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Traditional radar sensing typically employs matched filtering
between the received signal and the shape of the transmitted pulse.
Matched filtering (MF) is conventionally carried out digitally, after
sampling the received analog signals. Here, principles from classic
sampling theory are generally employed, requiring that the received
signals be sampled at twice their baseband bandwidth. The resulting
sampling rates necessary for correlation-based radar systems
become quite high, as growing demands for target distinction
capability and spatial resolution stretch the bandwidth of the
transmitted pulse. The large amounts of sampled data also
necessitate vast memory capacity. In addition, real-time data
processing typically results in high power consumption. Recently,
new approaches for radar sensing and estimation were introduced,
based on the finite rate of innovation (FRI) and Xampling
frameworks. Exploiting the parametric nature of radar signals, these
techniques allow significant reduction in sampling rate, implying
potential power savings, while maintaining the system’s estimation
capabilities at sufficiently high signal-to-noise ratios (SNRs). Here we
present for the first time a design and implementation of an
Xampling-based hardware prototype that allows sampling of radar
signals at rates much lower than Nyquist. We demonstrate by
real-time analog experiments that our system is able to maintain
reasonable recovery capabilities, while sampling radar signals that
require sampling at a rate of about 30 MHz at a total rate of 1 MHz.
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[. INTRODUCTION

The classic radar sensing problem treats detection of
targets moving in space. This is achieved by transmitting
RF pulses of electromagnetic energy and sampling the
signals caused by their reflection. The samples are then
processed, in an attempt to determine the targets’ location
in space and their velocity. Traditional processing methods
in both literature and practice involve a preliminary stage,
referred to as matched filtering (MF) or pulse compression
[1, 2], in which the transmitted pulse is correlated with the
received signal. For the problem of detecting targets in
white Gaussian noise, the MF is known to maximize the
effective signal-to-noise ratio (SNR).

The MF stage is typically carried out digitally, after
sampling the detected analog signal. Classic
Shannon-Nyquist sampling theory [3] guarantees full
recovery of a general bandlimited analog signal from
samples taken at twice its baseband bandwidth. However,
applying this framework to modern radar systems
typically results in extremely high sampling rates, due to
the wide bandwidth characteristic of the sampled signals.
The latter is a direct consequence of the well-known
relationship between a radar system’s resolution and the
bandwidth of the transmitted signals.

Formulating the radar problem as one of parametric
inference, one may show that Nyquist sampling is, in fact,
a redundant approach for resolving the desired parameters.
Nonetheless, this method is still widely employed by
modern radar systems, to a large extent because it
produces a straightforward and simple solution to the
parametric inference problem as well as to the preceding
analog sampling stage. However, the growing sampling
rates required due to the desire to increase resolution
necessitate sophisticated analog front ends and imply
higher power consumption and vast memory capacity.

Recently, new approaches [4] to radar processing
were introduced, which allow practical solution of the
parametric problem, from a small number of
measurements taken after appropriate analog prefiltering.
The estimation problem is solved in the frequency domain
using known tools from array processing [5], with the
necessary number of measurements typically much
smaller than that obtained by Nyquist sampling. Related
works [6-8] treat ultrasound signal sampling and are
readily adapted to the radar scenario. These methods are
based on the finite rate of innovation (FRI) [9] and
Xampling [10, 11] approaches. The FRI framework treats
sampling and recovery of signals characterized by a finite
number of degrees of freedom per unit time and is based
on connecting sampling theory with array processing
methods. In many cases such signals can be sampled and
recovered at a rate proportional to the number of
unknowns per time interval, which is usually much lower
than the Nyquist rate. The Xampling philosophy ties
together sub-Nyquist sampling based on analog
preprocessing with techniques of compressed sensing
(CS) [12-14] for recovery. However, as discussed in the
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following sections, these approaches typically require
sophisticated sampling schemes, which acquire
generalized measurements of the analog signals.

Here we present a concrete analog-to-digital
conversion (ADC) scheme and a recovery algorithm
with relaxed constraints for sampling radar signals at
sub-Nyquist rates. Our processing is based on a
frequency-domain formulation of the problem. As we
show, a small number of frequency samples of the
received signal carry sufficient information about the
parameters of interest. Our prototype allows to obtain
these needed frequency coefficients directly from the
analog input using simple analog filters and low rate
sampling. The results of [15] establish that a single delay
can be found efficiently from random frequency samples
in the presence of noise providing theoretical justification
to our approach. The use of frequency samples for CS of
signals sparse in time is also studied in [16].

In order to choose appropriate frequencies to process
we connect our problem to that of beampattern design in
array processing, and rely on ideas obtained in that
context. In particular, it is known in the array processing
literature that random frequencies spread over a wide
aperture lead to good performance [17, 18]. However, in
the context of ADC design this choice corresponds to a
complicated receiver structure. Instead, we show that
choosing several random groups of coefficients can yield
similar performance, while resulting in a simple ADC
structure.

Our hardware prototype implements a combination of
the multichannel topology suggested in [7] and the
filtering approach presented in [6], additionally taking into
account the practical challenges they impose. In particular,
our board consists of 4 channels, each comprising a
bandpass crystal filter with a random effective carrier
frequency. This allows to obtain a wide spread of Fourier
coefficients of the signal in an efficient manner. The
proposed recovery algorithm obtains the delays and
amplitudes of the radar signal from these coefficients.

Using crystal filters, which have extremely narrow
transition bands, we are able to obtain a sufficient amount
of information from the signal, while substantially
decreasing the total sampling rate, as discussed in Section
III. Since crystal filters are standard, off-the-shelf
components, we are confined to adapt our channel design
to their properties, in order to maximize their efficiency.
We discuss the challenges this imposes and our method for
overcoming them in Section III.

Simulations as well as real-time experiments of our
hardware prototype prove high target hit-rate and location
estimation capabilities for preintegration SNR values over
-14 dB, with a large reduction factor in sampling rate
compared with Nyquist sampling. In fact, standard radar
systems, in which Nyquist sampling is employed for
solving the parametric inference problem, typically
oversample the received signals, due to the nonideal
behavior of practical antialiasing filters. With respect to
the resulting sampling rates, we achieve a thirty-fold

reduction using our approach. That is, our system operates
at a total sampling rate of 1 MHz (20 times less than the
signal’s Nyquist rate), while an MF-based system would
typically operate at a rate of 30 MHz (requiring an
oversampling factor of 1.5 in order to use practical filters).
We are able to achieve this reduction without substantially
degrading the target hit-rate and location estimation
capabilities, provided that the system operates at
sufficiently high SNR. For instance, we achieved target
hit-rate of approximately 90% for preintegration SNRs
larger than -12 dB.

To estimate the underlying sparse structure, or the
targets in our setting, from the selected Fourier
coefficients of the received signal, previous work in the
FRI framework traditionally employed spectral estimation
techniques. Here, we use a CS formulation of the recovery
stage, as suggested in [18]. In CS, the signal is assumed to
have a sparse representation in a discrete basis. An
extensive search for the best sparse representation results
in combinatorial run-time complexity, which is impractical
for real-time applications such as radar sensing. Many
polynomial-time algorithms have been proposed that can
be shown to recover the true sparse vector under
appropriate conditions [13]. In our simulations, we
use the orthogonal matching pursuit (OMP) algorithm
[19, 20].

There have been several other works that employ CS
algorithms in the context of radar signal processing such
as [21-26]. However, these papers either do not address
sample rate reduction and continue sampling at the
Nyquist rate, or they assume that a smaller number of
samples has been obtained but do not address how to
subsample the analog received signal using practical
ADCs. Furthermore, previous CS-based methods typically
impose constraints on the radar transmitter, which are not
needed in our approach. An alternative architecture
proposed in the CS literature to sample signals at
sub-Nyquist rates is the random demodulator [27-29].
This receiver consists of parallel channels that multiply
the incoming signal with a set of random binary
sequences. A similar concept is used in the modulated
wideband converter of [10]. These techniques are
particularly suited to signals that are sparse in frequency,
while here we focus on signals with a small number of
parameters in the time domain.

The remainder of the paper is organized as follows.
Section II establishes the mathematical foundation of our
techniques. We present the radar signal model, link several
CS concepts to our application, and provide justification
for the chosen parameters. Section III compares different
analog sampling implementations. These systems offer a
compromise between theoretical requirements and
practical hardware constraints. We then elaborate on our
choice of hardware design. Finally, in Section IV we
present results of MATLAB hardware simulations, as well
as results of real-time hardware experiments. We also
describe our realization environment, and conclude by
discussing the overall system performance.
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[I. XAMPLING OF RADAR SIGNALS
A. Methodology

Radar systems estimate target locations by transmitting
periodic pulses and processing their reflections. We model
the received radar signal as the following stream of pulses:
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where T is the radar’s pulse repetition interval (PRI) and M
is the number of transmitted pulses. This model complies
with monostatic radars, with nonfluctuating point targets
assumed to be stationary or moving at very slow
velocities, so that no Doppler shift is incorporated into the
model. We show how to adapt the results to allow for
Doppler processing in [30]. The parameters {ay, tl}lel
correspond to the estimated pulses’ amplitudes and delays,
respectively, and are proportional to the targets’ distance
from the receiver and their radar cross section (RCS). We
assume that the shape of the pulse /(f) and the maximal
number of echoes L are known, although future research
may relax this constraint. In particular, knowledge of L is
used to simplify the stopping criteria of our reconstruction
algorithm, but is not essential.

Traditional radar systems sample the received signal at
the Nyquist rate, determined by the baseband bandwidth
of h(f). Our goal is to recover x(¢) from its samples taken
far below this rate. It is readily seen that x(7) is completely
defined by at most 2L unknown parameters, namely «; and
17, within any length-T time interval. Hence, in the absence
of noise, one would expect to be able to accurately recover
x(#) from only 2L samples per time 7T [9]. If L/T is
sufficiently small with respect to A(f)’s bandwidth, then
this implies a significant reduction in sampling rate. Since
radar signals tend to be sparse in the time domain, simply
acquiring 2L data samples at a low rate will not generally
yield adequate recovery. Indeed, if the separation between
samples is larger than the effective spread in time, then
with high probability many of the samples will be close to
zero and will not contain any information. This implies
that presampling analog processing must be performed in
order to smear the signal in time before low rate sampling.

As shown in [9, 6, 7], the 2L unknowns defining x(7)
may be recovered from only 2L measurements,
corresponding to the projection of x(f) onto a subset of its
Fourier series coefficients. Calculated with respect to a
single period [0, 7), these coefficients are given by

L
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where H(w) is the continuous-time Fourier transform
(CTFT) of the pulse. Choosing the coefficients such that

H (3 k) is non-zero, (2) can be rewritten as

X[k] L
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which is a standard sum-of-exponentials problem studied
extensively in the array processing literature. It can be
shown that this problem has a unique solution given K

> 2L coefficients Y[k] [9]. We discuss hardware
prototypes to acquire these measurements efficiently in
Section III. The remainder of this section is devoted to
reviewing algorithmic approaches for solving (3).

B. Recovery Algorithm

Many mature techniques for solving (3) exist,
including matrix pencil (MP) [31], annihilating filter [9],
and others that can be found in [5]. These algorithms arise
from spectral analysis methods, and generally require the
measurements to form a consecutive subset of the signal’s
Fourier coefficients. An exception is the MUSIC
algorithm, which can be applied on any set of coefficients
[32]. While these techniques work well at high SNR; their
performance deteriorates at low SNR values.

In [8] it was suggested to use a nonconsecutive set of
Fourier coefficients selected in a distributed manner, as
many detection systems (such as ultrasound in [8] and
radar in our work) benefit from wide frequency aperture.
While consecutive coefficients can be obtained using a
simple low-pass filter (LPF), it is shown in [8] that a
distributed selection results in better recovery and noise
robustness. In order to remove the constraint of
consecutive selection, and improve performance in low
SNR, we choose to employ a CS formulation of (3) for
recovery.

We begin by quantizing the analog time axis with a
resolution step of A, thus, approximating (3) as

L

_jz
§ ae Jj TkmA’
=1

where N = T/A is the number of bins in the PRI and

1 &~ mA is the discrete approximation of the time delays.
Selecting a finite subset of K measurements, x = {kj,
ky,...,kx} € {0,..., N—1}, (4) may be written as

Y[k] ~ 0<n <N, 4)

y = Ax. (®)]

Here y € CX is the vector of measurements Y[k], A is
a K x N matrix with £nth element exp{—j2mk,n/N},
formed by taking the set « of rows froman N x N
discrete Fourier transform (DFT) matrix, and x € CV is an
L-sparse vector with non-zero entries at indices {n;}- ;. In
the context of CS, A is known as the sensing matrix.

Our goal is to find the non-zero entries of x from the
measurements y. This is a standard CS problem, with A
being a partial Fourier matrix. A solution can be obtained,
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for example, by using the well-known OMP algorithm.
This method iteratively finds the non-zero entries of x by
seeking the maximal absolute correlations between y and
the columns of A, while maintaining an orthogonalization
step at the end of each iteration [20, 19]. To further
improve performance, we used a variation of the standard
OMP, where we computed the maximal correlation using
the pseudoinverse A" = (A" A)~! A¥ rather than the inner
product.

Once the non-zero entries are found, the time delays
are directly calculated while the amplitudes are estimated
via standard least-squares. A pseudocode of the recovery
algorithm is given in Algorithm 1.

ALGORITHM 1
OMP Algorithm

Input: Measurement vector y € CK | sensing matrix A € CK*V,
quantization step A
Output: Estimated time delays {7 }1L:| and corresponding estimated
amplitudes {&I}IL:1
r <y, Q < @ {Initialization}
for/=1toLdo
p = A'r {Acquire subspace approximation}
A; = argmax | p,| {Find maximal component}
n=1

Q <« QU {A;} {Augment the support set}
fl = A
Ag < [Aﬁ] e 'Aﬂl]s Am =App.m=1,...,K
Po=1-— AQAI-2 {Subspace projection operator}
r = Pqy {Compute the residual }
end for
a= A}Zy {Estimate amplitudes via least-squares}

C. Frequency Selection

As mentioned previously, CS-based techniques allow
flexibility in choosing the Fourier coefficients. Using
OMP, high recovery performance is promised, provided
that the sensing matrix satisfies desired conditions such as
the restricted isometry property (RIP). Selecting the
frequency samples uniformly at random, it is known that if

K > CL(log N)*, (6)

for some positive constant C, then A obeys the RIP with
high probability [33]. In contrast, for consecutive
frequency selection the RIP is not generally satisfied,
unless the cardinality of « is significantly increased.
However, applying random frequency sampling is not
practical from a hardware perspective, and therefore a rule
for selecting a good constellation of frequency samples is
desired.

Some practical guidelines for choosing the frequencies
are suggested in [34]. The authors consider an equivalent
problem to (3), with the roles of frequency and time
interchanged. That is, the measurement vector consists of
time samples of a signal, described by a spectral line
model. Conclusions can be easily adapted to our
application with minor changes. Applying these
guidelines, we may formalize the following relationship
between the support of the recovered signal 7, the grid

812

resolution A, and the chosen frequency samples { f,-}iK: 1

1
T = - , @)
omin =g
1
A= , )
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where c is an empirical constant. In our simulations we set
¢ = 20, finding this value to be more robust than that
proposed in [34].

Condition (7) constrains us to selecting at least two
Fourier coefficients consecutively. In our application, we
choose a constellation consisting of four groups of
coefficients, where the coefficients in each group are
consecutive. We refer to this choice as multiple bandpass
sampling. Note that (7) could be equally satisfied by
simply using a single group of K consecutive coefficients.
As discussed in Section III, such a choice is implemented
by simple hardware, consisting of a single low-pass
filtering channel. However, our multiple bandpass
constellation has the advantage of acquiring the
measurements over a wider frequency aperture. At the
same time, it still allows practical hardware
implementation (as detailed in Section III). Referring to
(8), by widening the frequency aperture, we may employ a
finer resolution grid during the recovery process.
Moreover, empirical results show that highly distributed
frequency samples provide better noise robustness [8]. We
point out that widening the frequency aperture eventually
requires increasing the number of samples K, otherwise
recovery performance may degrade. This trade-off,
observed in our experiments, is readily seen from (6),
where the minimal number of samples K gradually
increases with N, corresponding to the grid resolution.

An intuitive explanation for our choice of coefficients
may be obtained by adopting insights from the field of
array processing. This is because our sampling domain
(Fourier coefficients) is related to the parameters’ domain
(time delays) in the exact same manner in which the
geometric sensor deployment pattern in array processing
is related to the resulting beampattern. The beampattern
determines the angular resolution and ambiguity of the
array, which are analogous to temporal resolution and
ambiguity in our problem. In particular, narrower array
aperture (corresponding to the span of Fourier
coefficients) will typically result in a wider mainlobe,
providing poorer target resolution, as well as degradation
in the accuracy of direction of arrival estimation (DOA) at
low SNR. Considering an equally spaced sensor array, one
can show that widening the array aperture while
maintaining angular ambiguity requires additional sensors;
trying to distribute the sensors further apart while keeping
their uniform distribution will inevitably affect directional
ambiguity. A possible trade-off is to distribute the sensors
nonuniformly within the wide aperture, for instance in a
pattern chosen randomly, such that the minimal distance
between at least two sensors remains fixed [17, 18].
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Fig. 1. Beampatterns for different geometries of sensor arrays. Each figure shows array patterns and corresponding beampattern. (a) Full array of 64

sensors. Figs. (b)-(d) correspond to 24 sensors with different distributions. (b) Consecutive. (¢) Random. (d) Four randomly distributed groups.

In Fig. 1 we illustrate four choices of sensor patterns,
together with the resulting beampatterns. We begin with a
uniform array comprising 64 sensors. We then look at
three arrays, each employing only 24 sensors: a
consecutive array where the sensors are bunched together,
a randomly chosen array, and an array comprising 4
groups of size 6 each, where the groups are randomly
distributed. The latter constellation resembles the choice
of Fourier coefficients in our hardware prototype. The
figure illustrates how the nonuniform, randomly chosen
distribution of sensors, maintains a narrow mainlobe, at
the cost of increased sidelobes. This may result in aliasing
of sufficiently strong targets but offers good resolution.
Using random groups maintains the narrow mainlobe with
a slight increase in sidelobes. From a hardware
perspective, this selection is far more practical than a
completely random choice. Thus, it offers a reasonable
trade-off between performance and hardware design.

BARANSKY ET AL.: SUB-NYQUIST RADAR PROTOTYPE: HARDWARE AND ALGORITHM

. HARDWARE

We now discuss practical considerations that guided
the design of the proposed analog board. We begin by
examining previous proposals for sub-Nyquist schemes
and point out the difficulty in their direct implementation.
We then present our prototype. Throughout this section we
consider the following system parameters: A PRI of
T = 1 ms, which corresponds to 1 KHz spacing of Fourier
coefficients. The pulse /(¢) is chosen to be approximately
flat in spectrum, over the extent of 10 MHz (single-sided
band). We assume a maximal number of L = 6 targets
within the PRI. The desired set of Fourier coefficients is
denoted by «.

A. Previous Work

Extracting a consecutive Fourier subset can be
performed using an LPF, followed by sampling at twice its
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stopband frequency. The DFT of the samples provide the
desired Fourier coefficients. However, as discussed in
Section II, recovery performance is enhanced when using
a set of coefficients distributed over a larger part of the
signal’s spectrum.

To extract arbitrary sets of Fourier coefficients, [6]
introduces a single-channel, presampling filter with
frequency response

nonzero, f = %, k ek
G(f)= 10, f=%kez\« ©)
arbitrary, otherwise.

Implementing a kernel satisfying (9) corresponding to
an arbitrary choice of isolated frequency samples requires
multiple pass-bands and extremely high frequency
selectivity. These characteristics are difficult to satisfy
when designing a practical analog filter.

The selectivity property requires high Q-factor filters,
with large attenuation within 1 KHz, the coefficients’
spacing. Filtering under this regime corresponds to
Q-factors on the order of thousands, which is infeasible
even when using piezoelectric components. In addition,
any off-the shelf filter with high Q-factor will have a long
impulse response. This can cause instability when
processing multiple pulse-streams. These considerations
show that implementing this class of filters with our
application’s specification is difficult.

An alternative architecture was proposed in [7], which
suggests the use of multichannel mixers and integrators to
directly compute and sample the Fourier coefficients at a
rate of 1/T in each channel. In this scheme one channel is
needed for each Fourier value, resulting in a large number
of channels that must be synchronized and large physical
dimensions of the hardware.

B. Multichannel Crystal Receiver

We suggest a multichannel crystal receiver to obtain
Fourier coefficients in a manner that is both practical and
efficient. This approach makes use of four parallel
channels which sample distinct bands of the radar signal
spectrum, as illustrated in Fig. 2. Each channel consists of
filtering the desired band, demodulating it to baseband and
then sampling it at its Nyquist rate. In this scheme, instead
of sampling isolated Fourier coefficients, we acquire four
sets of consecutive values. This allows to trade off
between the theoretical algorithmic requirements, which

benefit from a fully distributed selection, and the
constraints of practical analog filters.

In our scenario, the proposed approach achieves a
1 MHz sampling rate (combining all four channels),
whereas the Nyquist rate, corresponding to the bandwidth
of h(t), is 20 MHz. However, the design of systems for
classical methods such as MF, is constrained to the usage
of practical filters as well. An antialiasing LPF must be
used prior to sampling, and due to the finite width of its
transition band, it is not feasible to sample the filter’s
output at the signal Nyquist’s rate without causing
aliasing. Modeling an LPF with Chebyshev type-I, and
allowing a maximal order of 6, we were able to achieve a
stop frequency of 15 MHz, which requires sampling at
30 MHz, a 1.5 oversampling factor with respect to the
signal’s Nyquist rate. Thus we conclude that our scheme
achieves an even greater reduction compared with
practical implementation of classical methods.

In order to maintain a low oversampling factor, we
employ filters characterized by narrow pass-bands. For
instance, with 7= 1 ms, a 120 KHz pass-band
corresponds to 120 Fourier coefficients. This is ten times
the minimal number implied by the FRI framework for
L = 6 pulses in a noiseless scenario. In order to avoid the
usage of 1/Q channels which, as stated before, adds
complexity to the system, we demodulate the band-pass
filter’s (BPF’s) stop frequency in each channel, rather than
its central frequency, as done in customary design. This
requires that the filters be characterized by narrow
transition bands, in order to sufficiently attenuate image
frequencies aliasing our chosen coefficients. We observed
that active filters satisfying our narrow pass-band
requirement yield unsatisfactory attenuation of the image
frequencies, degrading the recovery performance. We
therefore chose to use crystal filters, whose transition
bands are extremely narrow. These filters are characterized
by an 80 KHz pass-band. The narrow transition bands
allow to achieve low rate sampling, while extracting a
sufficient number of Fourier coefficients. Another
advantage of the crystal filtering implementation is that it
results in identical receiver channels, which have small
phase unbalance and are easy to synchronize.

We performed simulations in order to obtain a good
combination of the 80 KHz pass- bands in all four
channels: multiple constellations of four frequency groups
were examined, each obtained by randomly choosing four
central frequencies and then taking narrow sets of
consecutive coefficients surrounding these frequencies.
The following constellation was found to yield good
performance, based on the evaluation methods detailed in
Section IV: 590 KHz - 670 KHz; 690 KHz -770 KHz;
1315 KHz - 1395 KHz; 1574 KHz -1654 KHz.

C. Analog Receiver Design

A full block-diagram of the proposed receiver is
depicted in Fig. 3. The system is intended to operate in
baseband frequencies, while the receiving and
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filter to suppress image frequencies.

demodulating of RF signals was simulated in a computer
environment (see Section IV). Amplification units were
added, in order to compensate for the high losses along
each channel. Among the reasons for these losses, are
the four-fold signal power reduction at the splitter, the
filtering of an 80 KHz slice out of a 10 MHz bandwidth
signal, and the total four-fold reduction caused by the up
and down conversions. As crystal filters operate only in
specific central frequencies, we performed two stages of
modulation, in which the desired band is up-converted to
the pass-band of the filter and then, after filtering, is
demodulated to baseband. It is then filtered with a
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125 KHz antialiasing LPF that suppresses the modulation
image. The stop frequency was chosen in order to acquire
an oversampling margin that allows minimal distortion to
the Fourier coefficients lying in the 25 KHz -105 KHz
band due to image frequencies or aliasing.

The four-stage process is illustrated in Fig. 4, which
shows the dynamics of the signal’s spectrum through one
of the channels. The final LPF allows sampling each
channel at 250 KHz, resulting in a total sampling rate of
1 MHz at all channels combined — a 20-fold reduction
relative to the 20 MHz Nyquist rate, and a 30-fold
reduction relative to a practical implementation of MF.
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TABLE I
Preliminary LPF Specifications

TABLE III
Antialiasing LPF Specifications

Parameter Value Parameter Value
Pass Frequency 2.5 MHz Pass Frequency 105 KHz
Maximal Pass-band Ripple 1dB Maximal Pass-band Ripple 1dB
Stop Frequency 56.35 MHz  Stop Frequency 125 KHz
Minimal Stopband Attenuation 40 dB Minimal Stopband Attenuation 25dB

g L
2D
=50
-40
-50
-60
28900000 28950000 29000000 29050000 29100000
Frequency (Hz)
Fig. 5. Magnitude response of crystal BPF as function of frequency.
TABLE I
Crystal Bandpass Filter Characteristics
Parameter Value
Center Frequency 29 MHz
—3dB Bandwidth 80 KHz
Maximal Pass-band Ripple 1dB
Stopband Frequencies 28.94 MHz, 29.06 MHz
Minimal Stopband Attenuation 60 dB

Once the channel output is sampled, its spectrum is easily
calculated via the fast Fourier transform (FFT) algorithm,
and the 320 relevant Fourier coefficients are ready as the
recovery algorithm’s input.

In our design we make use of three filtering stages.
The first stage is located before the mixers in order to
suppress image frequencies that may coincide with the
desired Fourier coefficients. In the first stage modulation
to the crystal pass-band is performed. Since the modulated
frequencies and the images vary from channel to channel
the specification for the preliminary LPF must be set to the
worst case. Thus, the left-most image frequency that
modulates our data, which is 56.35 MHz, must be
sufficiently suppressed by the LPF. Simulations affirmed
that at 40 dB attenuation at this frequency does not affect
the performance, and therefore this is the minimal
attenuation we require. Table I summarizes the
specifications for the preliminary filter.

In the next filtering stage, we make use of crystal
filters. As these are standard, off-the-shelf devices, the rest
of the stages must be adapted to their properties, while
maximizing the channel efficiency (in terms of amount of
data acquired and the sampling rate at the ADCs). Fig. 5
shows the magnitude response of a crystal filter, measured
in a network-analyzer, and Table II details its properties.
With a data bandwidth of 80 KHz on each channel, we are

816

able to acquire as many as 320 Fourier coefficients, which
allows reconstruction of various scenarios including a
different number of targets, varying distances, and a wide
RCS range. The narrow transition band of the magnitude
response, which achieves 60 dB attenuation at an offset of
60 KHz, allows to demodulate the data band to very low
frequencies. In practice, we demodulate the left-most
frequency of the pass-band to a frequency of 25 KHz, with
the right-most frequency demodulated to 105 KHz.
Demodulating the data to the DC frequency is undesirable,
since in this case image suppression is not satisfactory.
Finally, sampling the signal requires that we suppress
any frequency that might alias our data. Examining
Fig. 4(c), it is evident that the main contribution to aliasing
occurs from the part of the crystal’s pass-band energy that
was modulated to very high frequencies. Therefore, it is
sufficient to design an antialiasing filter that is efficient
enough in suppressing that band. However, each channel
incorporates the usage of amplifiers, which have nonlinear
regimes. Such nonlinearities may introduce high-order
harmonics of the signal, and therefore the antialiasing
filter must be designed to suppress any frequency
component which we might not have accounted for. Using
narrow filters also contributes to noise reduction, which
improves the performance of the recovery algorithm. The
desired characteristics of the antialiasing LPF are detailed
in Table III. With the stop frequency being 125 KHz we
are able to sample the output signal at a rate of 250 KHz,
which yields a total rate of 1 MHz at all four channels.
Another consideration in the design of the receiver is
the noise figure (NF) of the system. The NF measures the
degradation of the SNR across the channel. In our design,
we make use of operational amplifiers LMH-6629 as
power amplifiers, which have a gain of 14 dB and an NF
of 9 dB. The mixers have a conversion loss of 5 dB, while
the crystal filters have an insertion loss of 4 dB. Splitting
the power of the signal to four separate channels yields
attenuation of 6.28 dB. The preliminary LPF and the
antialiasing LPF have very small insertion loss, and
therefore their NFs are negligible. To obtain the total NF
of the system, we use the Friis equation [35],

N ONE, —1

n—1
n=2 nm:l Gm

where G, and N F), are the gain and NF of the nth
component in the channel, respectively, and N is the
number of total components. Incorporating the fact that
the NF of an attenuator is equal to its attenuation level, the

NFsyxlem =NF + (10)
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Fig. 6. 4-channel crystal receiver prototype.

total NF of our system is N Fyy., = 11 dB. This causes a
degradation that can be compensated by averaging over
several periods of the signal, as discussed in Section IV.

A photo of our 4-channel crystal receiver analog board
prototype is presented in Fig. 6. In the next section we
show real-time experiments of the hardware prototype,
and compare its performance with a simple LPF which
filters the signal at 500 KHz and samples it at an identical
rate of 1 MHz, as well as to the traditional MF which
operates at rates higher than Nyquist.

V. SIMULATIONS AND EXPERIMENTS

In this section we present hardware simulations
incorporating practical filtering, as well as real
experiments of our hardware prototype that include the
transmission of analog signals.

A. Simulations

We first evaluate our hardware and recovery method
via MATLAB. We examined the success in recovering
multiple realizations of the signal defined in (1), after its
corruption by noise. Each realization comprised L = 6
pulses. The pulse and its spectrum are depicted in Fig. 7.
Time delays and amplitudes were drawn uniformly, at
random, within the intervals [0,1ms) and [0.5,1.5],
respectively. The signals were generated digitally, at a rate
of 0.6 GHz, which is much higher than the Nyquist rate
corresponding to A(f)’s 10 MHz bandwidth. The signals
were corrupted by zero-mean white Gaussian noise, with
variance o2 determined such that the SNR, defined with
respect to the weakest target as

1 ) )
SNR = — min la;|”, (11)
02 i=1,..,L
maintains a predefined value.

To measure the system’s recovery performance and to
compare it to other solutions, we define the hit-rate and the
root-mean-square error (RMSE) metrics in the following
manner:

Hit-Rate = %|{f,||f, —t| <eml=1,... L}

2

1 A 2
RMSE = | - —— Yo G- . a2

1i|ft—t1|§8m
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Fig. 7. Temporal shape of pulse (a) and its Fourier spectrum (b).

where {#;} 1L=1 are the estimated time delays and €y, is the
tolerance factor, determined by application (we chose

€ = 150 ns, which is three times the signal’s Nyquist
period). The RMSE is calculated only with respect to the
estimates found within the tolerance interval. In order to
obtain statistically stable results, each experiment was
repeated 500 times.

We evaluated the performance of four different
estimation methods. The first was our 4-channel crystal
receiver, where OMP was used for recovering the
unknown signal parameters from its subset of Fourier
series coefficients. The next two methods were based on a
single LPF channel which operates at a total sampling
rate of 1 MHz, and obtains a group of consecutive Fourier
values. Although the sampling rate at this single channel is
1 MHz, we are only able to extract 400 coefficients due to
nonideal transition bands. We considered two different
recovery methods: the MP algorithm [31], and OMP. Note
that all three of the schemes operate under the same
overall sampling rate. Finally, we compared the former
approaches with the traditional MF method, which
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Fig. 8. Comparison of four sampling and estimation methods.
(a) Hit-rate. (b) RMSE. Number of samples per PRI used for processing
is: 1000 (crystal receiver, LPF, and MP), 30000 (MF).

requires sampling at a rate 1.5 times higher than the
Nyquist rate (30 MHz).

All the filters used in our simulations were modeled
via MATLAB?s filter design and analysis tool, and were
based on the Chebyshev type-I filter. The electronic filters
in the different schemes (such as the antialiasing LPFs)
were designed so that their order does not increase above
6. In contrast, the crystal filter was modeled with a high
order BPF, in order to mimic its narrow transition bands.
As part of the digital procedure, we integrated over
reflections of 500 consecutive pulses in order to reduce
noise power. While this procedure constrains us to slow
moving targets, our technique remains applicable to
various scenarios, such as naval target, vehicle and human
tracking, and more.

Fig. 8 depicts the performance of the four
aforementioned methods, as a function of the
preintegrated SNR, tested for multiple realizations of our
radar signal. Note that two of the methods make use of the
same single LPF channel. Examining the results we infer

Amplifier

NI5781 LO

Controller
i source

W st

Fig. 9. NI chassis.

TABLE IV
NI PXI Devices

NI Part No. Description

NI PXIe-1075
NI PXIe-8133
NI PXIe-5451

18-Slot 3U PXI Express Chassis
Core 17-820QM 1.73 GHz Controller
400 MSamp/s Arbitrary Waveform Generator (AWG)

NI PXI-5690 2 Channel RF Preamplifier from 500 KHz to 3.0 GHz

NI PXI-4130  Power SMU

NI PXI-6123 16-Bit, 500 KSamp/s/ch, Simultaneous Sampling
Multifunction ADC

NI PXIe-6672 Timing and Multichassis Synchronization Unit for PXI
Express

Baseband Transceiver for NI FlexRIO
NI FlexRIO FPGA Module for PXI

NI 5781
NI PXI-7965R

that the 4-channel crystal receiver yields much better
performance than LPF-based methods at low SNR values.
This corresponds to the fact that in noisy realizations the
aperture is critical. As the SNR increases, the aperture
plays a less significant role, and the total number of
samples determines the reconstruction performance. It is
not surprising that the less noisy the samples are, the better
the performance obtained by MP. The latter does not
quantize the time axis and can reach numerical precision
for high enough SNR values [31]. For comparison, the MF
curve is also plotted. It is quite clear that it provides better
performance than our approach, in particular for low SNR
values, but as the SNR improves the performance gap
drops. The figure also shows that our 4-channel crystal
receiver provides lower RMSE than the LPF-based
methods, in the entire SNR range, and approaches the MF
performance as the SNR increases.

B. Experimental Environment

To evaluate the board we make use of NI PXI
equipment for both system synchronization and signal
sources. The entire component ensemble, wrapped in the
NI chassis, is depicted in Fig. 9. The components we make
use of are listed in Table IV.

In order to achieve system stability, and to obtain fine
recovery performance, synchronizing the system is
essential. Jitters and drifts between clocks, might skew the
time instances in a manner that distorts the calculated
Fourier coefficients. We therefore must ensure that our
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entire component ensemble, including the arbitrary
waveform generator (AWG), local oscillator (LO) signals
and ADCs, are triggered by the same clock. This promises
that phase unbalance between devices is brought to a
minimum.

The advantage of the NI PXI chassis is that it can
synchronize several devices to one base clock and
distribute a trigger signal with skew less than 1 ns. The
ability to synchronize all devices to one clock keeps the
jitter between signals low so that we can assume it does
not cause a change in phase during operation. Therefore,
the whole system is stable and consistent.

C. Experiments

The experimental process consists of the following
steps. We begin by using AWR software, which provides
the ability to examine a large variety of scenarios,
comprising different targets, distances, and RCS values. It
is able to simulate the complete radar scenario, including
the pulse transmission and accurate power loss due to
wave propagation in a realistic medium. It also takes into
account the reflections from the unknown targets, which
are proportional to their RCS. Finally, AWR software
contains a model of a realistic RF receiver, which
performs signal processing at high frequencies. The
demodulation of the signal to IF frequencies is simulated,
and the output is saved to a file. Next, the simulation result
is loaded to the AWG module, which produces an analog
signal. This signal is amplified using the NI 5690 low
noise amplifier (LNA) and then routed to our 4-channel
crystal receiver. The receiver is fed by 5 LOs, of which 4
modulate the desired frequency band of each channel
individually to the crystal pass-band, and a global one that
modulates the latter to a low frequency band, before
sampling. The LOs are created using 3 NI 5781 baseband
transceivers, acting as trigger-based signal generators with
a constant and known phase, controlled by NI Flex Rio
field-programmable gate arrays (FPGAs). The AWG also
triggers the ADC to sample 250 samples in each sampling
cycle, per channel. These samples are fed into the chassis’
controller and a MATLAB code is launched that runs the
reconstruction algorithm. Our system contains a fully
detailed interface implemented in the LabView
environment, which allows simple activation of the
process. A screenshot of the interface is depicted in
Fig. 10.

Performing the previously described processes, we
tested various scenarios on the board, that is, a variety of
targets, distances, and RCS, and examined the
reconstruction quality. Testing the board for its limitations
leads to the following results. The minimal voltage for a
reconstructible pulse, without PRI integration, is
approximately 4 mV, which corresponds to a power of
P,.in = 320 nW = -34.94 dBm. As the board contains
amplification units, we must also consider the maximal
allowable input power. Above this power, the amplifiers
reach their nonlinear regimes and introduce noninvertible
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Fig. 10. LabView experimental interface. From left to right: signal’s
spectrum, frequency response of each channel, 4 signals viewed in each
channel, at top - the reconstructed signal, at bottom - the transmitted
signal.

distortions to the input signal. Measurements indicate that
above a voltage of 92 mV, which corresponds to a power
of Py = 169.28 W = —7.7139 dBm, such effects begin
to take place. We thus deduce that our system has a
dynamic range (DR) of
DRsystem = Prnax — Pmin = 27.23dB. (13)

The DR of the analog system can be digitally
enhanced using pulse integration. For example, integrating
over 500 pulses, increases the DR by a factor of 10
logp(500) = 27 dB.

We also tested the limitations for multiple-pulse
scenarios. In cases where the OMP algorithm fails to
obtain time delays with a small enough error, calculating
the residual might yield unsatisfactory attenuation of the
part of the measurements corresponding to the located
pulse. For pulses energetic enough this means that their
residual might still be stronger than the remaining pulses.
We measured that a scenario of two pulses with voltage
ratio above 12 causes the algorithm to select the stronger
pulse twice in consecutive iterations, thus failing to
identify the weaker pulse.

Fig. 11 demonstrates our system’s reconstruction
abilities in 4 target scenarios. In (a), we simulate 4 evenly
spaced targets located at distances of 39.28 km, 65.43 km,
98.76 km, 132.54 km. The estimates where calculated as
39.275 km, 65.423 km, 98.752 km, 132.529 km,
respectively, providing a maximal error of only 11 m.

Fig. 11(b) tests evenly spaced targets at shorter distances.
The received pulses correspond to targets at distances

120 km, 125 km, 130 km, 135 km. Note that this
experiment shows the system’s performance at relatively
long distances. Estimated targets were found at

119.99 km, 124.995 km, 129.997 km, 134.981 km,
providing a maximal error of 19 m. In (c) we demonstrate
the system’s DR, as well as its ability to separate close
targets. The transmitted pulses correspond to targets
located at 72.5 km, 74 km, 76 km, 78 km. To demonstrate
the DR, the third target was chosen to have an echo 7 times
stronger than the other targets. The system estimated the
following distances: 72.499 km, 73.992 km, 75.994 km,
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Fig. 11.

Signal reconstruction with 4-channel crystal receiver, for
different scenarios. Left pane corresponds to received signals, while right
pane depicts reconstructed signals.

77.995 km. Furthermore, although the pulses’ amplitudes
were highly diverse, their estimations were accurate.

V. CONCLUSION

We presented the first sub-Nyquist radar prototype
based on the Xampling methodology. We have been able
to reduce the total sampling rate by a factor of
approximately 30 while maintaining reasonable target
location estimation and hit-rate ability. Our experiments
with the hardware have further proven that sub-Nyquist
sampling of radar signals is possible without losing much
of the recovery performance.

In the future, theoretical research might enrich the
mathematical model, with the addition of Doppler effects
and relaxing the demand that the shape of the pulses is
known. Different algorithms and methods might be
considered instead of OMP, to increase noise robustness
and spatial resolution. We believe that the implementation
of a sub-Nyquist radar prototype is an important step
towards the incorporation of Xampling and FRI
frameworks into real communication and
signal-processing systems.
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