57) into (52) yields the required expres-
sion (50).
We next demonstrate that if (47) holds, then is invert-

ible. To see this, note that from (50) we have

(58)

Now, consider an arbitrary function . If (47)
holds, then is not orthogonal to the subspace . Therefore,

for at least one value of , and thus by (3), .
This implies that

(59)

Combined with (58), we conclude that . This
demonstrates that is invertible, proving Assumption P5.
Moreover, in the present setting, Assumptions P1–P4 are ful-
filled for any value of [33]. Applying Theorem 1 yields (51)
and completes the proof.

In the following sections, we draw several conclusions from
Theorem 3.

A. Discrete-Time Noise

Suppose first that , so that only digital noise is present.
This setting has been analyzed previously [12], [13], [41], and
we, therefore, only briefly examine the contrast with contin-
uous-time noise. When only digital noise is present, its effects
can be surmounted either by increasing the gain of the sampling
kernels or by increasing the number of measurements. These
intuitive conclusions can be verified from Theorem 3 as fol-
lows. Assume that condition (47) holds, and consider the mod-
ified kernels . The set transformation corre-
sponding to the modified kernels is , and since ,
this implies that the FIM obtained from the modified kernels is
given by . Thus, a sufficient increase in the
sampling gain can arbitrarily increase and consequently
reduce the bound (51) arbitrarily close to zero. Similarly, it is
possible to increase the number of samples, for example, by re-
peating each measurement twice. Let and denote the trans-
formations corresponding to the original and doubled sets of
measurements. It can then readily be seen from the definition of
the set transformation (2) and its adjoint (3) that .
Consequently, by the same argument, in the absence of con-
tinuous-time noise one can achieve arbitrarily low error by re-
peated measurements.
In practice, rather than repeating each measurement, an in-

crease in sampling rate is often obtained by sampling on a denser
grid. In this case, the analysis is more complex and depends on
the specific signal family in question. For example, in the case
of SI spaces, it has been shown that the error converges to zero
as the sampling rate increases [41], [42].

B. Continuous-Time Noise

As we have seen, sampling noise can be mitigated by in-
creasing the sampling rate. Furthermore, digital noise is inher-
ently dependent on the sampling scheme being used. Since our
goal is to determine the fundamental performance limits regard-
less of the sampling technique, we will focus here and in sub-
sequent sections on continuous-time noise. Thus, suppose that

, so that only continuous-time noise is present. In this
case, as we now show, it is generally impossible to achieve arbi-
trarily low reconstruction error, regardless of the sampling ker-
nels used; indeed, it is never possible to outperform the con-
tinuous-time CRB of Section VI, which is typically nonzero.
To see this formally, observe first that in the absence of digital
noise, the FIM for estimating can be written as

(60)

where is the orthogonal projection onto the subspace .
It is insightful to compare this expression with the FIM
obtained from continuous-time measurements in (36). In both
cases, a lower bound on the MSE for unbiased estimation of
was obtained from by applying Theorem 1. Consequently, if
it happens that , then the continuous-time bound
of Theorem 2 and the sampled bound of Theorem 3 coincide.
Thus, if no digital noise is added, then it is possible (at least in
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terms of the performance bounds) that estimators based on the
samples will suffer no degradation compared with the “ideal”
estimator based on the entire set of continuous-time measure-
ments. This occurs if and only if ; in this case,
the projection will have no effect on the FIM , which
will then coincide with of (36). In the remainder of this
section, we will discuss several cases in which this fortunate
circumstance arises.

C. Example: Sampling in a Subspace

The simplest situation in which samples provide all of the in-
formation present in the continuous-time signal is the case in
which belongs to a -dimensional subspace of . This
is the case, for example, when the signal lies in a SI subspace
having a compactly supported generator (see Section III-A). As
we have seen previously [cf., (48)], in this scenario is
a mapping onto the subspace . Assuming that there is no dis-
crete-time noise, it follows from (60) that the optimal choice of
a sampling space is itself. Such a choice requires
samples and yields . Of course, such an occur-
rence is not possible if the sampling process contributes addi-
tional noise to the measurements.
In some cases, it may be difficult to implement a set of sam-

pling kernels spanning the subspace . It may then be desirable
to choose a -dimensional subspace which is close to but
does not equal it. We will now compute the CRB for this setting
and demonstrate that it can be achieved by a practical estimation
technique. This will also demonstrate achievability of the CRB
in the special case . We first note from (2) and (48) that

, where is the set transformation corresponding
to the generators . Furthermore, it follows from (49)
that and are invertible matrices [40]. Using
Theorem 3, we, thus, find that the CRB is given by

(61)

It is readily seen that when , the bound (61) reduces to
, which is (as expected) the continuous-time bound of The-

orem 2. When , the bound (61) will generally be higher
than , since of (60) will exceed of (36). In this
case, it is common to use the consistent, unbiased estimator [18],
[40]

(62)

As we now show, the bound (61) is achieved by this estimator.
Indeed, observe that , and thus

(63)

Note that , which by (55) is equal to
. Substituting this result into (63) and comparing with

(61) verifies that achieves the CRB.

D. Nyquist-Equivalent Sampling

We refer to situations in which the dimension of the sampling
space equals the dimension of the signal space as “Nyquist-
equivalent” sampling schemes. In the previous section, we saw
that Nyquist-equivalent sampling is possible using samples
when the signal lies in a -dimensional subspace , and that the
resulting system achieves the continuous-time CRB. A similar
situation occurs when the set of possible signals is a subset
of an -dimensional subspace of with . In this
case, it can be readily shown that . Thus, by
choosing sampling kernels such that , we again
achieve , demonstrating that all of the informa-
tion content in has been captured by the samples. This is again
a Nyquist-equivalent scheme, but the number of samples it re-
quires is higher than the number of parameters defining the
signals. Therefore, in this case it is not possible to sample at the
rate of innovation without losing some of the information con-
tent of the signal.
In general, the constraint set will not be contained in any

finite-dimensional subspace of . In such cases, it will gener-
ally not be possible to achieve the performance of the contin-
uous-time bound using any finite number of samples, even in
the absence of digital noise. This implies that in the most gen-
eral setting, sampling above the rate of innovation can often im-
prove the performance of estimation schemes. This conclusion
will be verified by simulation in Section IX.

VIII. OPTIMAL SAMPLING FOR LINEAR
RECONSTRUCTION PROCEDURES

In this section, we address the problem of designing a sam-
pling method which minimizes the MSE. One route toward this
goal could be to minimize the sampled CRB of Theorem 3 with
respect to the sampling space . However, the CRB is a func-
tion of the unknown parameter vector . Consequently, for each
value of , there may be a different sampling space which
minimizes the bound. To obtain a sampling method which is
optimal on average over all possible choices of , we now make
the additional assumption that the parameter vector is random
and has a known distribution. Our goal, then, is to determine
the sampling space that minimizes the MSE
within a class of allowed estimators. Note that the mean is now
taken over realizations of both the noise and the parameter
.
Since is random, the signal is random as well. To make

our discussion general, we will derive the optimal sampling
functions for estimating a general complex random process
[not necessarily having realizations in of (5)] from samples
of the noisy process . In Sections VIII-C and
IX, we will specialize the results to a specific type of real-valued
FRI signal and obtain explicit expressions for the optimal sam-
pling kernels in these scenarios.
Let denote a zero-mean random process defined over

, and suppose that its autocorrelation function

(64)
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is continuous in and . Our goal is to estimate based on
a finite number of samples of the signal ,

, where is a white noise process (not necessarily
Gaussian) with variance which is uncorrelated with . We
focus our attention on linear sampling schemes, i.e., we assume
that the samples are given by

(65)

Finally, we restrict the discussion to linear estimation methods,
namely those techniques in which the estimate is con-
structed as

(66)

for some set of reconstruction functions . It is im-
portant to note that for any given set of sampling functions

, the minimum MSE (MMSE) estimator of is
often a nonlinear function of the measurements . In-
deed, typical FRI reconstruction techniques involve a nonlinear
stage. Consequently, restricting the discussion to linear recovery
schemes may seem inadequate. However, this choice has two
advantages. First, as we will see, the optimal linear scheme is
determined only by the second-order statistics of and ,
whereas the analysis of nonlinear methods necessitates exact
knowledge of their entire distribution functions. Second, it is
not the final estimate that interests us in this discussion, but
merely the set of optimal sampling functions. Once such a set
is determined, albeit from a linear recovery perspective, it can
be used in conjunction with existing nonlinear FRI techniques,
though of course the optimality guarantees will no longer hold
in this case. As we will see in Section IX, the conclusions ob-
tained through our analysis appear to apply to FRI techniques in
general. Under the aforesaid assumptions, our goal is to design
the sampling kernels and reconstruction functions

such that the MSE (8) is minimized.
As can be seen from (65), we assume, henceforth, that only

continuous-time noise is present in the sampling system. The
situation is considerably more complicated in the presence of
digital noise. First, without digital noise, one must choose only
the subspace spanned by the sampling kernels, as the kernels
themselves do not affect the performance; this is no longer the
case when digital noise is added. Second, digital noise may give
rise to a requirement that a particular measurement be repeated
in order to average out the noise. This is undesirable in the con-
tinuous noise regime, since the repeated measurement will con-
tain the exact same noise realization.

A. Relation to the Karhunen–Loève Expansion and
Finite-Dimensional Generalizations

The problem posed previously is closely related to the KLT
[43], [44], which is concerned with the reconstruction of a
random signal from its noiseless samples. Specifically,

one may express in terms of a complete orthonormal basis
for as

(67)

The goal of the KLT is to choose the functions
such that the MSE resulting from the truncation of this series
after terms is minimal. It is well known that the solution
to this problem is given by the -term truncation of the
Karhunen–Loève expansion [43], [45].
Since is assumed to be continuous in our setting, by

Mercer’s theorem [45] it possesses a discrete set of eigenfunc-
tions , which constitute an orthonormal basis for .
These functions satisfy the equations

(68)

in which the corresponding eigenvalues
are nonnegative and are assumed to be arranged in de-
scending order. With these functions, (67) is known as the
Karhunen–Loève expansion. It can be easily shown that the
first terms in this series constitute the best -term ap-
proximation of in an MSE sense [45]. In other words, in
the noiseless case, the optimal sampling and reconstruction
functions are .
In our setting, we do not have access to samples of but

rather only to samples of the noisy process . In this case, it is
not clear a priori whether the optimal sampling and reconstruc-
tion filters coincide or whether they match the Karhunen–Loève
expansion of .
The finite-dimensional analog of our problem, in which , ,

and are random vectors taking values in , was treated in
[46] and [47]. The derivation in these works, however, relied on
the low-rank approximation property of the singular-value de-
composition (SVD) of a matrix. The generalization of this con-
cept to infinite-dimensional operators is subtle and will, thus,
be avoided here. Instead, we provide a conceptually simple (if
slightly cumbersome) derivation of the optimal linear sampling
and reconstruction method for noisy signals. As we will see, it
still holds that , but , where
is a shrinkage factor depending on the SNR of the sample.

B. Optimal Sampling in Noisy Settings

As explained in Section VII, in the absence of discrete-time
noise, the MSE is not affected by modifications of the sampling
kernels which leave the set
unchanged. Thus, without loss of generality, we constrain

to satisfy

(69)

for every . This can always be done since
the operator defined by

is positive definite. This choice
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is particularly convenient as it results in a set of uncorrelated
samples . Indeed

(70)

We are now ready to determine the optimal sampling method.
We begin by expressing the MSE (8) as

(71)

The first term in this expression does not depend on the choice
of and , and is, therefore, irrelevant for
our purpose. Substituting (66) and (65), and using the fact that

is uncorrelated with , the second term can be written
as

(72)

Similarly, using the fact that are uncorrelated and have
unit variance [see (70)], the last term in (71) becomes

(73)

Substituting (72) and (73) back into (71), we conclude that min-
imization of the MSE is equivalent to minimization of

(74)

with respect to and , subject to the set
of constraints (69).
As a first stage, we minimize (74) with respect to the recon-

struction functions . To this end, we note that the
summand in (74) is lower bounded by

(75)

where we used the Cauchy–Schwarz inequality and the fact that
. This bound is achieved by choosing

(76)

thus identifying the optimal reconstruction functions.
Substituting (76) into (74), our goal becomes the maximiza-

tion of

(77)

with respect to the sampling functions . As we show
in Appendix B, the maximum of this expression is achieved by
any set of kernels of the form

(78)

where is a unitary matrix and and are the
eigenvalues and eigenfunctions of , respectively [see
(68)]. In particular, we can choose , leading to

(79)

From (76), the optimal reconstruction kernels are given by

(80)

The following theorem summarizes the result.

Theorem 4: Let , be a random process whose
autocorrelation function is jointly continuous in and
. Assume that , where is a white noise
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process uncorrelated with . Then, among all estimates
of having the form

(81)

the MSE (8) is minimized with and of
(79) and (80), respectively. In these expressions, and
are the eigenvalues and eigenfunctions of respectively
[see (68)].
Interestingly, the optimal sampling and reconstruction func-

tions in our noisy setting are similar to those dictated by the
KLT. The only difference is that in the present scenario, the th
sample is shrunk by a factor of prior to reconstruc-
tion. This ensures that the low-SNR measurements do not con-
tribute to the recovery as much as their high-SNR counterparts.
From the viewpoint of designing the samplingmechanism, how-
ever, this difference is of no importance.
As stated previously, in practice one would generally favor

nonlinear processing of the samples (namely, applying standard
nonlinear FRI techniques) rather than a simple element-wise
shrinkage. Thus, the importance of Theorem 4 for our purposes
is in identifying that the eigenfunctions of remain the
optimal sampling kernels even in the noisy setting.

C. Example: Sampling in a Subspace

To demonstrate the utility of Theorem 4, we now revisit the
situation in which is given by (38) for some set of linearly
independent functions spanning a subspace .
We assume that the coefficients form a
zero-mean random vector and denote its autocorrelation matrix
by . In this case, the signal’s autocorrelation function is given
by

(82)

Consequently, the operator defined by
can be expressed as

(83)

where is the set transformation (2) associated with .
Now, let be a unitary matrix and let be a diagonal matrix

such that

(84)

Since the dimension of is , the operator has at most
nonzero eigenvalues . Let denote the set transfor-

mation associated with the eigenfunctions corre-

sponding to the largest eigenvalues, for some . Then,
it can be shown that

(85)

and the corresponding eigenvalues are

(86)

To see this, note that according to (85), is an isometry, since

(87)
Furthermore, (83) and (84) imply that .
Consequently

(88)

which proves the claim.
It is important to emphasize that the functions

span . Therefore, if one is allowed to take samples,
then the optimal choice is a set of kernels that span . This
conclusion is compatible with the CRB analysis of the previous
sections. However, the advantage of the Bayesian viewpoint is
that it allows us to identify the optimal sampling space when
less than samples are allowed. For example, suppose that

are orthonormal, and the coefficients are uncor-
related. Then the optimal sampling space is the one spanned by
the functions corresponding to the largest-vari-
ance coefficients .
A second example demonstrating the derivation of the op-

timal sampling kernels will be given in the next section.

IX. APPLICATION: CHANNEL ESTIMATION

In this section, we focus on a specific application of FRI sig-
nals, namely, that of estimating a signal consisting of a number
of pulses having unknown positions and amplitudes [5], [7],
[8]. More precisely, we consider real periodic signals of
the form (16), which were discussed in Section III-C. These
are -periodic pulse sequences, in which the (real-valued) pulse
shape is known, but the amplitudes and delays
are unknown. After analyzing periodic signals of this type, we
will also compare estimation performance in this case with the
semiperiodic family (17), and attempt to explain the empirically
observed differences in stability between these two cases.
By defining the -periodic function ,

we can write of (16) as

(89)

Our goal is now to estimate from samples of the noisy
process of (6). As before, we will assume that only con-
tinuous-time noise is present in the system. Since is -pe-
riodic, it suffices to recover the signal in the region . In



BEN-HAIM et al.: PERFORMANCE BOUNDS AND DESIGN CRITERIA 5007

particular, we would like to identify the optimal sampling ker-
nels for this setting, and to compare existing algorithms with the
resulting CRB in order to determine when the optimal estima-
tion performance is achieved.
Let

(90)

be the Fourier series of , where . The
Fourier series of is then given by

(91)

Let denote the indices of the nonzero
Fourier coefficients of . Suppose for a moment that
is finite. It then follows from (91) that also has a finite
number of nonzero Fourier coefficients. Consequently, the set
of possible signals is contained in the finite-dimen-

sional subspace . Therefore, as explained
in Section VII-D, choosing the sampling kernels

results in a sampled CRB which is
equivalent to the continuous-time bound. This result is compat-
ible with recent work demonstrating successful performance
of FRI recovery algorithms using exponentials as sampling
kernels [7].
Note, however, that this is a “Nyquist-equivalent” sampling

scheme, i.e., the number of samples required is poten-
tially much higher than the number of degrees of freedom
in the signal (see Section VII-D). This provides a theoret-
ical explanation of the empirically recognized fact that sampling
above the rate of innovation improves the performance of FRI
techniques in the presence of noise [7], [8], a fact which stands
in contrast to the noise-free performance guarantees of many
FRI algorithms.
Moreover, if there exists an infinite number of nonzero co-

efficients , then in general the set will not belong to any
finite-dimensional subspace. Consequently, it will not be pos-
sible in this case for an algorithm based on a finite number of
samples to achieve the performance obtainable from the com-
plete signal . This occurs, for example, whenever the pulse

of (16) is time-limited. In such cases, any increase in the
sampling rate will potentially continue to reduce the CRB, al-
though the sampled CRB will converge to the asymptotic value
of in the limit as the sampling rate increases.

A. Choosing the Sampling Kernels

An important question in the current setting is how to choose
the sampling kernels so as to achieve the best possible perfor-
mance under a limited budget of samples. This can be done via
the Bayesian analysis provided in Section VIII. Assume, for ex-
ample, that the time delays are independently drawn

from a uniform distribution over the interval . Further-
more, suppose that the amplitudes are mutually uncor-
related real zero-mean random variables which are independent
of the time delays and have variance . Then,

(92)

where we used Parseval’s theorem. It is easily verified from the
aforementioned expansion that the eigenfunctions of
are given by

(93)

and the corresponding eigenvalues are

(94)

Since is real, so that . Conse-
quently, , and thus an equivalent set of eigenfunctions
is

(95)

(96)

(97)

Therefore, the optimal set of sampling functions is

(98)

or equivalently

(99)

Here, we denoted by the index of the largest Fourier co-
efficient and we assumed for simplicity that is odd and
that the dc component is one of the largest coefficients.
The aforementioned analysis again lends credence to the re-

cently proposed time-delay estimation technique of Gedalyahu
et al. [7], which makes use of complex exponentials as sampling
functions. A disadvantage of this algorithm is that it can only
handle a set of exponents with successive frequencies, while for
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general pulses, the indices of the largest Fourier coefficients
may be sporadic. As we will see in Section IX-C, this limitation
may result in deteriorated performance of the algorithm in some
cases.

B. Computing the CRB

Having identified the optimal sampling kernels (99), we
would now like to compute the CRB for estimating from
the resulting samples. In order to compare these results with the
continuous-time CRB, we assume that no digital noise is added
in the sampling process. However, the calculations described
below can be adapted without difficulty to situations containing
both continuous-time and digital noise.
We define the parameter vector

(100)

whose length is . Theorem 3 provides a two-step
process for computing the CRB of the signal from its
samples. First, the FIM for estimating is determined.
Second, formula (51) is applied to compute the CRB. While
Theorem 3 also provides a means for calculating , it
is more convenient in the present setting to derive the FIM
directly. This can be done by calculating the expectations of
(44) and applying (52). In our setting, are given
by

(101)

where are the Fourier coefficients of . These coeffi-
cients depend in turn on the parameter vector , as shown in
(91). Substituting into (52) yields a closed-form expression
for . Since the resulting formula is cumbersome and not
very insightful, it is not explicitly written herein.
To obtain the sampled CRB, our next step is to compute the

matrix

(102)

The function maps a given parameter vector to
the resulting signal as defined by (89). Differentiating this
function with respect to , we find that the operator

is defined by

(103)

for any vector .
One may now compute the th element of as

(104)

Thus, each element of is an inner product between two of
the terms in (103). To calculate this inner product numerically
for a given function , it is more convenient to use Parseval’s

theorem in order to convert the (continuous-time) inner product
to a sum over Fourier coefficients. For example, in the case

, we have

(105)

An analogous derivation can be carried out when or are in
the complementary range .
Finally, having calculated the matrices and , the

CRB for sampled measurements is obtained using (51). We are
now ready to compare this bound to the performance of prac-
tical estimators in some specific scenarios.

C. Effect of the Pulse Shape

In Fig. 2, we document several experiments comparing the
CRB with the time-delay estimation technique of Gedalyahu et
al. [7]. Specifically, we sampled the signal of (16) using a
set of exponential kernels, and used the matrix pencil method
[48] to estimate from the resulting measurements. Since
we are considering only continuous-time noise, applying an in-
vertible linear transformation to the sampling kernels has no ef-
fect on our performance bounds (see Section VII). The various
kernels suggested in [7] amount to precisely such an invertible
linear transformation, and the same performance bound applies
to all of these approaches. Moreover, under the continuous-time
noise model, it can be shown that these techniques also exhibit
the same performance. For the same reason, the performance re-
ported here is also identical to the method of Vetterli et al. [2].
In our experiments, a signal containing pulses was

constructed. The delays and amplitudes of the pulses were
chosen randomly and are given by

(106)

Modifications of these parameters does not appear to sig-
nificantly affect the reported results, except when the time
delays are close to one another, a situation which will be
discussed in detail in Section IX-D. The pulse con-
sisted of nonzero Fourier coefficients at positions

. The CRB is plotted as a function of the
number of samples , where the sampling kernels are given
by with . This is
done because the matrix pencil method requires the sampling
kernels to have contiguous frequencies.
In Fig. 2(a), we chose for and

elsewhere; these are the low-frequency components
of a Dirac delta function. The noise standard deviation was

. In this case, for a fixed budget of samples,
any choice of exponentials having frequencies in the range

is optimal according to the criterion in
Section VIII. As expected, the sampled CRB achieves the con-
tinuous-time bound when . However, the CRB
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Fig. 2. Comparison of the CRB and the performance of a practical estimator, as
a function of the number of samples. (a) Pulse is a filtered Dirac with 401
Fourier coefficients. (b) Pulse contains 401 nonzero Fourier coefficients
which decrease monotonically with the frequency. (c) Pulse is a filtered

with 401 Fourier coefficients.

obtained at low sampling rates is higher by several orders of
magnitude than the continuous-time limit. This indicates that
the maxim of FRI theory, whereby sampling at the rate of in-
novation suffices for reconstruction, may not always hold in the
presence of mild levels of noise. Indeed, if no noise is added
in the present setting, then perfect recovery can be guaranteed
using as few as samples; yet even in the presence of
mild noise, our bounds demonstrate that performance is quite
poor unless the number of samples is increased substantially.
This result may provide an explanation for the previously ob-
served numerical instability of FRI techniques [2], [7], [8].
As a further observation, we note that in this scenario, ex-

isting algorithms come very close to the CRB. Thus, the pre-

viously observed improvements achieved by oversampling are
a result of fundamental limitations of low-rate sampling, rather
than drawbacks of the specific technique used.
The same experiment is repeated in Fig. 2(b) with a pulse

having Fourier coefficients . Since the
Fourier coefficients decrease with , in this case our choice of
low-frequency sampling kernels aligns with the choice dictated
by the linear recovery analysis of Section VIII. However, the
SNR of the measurements decreases with . As can be seen,
this has a negative effect on the performance of the algorithm,
which is not designed for high noise levels. Indeed, including
low-SNRmeasurements causes theMSE not only to depart from
the CRB, but eventually even to increase as more noisy samples
are provided. In other words, one would do better to ignore the
high-frequency measurements than to feed them to the recovery
algorithm. Yet information is clearly present in these high-fre-
quency samples, as indicated by the continual decrease of the
CRB with increasing . Thus, our analysis indicates that im-
proved estimation techniques should be achievable in this case,
in particular by careful utilization of low-SNR measurements.
The adverse effect of low-SNR measurements is exacerbated

if, for a given , one does not choose the largest Fourier co-
efficients. This is demonstrated in Fig. 2(c). Here, the results of
a similar experiment are plotted, in which ,

. These are the 401 lowest frequency Fourier
coefficients of a rectangular pulse having width . In this case,
the Fourier coefficients are no longer monotonically decreasing
with . Consequently, the sampling kernels
with do not correspond to the
largest Fourier coefficients, and thus are not optimal, at least
from a linear recovery perspective. In particular, for the chosen
parameters, are considerably smaller than the
rest of the coefficients. When , the corresponding
measurements are included, causing the MSE to deteriorate
significantly.

D. Closely Space Pulses

It is well known that the estimation of pulse positions be-
comes ill-conditioned when several of the pulses are located
close to one another. Intuitively, this is a consequence of the
overlap between the pulses, which makes it more difficult to
identify the precise location of each pulse. However, our goal is
to estimate the signal itself, rather than the positions of its
constituent pulses. As we will see, for this purpose the effect of
closely spaced pulses is less clear-cut.
To study the effect of pulse position on the estimation error,

we used a setup similar to the one in Fig. 2(b), with the following
differences. First, a higher noise level of was chosen.
Second, the signal consisted of pulses, with the first
pulse at position . The position of the second pulse
was varied in the range to demonstrate the effect of
pulse proximity on the performance. The setting was otherwise
identical to that in Section IX-C. In particular, recall that .
The results of this experiment are plotted in Fig. 3, which

document both the values of the sampled CRB and the actual
MSE obtained by the estimator of Gedalyahu et al. [7]. The con-
tinuous-time CRB is also plotted, although, as is evident from
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Fig. 3. Comparison between the CRB and the performance of a practical esti-
mator as a function of the pulse positions. The signal contains pulses,
the first of which is located at . The MSE is plotted as a function of the
position of the second pulse.

Fig. 4. Demonstration of the different levels of overlap between pulses
(a) Spacing between the pulses is 0.04. (b) Spacing between the pulses is 0.01.

Theorem 2, this bound is a function only of the number of pa-
rameters determining the signal, and is therefore unaffected by
the proximity of the pulses.
Several different effects are visible in Fig. 3. First, as the two

pulses begin to come closer, both the CRB and the observed
MSE increase by several orders of magnitude; this occurs when

is between about 0.15 and 0.03. (Of course, the precise
distances at which these effects occur depend on the pulse width
and other parameters of the experiment.) This level of proximity
is demonstrated in Fig. 4(a). At this stage, the overlap between
the pulses is sufficient to make it more difficult to estimate their
positions accurately, but the separation between the pulses is
still large, so that they are not mistaken for a single pulse.
As the pulses draw nearer each other, they begin to resemble

a single pulse located at [see Fig. 4(b)]. Depending
on the noise level, at some point the estimation algorithm will
indeed identify the two pulses as one. Since our goal is to es-
timate and not the pulse positions, such an “error” causes
little deterioration in MSE. This is visible in Fig. 3 as the region
in which the MSE of the practical algorithm ceases to deterio-
rate and ultimately decreases.
Interestingly, the CRB does not capture this improvement in

performance. This failure is due to the fact that the CRB applies
only to unbiased estimators, while the strategy utilized in [7]

becomes biased for closely spaced pulses. For an estimator to
be unbiased, it is required that the mean estimate, averaged over
noise realizations, will converge to the true value of , which
has a form similar to that of Fig. 4(b). The expectation of an
estimator reconstructing a single pulse will not have the form of
two closely spaced pulses; such an estimator is thus necessarily
biased. In other words, the discrepancy observed here results
from the fact that in this case, biased techniques outperform the
best unbiased approach.

E. Nonperiodic and Semiperiodic Signal Models

As we have seen previously, the reconstruction of signals of
the form (16) in the presence of noise is often severely ham-
pered when sampled at or slightly above the rate of innovation.
Rather than indicating a lack of appropriate algorithms, in many
cases this phenomenon results from fundamental limits on the
ability to recover such signals from noisy measurements. A sim-
ilar effect was demonstrated [7], [8] in the nonperiodic (or finite)
pulse stream model (14). In fact, if one is allowed to sample a
nonperiodic pulse stream with arbitrary sampling kernels, then
by designing kernels having sufficiently large time-domain sup-
port, one can capture all or most of the energy in the signal. This
setting then essentially becomes equivalent to a periodic signal
model (16) in which the period is larger than the effective sup-
port of the pulse stream: one can imagine that the signal repeats
itself beyond the sampled region, as this would not affect the
measurements. Consequently, it is not surprising that the nonpe-
riodic model demonstrates substantial improvement in the pres-
ence of oversampling [8].
On the other hand, some types of FRI and union of subspace

signals exhibit remarkable noise resilience, and do not appear
to require substantial oversampling in the presence of noise [5],
[27]. As we now show, the CRB can be used to verify that such
phenomena arise from a fundamental difference between fami-
lies of FRI signals.
As an example, we compare the CRB for reconstructing the

periodic signal (16) with the semiperiodic signal (17). Recall
that in the former case, each period consists of pulses having
unknown amplitudes and time shifts. By contrast, in the latter
signal, the time delays are identical throughout all periods, but
the amplitudes can change from one period to the next.
While these are clearly different types of signals, an effort

was made to form a fair comparison between the reconstruc-
tion capabilities in the two cases. To this end, we chose an iden-
tical pulse in both cases. We selected the signal segment

, where , and chose the signal parameters so as
to guarantee an identical -local rate of innovation. We also
used identical sampling kernels in both settings: specifically, we
chose the kernels (99) which measure the lowest frequency
components of the signal.
To simplify the analysis and focus on the fundamental differ-

ences between these settings, we will assume in this section that
the pulses are compactly supported, and that the time de-
lays are chosen such that pulses from one period do not overlap
with other periods. In other words, if the support of is given
by , then we require

(107)



BEN-HAIM et al.: PERFORMANCE BOUNDS AND DESIGN CRITERIA 5011

Fig. 5. Comparison between the CRB for a periodic signal (16) and a semi-
periodic signal (17).

Specifically, we chose the pulse used in Fig. 2(b), which is
compactly supported to a high approximation.
For the periodic signal, we chose pulses with random

delays and amplitudes, picked so as to satisfy condition (107).
A period of was selected. This implies that the signal
of interest is determined by parameters ( amplitudes
and time delays).
To construct a semiperiodic signal with the same number of

parameters, we chose a period of containing
pulses. The segment then contains precisely
periods, for a total of 20 parameters. While it may seem plau-
sible to require the same number of periods for both signals, this
would actually disadvantage the periodic approach, as it would
require the estimation of much more closely spaced pulses.
The CRB for the periodic signal was computed as explained

in Section IX-B, and the CRB for the semiperiodic signal can
be calculated in a similar fashion. The results are compared with
the continuous-time CRB in Fig. 5. Note that since the number
of parameters to be estimated is identical in both signal models,
the continuous-time CRB for the two settings coincides. Con-
sequently, for a large number of measurements, the sampled
bounds also converge to the same values. However, when the
number of samples is closer to the rate of innovation, the bound
on the reconstruction error for the semiperiodic signal is much
lower than that of the periodic signal. As mentioned previously,
this is in agreement with previously reported findings for the
two types of signals [2], [5], [7].
To find an explanation for this difference, it is helpful to recall

that both signals can be described using the union of subspaces
viewpoint (see Section III-C). Each of the signals in this exper-
iment is defined by precisely 20 parameters, which determine
the subspace to which the signal belongs and the position within
this subspace. Specifically, the values of the time delays select
the subspace, and the pulse amplitudes define a point within
this subspace. Thus, in the aforesaid setting, the periodic signal
contains ten parameters for selecting the subspace and ten ad-
ditional parameters determining the position within it; whereas
for the semiperiodic signal, only two parameters determine the
subspace while the remaining 18 parameters set the location in
the subspace. Evidently, identification of the subspace is chal-
lenging, especially in the presence of noise, but once the sub-

space is determined, the remaining parameters can be estimated
using a simple linear operation (a projection onto the chosen
subspace). Consequently, if many of the unknown parameters
identify the position within a subspace, estimation can be per-
formed more accurately. This may provide an explanation for
the difference between the two examined signal models.
As further evidence in support of this explanation, we recall

from Section III-C that the multiband signal model (19) can also
be viewed as a union of subspaces. Here, again, the parameters

determining the subspace (i.e., the utilized frequency
bands) are far fewer than the parameters selecting the
point within the subspace (i.e., the content of each frequency
band). In support of the proposed explanation, highly noise re-
sistant algorithms can be constructed for the recovery of multi-
band signals [27], [29]. An even more extreme case is the single
subspace setting, exemplified by SI signals (see Section III-A).
In this case, all of the signal parameters are used to determine
the position within the one possible subspace. As we have seen
in Section VII-C, in this case Nyquist-equivalent sampling at
the rate of innovation achieves the continuous-time CRB.

X. CONCLUSION

In this paper, we studied the inherent limitations in recov-
ering FRI signals from noisy measurements. We derived a con-
tinuous-time CRB which provides a lower bound on the achiev-
able MSE of any unbiased estimation method, regardless of the
samplingmechanism.We showed that the rate of innovation
is a lower bound on the ratio between the average MSE achiev-
able by any unbiased estimator and the noise variance , re-
gardless of the sampling method. This stands in contrast to the
noise-free interpretation of as the minimum sampling rate
required for perfect recovery.
We next examined the CRB for estimating an FRI signal from

a discrete set of noisy samples. We showed that the sampled
bound is in general higher than the continuous-time CRB, and
approaches it as the sampling rate increases. In general, the rate
which is needed in order to achieve the continuous-time CRB
is equal to the rate associated with the smallest subspace that
encompasses all possible signal realizations. In particular, if a
signal belongs to a union of subspaces, then the rate required to
achieve the continuous-time bound is that associated with the
sum of the subspaces. In some cases, this rate is finite, but in
other cases the sum covers the entire space and no finite-rate
technique achieves the CRB.
A consequence of these results is that oversampling can

generally improve estimation performance. Indeed, our exper-
iments demonstrate that sampling rates much higher than
are required in certain settings in order to approach the optimal
performance. Furthermore, these gains can be substantial: in
some cases, oversampling can improve the MSE by several
orders of magnitude. We showed that the CRB can be used to
determine which estimation problems require substantial over-
sampling to achieve stable performance. As a rule of thumb,
it appears that for union of subspace signals, performance is
improved at low rates if most of the parameters identify the
position within the subspace, rather than the subspace itself.
Our analysis can also be used to identify cases in which no
existing algorithm comes close to the CRB, implying that
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better approaches can be constructed. In particular, it seems
that existing algorithms do not deal well with measurement sets
having a wide dynamic range.
Finally, we addressed the problem of choosing the sampling

kernels. This was done by adopting a Bayesian framework, so
that an optimality criterion can be rigorously defined. Using
a generalization of the KLT, we showed that the optimal ker-
nels are the eigenfunctions of the autocorrelation function of the
signal. In the context of time-delay estimation, these kernels are
exponentials with appropriately chosen frequencies. This choice
coincides with recent FRI techniques [5].

APPENDIX A
PROOF OF THEOREM 1

The following notation will be used within this appendix. Let
and be two measurable Hilbert spaces, and let F

be a probability space. Consider two random variables
and . Then, the notation will be used to

denote the linear operator such that, for any
and ,

(108)

if the expectation exists for all and .
We begin by stating two general lemmas which will be of use

in the proof of Theorem 1.

Lemma 1: Let and be two Hilbert spaces, and con-
sider the operators

(109)

Suppose is self-adjoint and invertible. Define the product
Hilbert space in the usual manner, and suppose the
operator defined by

(110)

is positive semidefinite (psd). Then,

(111)

in the sense that the operator is psd.
Proof: Since is psd, we have for any and

(112)

which implies

(113)

Choosing , we have that
, which is real since is self-ad-

joint. It follows from (13) that

(114)

which leads to (111), as required.

Lemma 2: Let and be two Hilbert spaces and let
F be a probability space. Let and

be random variables, and suppose the expectations
, and exist as linear operators as de-

fined in (108). If is invertible, then

(115)

Proof: Let us denote , , and
and define the linear operator

as in (110). From (108), for any and
we have

(116)

Thus, is a psd operator. Invoking Lemma 1 yields (115), as
required.

We are now ready to prove Theorem 1.
Proof of Theorem 1: Throughout the proof, let be a fixed

parameter and consider all functions as implicitly dependent on
. Define the random variables

(117)

(118)

We then have the linear operators ,
, and , which satisfy

(119)

(120)

(121)

where denotes a complete orthonormal basis for .
The operator can be thought of as the covariance of ,
and is well defined since, by (32), has finite variance. Indeed,
we have

(122)
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so that is not only well defined, but a trace class oper-
ator. Furthermore, is well defined and invertible
by Assumption P5. The operator is thus also well de-
fined by virtue of the Cauchy–Schwarz inequality.
To prove the theorem, we will show that

(123)

and then obtain the required result by applying Lemma 2. To
demonstrate (123), observe that

(124)

By Assumption P4, for any sufficiently small we have

(125)

Let us demonstrate that the right-hand side of (125) is absolutely
integrable. By the Cauchy–Schwarz inequality,

(126)

The rightmost integral in (126) is finite by virtue of (29). As for
the remaining integral, we have

(127)

where we have used the triangle inequality in (a), the
Cauchy–Schwarz inequality in (b), and the assumption (32) that
has finite energy in (c). We conclude that (125) is bounded

by an absolutely integrable function, and we can, thus, apply
the dominated convergence theorem to (124), obtaining

(128)

The second integral in (128) equals 1 and its derivative is, there-
fore, 0. Thus, we have

(129)

On the other hand, note that the Fréchet derivative
of (31) coincides with the Gâteaux derivative of . In other
words, for any vector , we have

(130)

It follows that

(131)

Since and are both linear operators, (129)
and (131) imply that the two operators are equal, demonstrating
(123). Applying Lemma 2 and using the results (119) and (123),
we have

(132)

As we have seen, the left-hand side of (132) is a trace class, and
thus so is the right-hand side. Taking the trace of both sides of
the equation, we obtain

(133)

which is equivalent to (33), as required.

APPENDIX B
MAXIMIZATION OF (77)

The task of maximizing (77) is most easily accomplished by
optimizing the coordinates of in the orthonormal basis for

generated by the eigenfunctions of . Specifi-
cally, the function can be written as

(134)

with and of (68). (The coefficients
are inserted since they simplify the subsequent anal-

ysis.) Now, by Mercer’s theorem, can be expressed as

(135)

where the convergence is absolute and uniform. Therefore

(136)
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and consequently, by Parseval’s theorem, (77) is given by

(137)

Similarly, using (134) and (136), we have

(138)
and by (134)

(139)

Combining (138) and (139), the set of constraints (69) is
translated to

(140)

for every . Consequently, our problem has now
been reduced to

(141)
We now show that the sequences which solve (141)

must satisfy for every and . To
see this, assume to the contrary that the th sequence satisfies

for some . We can then replace this sequence by
a sequence satisfying

(142)

where (to ensure that ).
Such a set of coefficients can always be found since
the -term truncation of the remaining sequences cannot
span . With this sequence, the summand in the objective
of (141) becomes

(143)

where we used the fact that for every and that
is a monotone increasing function of for all .

This contradicts the optimality of . Therefore, the set
of sequences maximizing (141) satisfy for every
and .
It remains to determine the optimal values of the first el-

ements of each of the sequences , .
For this purpose, let denote the matrix whose entries
are and let be a diagonal matrix with

. Then, the constraint (140) can be written as
, which is equivalent to . Now, the ob-

jective in (141) can be expressed as

(144)

which is independent of . Therefore, we conclude that any
set of orthonormal sequences , , whose
elements vanish for every is optimal.
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