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Abstract—Sonography techniques use multiple transducer 
elements for tissue visualization. Signals received at each ele-
ment are sampled before digital beamforming. The sampling 
rates required to perform high-resolution digital beamforming 
are significantly higher than the Nyquist rate of the signal 
and result in considerable amount of data that must be stored 
and processed. A recently developed technique, compressed 
beamforming, based on the finite rate of innovation model, 
compressed sensing (CS), and Xampling ideas, allows a reduc-
tion in the number of samples needed to reconstruct an image 
comprised of strong reflectors. A drawback of this method is 
its inability to treat speckle, which is of significant importance 
in medical imaging. Here, we build on previous work and ex-
tend it to a general concept of beamforming in frequency. This 
allows exploitation of the low bandwidth of the ultrasound 
signal and bypassing of the oversampling dictated by digital 
implementation of beamforming in time. By using beamform-
ing in frequency, the same image quality is obtained from far 
fewer samples. We next present a CS technique that allows for 
further rate reduction, using only a portion of the beamformed 
signal’s bandwidth. We demonstrate our methods on in vivo 
cardiac data and show that reductions up to 1/28 of the stan-
dard beamforming rates are possible. Finally, we present an 
implementation on an ultrasound machine using sub-Nyquist 
sampling and processing. Our results prove that the concept 
of sub-Nyquist processing is feasible for medical ultrasound, 
leading to the potential of considerable reduction in future 
ultrasound machines’ size, power consumption, and cost.

I. Introduction

Diagnostic ultrasound has been used for decades to 
visualize body structures. Imaging is performed by 

transmitting a pulse along a narrow beam from an ar-
ray of transducer elements. During its propagation, echoes 
are scattered by acoustic impedance perturbations in the 
tissue and received by the array elements. The data col-
lected by the transducers is sampled and digitally inte-
grated in a way referred to as beamforming. The process 
of beamforming comprises averaging the received signals 
after their alignment with appropriate time-dependent de-
lays. Beamforming allows one to obtain a signal steered in 
a predefined direction, corresponding to the transmission 
path, and optimally focused at each depth. This results in 
SNR enhancement and improvement of angular localiza-
tion. Such a beamformed signal, referred to as a beam, 
forms a line in the image.

According to the classic Shannon–Nyquist theorem [1], 
the minimal sampling rate at each transducer element 
should be at least twice the bandwidth of the received 
signal to avoid aliasing. In practice, rates up to 4 to 10 
times the central frequency of the transmitted pulse are 
required to eliminate artifacts caused by digital implemen-
tation of beamforming in time [2]. Taking into account the 
number of transducer elements and the number of lines 
in an image, the amount of sampled data that must be 
digitally processed is very large, motivating methods to 
reduce sampling and processing rates. The reduction in 
rate and, consequently, in amount of data can be particu-
larly beneficial for portable devices and wireless probes.

A. Related Work

A possible approach to sampling rate reduction is in-
troduced in [3]. Tur et al. consider the ultrasound sig-
nal received at each array element within the framework 
of finite rate of innovation (FRI) [4]. The received signal 
is modeled as L replicas of a known transmitted pulse, 
caused by its scattering from reflectors, located along the 
transmitted beam. Such an FRI signal is fully described 
by 2L parameters, corresponding to the replica’s unknown 
delays and amplitudes. These parameters are recovered 
from a subset of at least 2L of the signal’s Fourier series 
coefficients using array processing methods or compressed 
sensing (CS) techniques [5], [6]. The required Fourier 
coefficients can be computed from appropriate low-rate 
samples of the signal following ideas of [3] and [7]–[10]. 
Recent work has developed a hardware prototype imple-
menting the suggested sub-Nyquist system in the context 
of radar [11].

The FRI structure of an ultrasound signal is exploited 
in a similar fashion in [12] in the context of ultrasonic flaw 
detection with a single-element transmitter and receiver. 
The unknown parameters are recovered from sub-Nyquist 
samples of the received signal, projected on a random Ber-
noulli basis. To simplify the sampling process [13] pro-
poses a digital-assisted asynchronous CS front-end. In this 
approach, the received signal is not directly sampled, but 
rather first converted into ternary timing information, al-
lowing for significant reduction in the system’s complex-
ity. A CS approach is also used in [14] to recover the raw 
received signals by exploiting sparsity in the wave atom 
domain. Here, low-rate samples of the received signals are 
obtained by random subsampling of the original data.

The preceding frameworks allow sampling and recovery 
of each individual received signal at a low rate, assuming 
sufficiently high SNR. However, the final goal in low-rate 
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ultrasound imaging is to recover a two-dimensional image. 
Such an image is obtained by integrating the noisy data 
sampled at multiple transducer elements. In standard im-
aging, the integration is achieved by the process of beam-
forming, which is performed digitally and, theoretically, 
requires high sampling rates. Hence, to benefit from the 
rate reduction achieved at the level of the received signals, 
one must be able to incorporate beamforming into the 
low-rate sampling process. Several works describe meth-
ods for recovering a beamformed signal from its low-rate 
samples using CS methodology [15]–[17]. However, these 
techniques all assume that one has access to the continu-
ous-time beamformed data. In practice, the beamformed 
signal is formed from samples of each of the individual re-
ceived signals. Samples of the beamformed signal are not 
available at the transducer elements. Therefore, a practi-
cal way to acquire low-rate beamformed data from low-
rate samples of the received signals is still lacking.

A solution to low-rate beamforming is proposed in [5], 
where Wagner et al. introduce the concept of compressed 
beamforming. They show that their approach, applied to 
an array of transducer elements, allows reconstruction of a 
two-dimensional ultrasound image depicting macroscopic 
perturbations in the tissue. To develop their method, the 
authors first prove that the beam obeys an FRI model, 
implying that it can be reconstructed from a small subset 
of its Fourier coefficients. However, this required subset 
cannot be obtained by the schemes proposed in [3] and 
[7], because the beam does not exist in the analog domain. 
This fundamental obstacle is resolved by transforming the 
beamforming operator into the compressed domain. Spe-
cifically, Wagner et al. show that the Fourier coefficients of 
the beam can be approximated by a linear combination of 
Fourier coefficients of the received signals. The latter are 
obtained from the low-rate samples of the received signals, 
using the Xampling method, proposed in [3], [7], and [11].

B. Contributions

In this paper, we build on the results in [5] and show 
that compressed beamforming can be extended to a much 
more general concept of beamforming in frequency. The 
core of compressed beamforming is the relationship be-
tween the beam and the received signals in the frequency 
domain, whereas the notion of “compressed” stems from 
the fact that the Fourier coefficients of the received sig-
nals can be obtained from their low-rate samples. Here we 
show that this frequency-domain relationship is general 
and holds irrespective of the FRI model. This leads to an 
approach of beamforming in frequency which is complete-
ly equivalent to beamforming in time applicable to any 
signal, without the need to assume a structured model. 
When structure exists, beamforming in frequency may be 
combined with CS to yield further rate reduction.

We note that the concept of beamforming in frequency 
was first considered back in the 1960s in the context of 
sonar array processing, operating in the far field [18], [19]. 
However in contrast to beamforming in the far field, which 

is linear in time, the processing required in ultrasound 
is nonlinear. Its translation to the frequency domain is 
therefore much more involved and, to the best of our 
knowledge, was first addressed in [5].

We show that beamforming in frequency allows one to 
bypass the oversampling dictated by digital implementa-
tion of beamforming in time. Because the beam is ob-
tained directly in frequency, we must compute its Fou-
rier coefficients only within its effective bandwidth. We 
demonstrate that this can be achieved using generalized 
samples of the received signals, obtained at their effec-
tive Nyquist rate. To avoid confusion, by effective Nyquist 
rate, we mean the signal’s effective band-pass bandwidth, 
which is typically much lower than its highest frequency. 
This is because the received signal is normally modulated 
onto a carrier and only occupies a portion of the entire 
bandwidth. Using in vivo cardiac data, we illustrate that 
beamforming in frequency allows preservation of image in-
tegrity with an 8-fold reduction in the number of samples 
used for its reconstruction.

Further reduction in sampling rate is obtained, simi-
larly to [5], when only a portion of the beam’s bandwidth 
is used. In this case, beamforming in frequency is equiva-
lent to compressed beamforming. The received signals are 
sampled at sub-Nyquist rates, leading to up to 28-fold 
reduction in sampling rate. Our contribution in this sce-
nario regards the reconstruction method used to recover 
the beam from its partial frequency data. To estimate the 
unknown parameters corresponding to the FRI model of 
the beam, Wagner et al. assume that the parameter vec-
tor is sparse. The parameters are then obtained by solv-
ing an l0 optimization problem. Sparsity holds when only 
strong reflectors are taken into account, while the speckle 
is treated as noise. To capture the speckle, we assume that 
the parameter vector is compressible and recast the re-
covery as an l1 optimization problem. We show that these 
small changes in the model and the CS reconstruction 
technique allow one to capture and recover the speckle, 
leading to significant improvement in image quality.

Finally, we introduce an implementation of beamform-
ing in frequency and sub-Nyquist processing on a stand-
alone ultrasound machine and show that our proposed 
processing is feasible in practice using real hardware. Low-
rate processing is performed on the data obtained in real-
time by scanning a heart with a 64-element probe. Our 
approach allows for significant rate reduction with respect 
to the lowest processing rates that are achievable today, 
which can potentially impact system size, power consump-
tion, and cost.

The rest of the paper is organized as follows: in Sec-
tion II, we review beamforming in time and discuss the 
sampling rates required for its digital implementation. 
Following the steps in [5], we describe the principles of 
frequency-domain beamforming in Section III, and prove 
that it is equivalent to standard time-domain processing. 
In Section IV, we show that beamforming in frequency 
allows for rate reduction even without exploiting the FRI 
model and can be performed at the effective Nyquist rate 
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of the signal. CS recovery from partial frequency data, 
implying sampling and processing at sub-Nyquist rates, is 
discussed in Section V. Comparison between the perfor-
mance of the proposed method with the results obtained 
in [5] together with an implementation of beamforming in 
frequency and sub-Nyquist processing on a stand-alone 
ultrasound machine are presented in Section VI.

Table I summarizes the important notation used 
throughout the paper.

II. Conventional Processing  
in Ultrasound Imaging

Most modern imaging systems use multiple transducer 
elements to transmit and receive acoustic pulses. This al-
lows beamforming during both transmission and reception. 
Beamforming is a common signal-processing technique [20] 
that enables spatial selectivity of signal transmission or 
reception and is applied in various fields, including wire-
less communication, speech processing, radar, and sonar. 
In ultrasound imaging, beamforming is used for steering 
the beam in a desired direction and focusing it in the re-
gion of interest to detect tissue structures.

During transmission, beamforming is achieved by de-
laying the transmission time of each transducer element, 
which allows the transducer to transmit energy along a 
narrow beam. Beamforming upon reception is much more 
challenging. Here, dynamically changing delays are ap-
plied on the signals received at each of the transducer 
elements before averaging. Time-varying delays allow dy-
namic shift of the reception beam’s focal point, optimiz-
ing angular resolution. Averaging of the delayed signals 
in turn enhances the SNR of the resulting beamformed 
signal, which is used to form a line in an image. From here 
on, the term beamforming will refer to beamforming upon 
reception, which is the focus of this work.

A. Beamforming in Time

We begin with a detailed description of the beamform-
ing process which takes place in a typical B-mode imaging 
cycle. Our presentation is based mainly on [21] and [5]. We 
will then show, in Section III, how the same process can 
be performed in frequency, paving the way to substantial 
rate reduction.

In the transmit path, a pulse is generated and transmit-
ted by the array of transducer elements. The pulse trans-
mitted by each element is timed and scaled, so that the 
superposition of all transmitted pulses creates a direction-
al beam propagating at a certain angle. By subsequently 
transmitting at different angles, a whole sector is radiated. 
The real-time computational complexity in the transmit 
path is negligible because transmit parameters per angle 
are calculated offline and saved in tables.

Consider an array comprised of M transceiver elements 
aligned along the x-axis, as illustrated in Fig. 1. The refer-
ence element m0 is set at the origin and the distance to the 
mth element is denoted by δm. The image cycle begins at 
t = 0, when the array transmits an energy pulse in the 
direction θ. The pulse propagates through the tissue at 
speed c, and at time t ≥ 0 its coordinates are (x, z) = 
(ct sinθ, ct cosθ ). A potential point reflector located at this 
position scatters the energy such that the echo is received 
by all array elements at a time depending on their loca-
tions. Denote by φm(t) the signal received by the mth ele-
ment and by τ̂ θm t( ; ) the time of arrival. It is readily seen 
that

	 τ̂ θ
θ

m
mt t
d t
c( ; ) =
( ; )

,+ 	 (1)

where dm(t;θ ) = ( ) ( )2 2ct ctmcos sinθ δ θ+ −  is the dis-
tance traveled by the reflection. Beamforming involves av-
eraging the signals received by multiple receivers while 

TABLE I. List of Notation. 

φm(t) Signal received at the mth transducer element
ϕ̂ θm t( ; ) Dynamically delayed received signal used for beamforming in the direction θ
Φ(t;θ) Beamformed signal corresponding to the direction θ
T Time duration of the received signal
TB(θ) Time duration of the beamformed signal
cm[k] kth Fourier coefficient of the received signal φm(t)
c[k] kth Fourier coefficient of the beamformed signal Φ(t;θ) 
ĉ km[ ] Auxiliary variable used in deriving frequency-domain beamforming
fs Beamforming rate
N = T f⋅ s Number of samples required by the beamforming rate
qk,m(t;θ) Distortion function
Qk,m;θ[n] Fourier coefficients of the distortion function
N1, N2 Parameters used for approximation of c[k] 
β Effective band-pass bandwidth of the received signal
B Number of Fourier coefficients within β
βBF Effective band-pass bandwidth of the beamformed signal
BBF Number of Fourier coefficients within βBF
μBF Subset of βBF used for sub-Nyquist processing
MBF Cardinality of μBF
μ Subset of β required for sub-Nyquist beamforming
M Cardinality of μ
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compensating for the differences in arrival time. In that 
way, we obtain a signal containing the energy reflected 
from each point along the central transmission axis θ.

Using (1), the arrival time at m0 is τ̂ θm t0
( ; ) = 2t because 

δm0 = 0. Applying an appropriate delay to φm(t), such that 
the resulting signal ϕ̂ θm t( ; ) satisfies ϕ̂ θm t(2 ; ) = ϕ τ θm m t( ( ; ))ˆ , 
we can align the reflection received by the mth receiver 
with the one received at m0. Denoting τm(t;θ ) = τ̂ θm t( 2; )/  
and using (1), the following aligned signal is obtained:

	
ˆ

sin

ϕ θ ϕ τ θ

τ θ δ θ δ

m m m

m m m

t t

t t t c t c

( ; ) = ( ( ; )),

( ; ) =
1
2 4( ) 4( )2 2+ − +( / / )).

	 (2)

The beamformed signal may now be derived by averaging 
the aligned signals:

	 Φ( ; ) =
1

( ; ).
=1

t M t
m

M

mθ ϕ θ∑ˆ 	 (3)

Such a beam is optimally focused at each depth, and hence 
exhibits improved angular localization and enhanced SNR.

Although defined over continuous time, ultrasound im-
aging systems perform the beamforming process in (2) 
and (3) in the digital domain: analog signals φm(t) are 
amplified and sampled by an ADC, preceded by an anti-
aliasing filter. We next discuss the sampling and process-
ing rates required to perform (3).

B. Rate Requirements

Digital implementation of beamforming requires sam-
pling the signals received at the transducer elements and 
transmitting the samples to a processing unit. The Nyquist 
rate, required to avoid aliasing, is insufficient for digital 
implementation of beamforming because of the high delay 
resolution needed. Indeed, to apply the delay defined in 
(2) digitally, received signals must be sampled on a suf-
ficiently dense grid. Typically, the sampling interval is on 
the order of nanoseconds. Therefore, required sampling 
rates are significantly higher than the Nyquist rate of the 
signal and can be as high as hundreds of megahertz [22].

Because of the impracticality of this requirement, ul-
trasound data are sampled at lower rates, typically on the 
order of tens of megahertz. Fine delay resolution is ob-
tained by subsequent digital interpolation. Interpolation 
beamforming allows reduction of the sampling rate at the 
cost of additional computational load required to imple-
ment the digital interpolation, which effectively increases 
the rate in the digital domain. The processing, or more 
precisely, beamforming rate, remains unchanged because 
it is performed at the high digital rate.

Another common way to improve delay accuracy while 
reducing both sampling and beamforming rate is phase-
rotation-based beamforming (PRBF) [2]. In this approach, 
coarse delays, defined by the sampling rate, are followed 
by a vernier control, implemented by a digital phase shift, 
adjusted for the central frequency. The phase shifter ap-
proximation to a time delay is exact only at the central 
frequency, leading to loss in array gain and rise in the side 
lobe level. The analysis in [2] shows that these losses are 
dictated by the ratio between the effective bandwidth of 
the signal and the sampling rate. Therefore, degradation of 
beam quality can be avoided, provided that the sampling 
rate is 4 to 10 times the signals’ band-pass bandwidth. 
When assuming that the transducer central frequency is 
approximately equal to the band-pass bandwidth, we ob-
tain a well-known rule of thumb, requiring sampling rate 
of 4 to 10 times the transducer central frequency. Here-
after, following [2], we denote the rate required to avoid 
artifacts in digital implementation of beamforming as the 
beamforming rate, fs.

As imaging systems evolve, the number of elements 
participating in the imaging cycle continues to grow sig-
nificantly. Consequently large amounts of data must be 
transmitted from the system front-end and digitally pro-
cessed in real time. Increasing transmission and processing 
pose an engineering challenge on digital signal processing 
(DSP) hardware and motivate reducing the amounts of 
data as close as possible to the system front-end. This 
is particularly true for 3-D imaging systems with 2-D 
transducers. The number of elements in such a transducer 
is typically above a thousand. Acquiring, and especially 
transferring, the data from each element is impractical. 
Instead, only a portion of the entire aperture typically 
participates in the reception, leading to degradation of 
the resulting image. Therefore, 3-D imaging can benefit 
significantly from low-rate sampling.

To conclude this section, we evaluate the sampling 
rates and the number of samples needed to be taken at 
each transducer element according to each of the methods 
described previously. Our evaluation is based on the imag-
ing setup typically used in cardiac imaging. We assume a 
breadboard ultrasonic scanner of 64 acquisition channels. 
The radiated depth r = 16 cm and speed of sound c = 
1540 m/s yield a signal of duration T = 2r/c � 210 μs. 
The acquired signal is characterized by a narrow band-
pass bandwidth of 2 MHz, centered at carrier frequency  
f0 ≈ 3.4 MHz. To perform plain delay-and-sum beamform-
ing with 5 ns delay resolution, received signals should be 

Fig. 1. M receivers aligned along the x-axis. An acoustic pulse is trans-
mitted in a direction θ. The echoes scattered from perturbation in the 
radiated tissue are received by the array elements.
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sampled at the rate of 200 MHz. Implementation of inter-
polation beamforming, used in many imaging systems, al-
lows reduction of the sampling rate to 50 MHz, while the 
required beamforming rate is obtained through interpola-
tion in the digital domain. Hence, each channel yields 
42 000 real-valued samples participating in beamforming. 
Rates required by PRBF in this setup vary from 8 to 
20 MHz, leading to 1680 to 4200 real-valued samples ob-
tained at each transducer element.

It is evident that processing in the time domain im-
poses a high sampling rate and considerable burden on 
the beamforming block. We next show that the number of 
samples can be reduced significantly by exploiting ideas 
of sub-Nyquist sampling, beamforming in frequency, and 
CS-based signal reconstruction.

III. Beamforming in Frequency

We now show that beamforming can be performed 
equivalently in the frequency domain, paving the way to 
substantial reduction in the number of samples needed 
to obtain the same image quality. We extend the notion 
of compressed beamforming, introduced in [5], to a gen-
eral concept of beamforming in frequency. In particular, 
we show that the frequency domain relationship is gen-
eral and holds irrespective of the FRI model. This allows 
transfer of the process of beamforming to the frequency 
domain, while achieving the same result as beamforming 
in time. We also show that it can be performed efficiently 
using a small number of Fourier coefficients of the received 
signals.

A. Implementation and Properties

As mentioned in Section I-B, beamforming in frequency 
was first addressed in the context of sonar array process-
ing [18], [19], [23]. Sonar, similar to radar, operates in the 
far field so that the process of beamforming is comprised 
of steering only. The delays applied to the received signals 
are defined by the geometry of the array and the steer-
ing angle, and are constant in time. Hence, beamforming 
corresponds to averaging of signals with constant delays. 
This process can be transferred to the frequency domain 
in a straightforward manner through the well-known time-
shifting property of the Fourier transform: a constant time 
shift is equivalent to an exponential phase shift in fre-
quency.

In the context of ultrasound imaging, however, dynam-
ic focusing is a crucial step. It allows the focal point to 
move throughout the scan depth and obtain optimal fo-
cusing both in the near field and in the far field. Its imple-
mentation, defined in (2), is a nonlinear operation because 
of time-dependent delays τm(t;θ ) applied to the received 
signals. Therefore, the fact that the Fourier coefficients of 
the beam can be obtained as a linear combination of the 
Fourier coefficients of the received signals does not stem 

from the linearity property of the Fourier transform and 
requires appropriate justification.

We follow the steps in [5] and start from the computa-
tion of the Fourier series coefficients of the beam Φ(t;θ ). 
As shown in [5], the support of the beam Φ(t;θ ) is limited 
to [0, TB(θ )), where TB(θ ) < T and T is defined by the 
transmitted pulse penetration depth. The value of TB(θ ) 
is given by [5]

	 T T
m M

mB( ) = ( ; ),
1

1θ τ θ
≤ ≤

−min 	 (4)

where τm(t;θ ) is defined in (2). Denote the Fourier series 
coefficients of Φ(t;θ ) with respect to the interval [0, T ) by

	 c k T I t t e t
T

T
i ktT[ ] =

1
( ) ( ; ) ,

0
[0, ( ))

2∫ −
B

/ dθ
πθΦ (( )) 	 (5)

where I[a,b) is the indicator function equal to 1 when a ≤ t 
< b and 0 otherwise. Plugging (2) and (3) into (5), we get

	 c k M c k
m

M

m[ ] =
1

[ ],
=1
∑ˆ 	 (6)

where ĉ km[ ] is defined as

	 ˆ (( ) )c k T I t t e tm
T

T m m
i ktT[ ] =

1
( ) ( ( ; )) .

0
[0, ( ))

2∫ −
B

/ dθ
πϕ τ θ 	 (7)

Our goal is to derive a relationship between the Fourier 
coefficients of the beam and those of the received signals. 
To this end, we substitute x = τm(t;θ ). After some alge-
braic manipulation and replacing x by t, we obtain

	 ˆ (( ) )c k T t q t e tm
T
m k m

i ktT[ ] =
1

( ) ( ; ) ,
0

,
2∫ −ϕ θ π / d 	 (8)

with
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m
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−
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m

2
,

π γ θ
γ θ γ

	 (9)

and γm = δm/c. Note that (8) contains a non-delayed ver-
sion of φm(t), in contrast to (7). The delays are effectively 
applied through the distortion function, qk,m(t;θ ), defined 
in (9).

We next replace φm(t) by its Fourier series coefficients. 
Denoting the nth Fourier coefficient by cm[n] we can re-
write (8) as

	
ˆ (( ) )c k c n T q t e t

c k nQ

m
n
m

T
k m

i k n t

n
m

T[ ] = [ ]
1

( ; )

= [ ]

0
,

2 ( )∑ ∫

∑

− −

−

θ π / d

kk m n, ; [ ],θ

	 (10)
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where Qk,m;θ[n] are the Fourier coefficients of the distor-
tion function with respect to [0,T ). When substituted by 
its Fourier coefficients, the distortion function effectively 
transfers the beamforming delays defined in (2) to the 
frequency domain. The function qk,m(t;θ ) depends only on 
the array geometry and is independent of the received 
signals. Therefore, its Fourier coefficients can be comput-
ed off-line and used as a look-up-table (LUT) during the 
imaging cycle. According to proposition 1 in [5], ĉ km[ ] can 
be approximated sufficiently well when we replace the in-
finite summation in (10) by a finite sum:

	 ĉ k c k nQ nm
n k

m k m[ ] [ ] [ ].
( )

, ;�
∈
∑ −
ν

θ 	 (11)

The set ν (k) depends on the decay properties of {Qk,m;θ[n]}.
We now take a closer look at the properties of {Qk,m;θ[n]}. 

Our numerical studies show that most of the energy of the 
set {Qk,m;θ[n]} is concentrated around the dc component. 
This behavior is typical to any choice of k, m, or θ, and 
is illustrated in Fig. 2 for k = 100, m = 14, and θ = 
0.421 rad. We therefore rewrite (11) as

	 ĉ k c k nQ nm
n N

N

m k m[ ] [ ] [ ],
=

, ;
1

2

�
−
∑ − θ 	 (12)

where the choice of N1 and N2 controls the approxima-
tion quality. We assume that for n < −N1 and n > N2, 
{Qk,m;θ[n]} are several orders of magnitude lower and 
therefore can be neglected.

In our experiments, we used a 64-element scanner 
with 0.29 mm element pitch and 120 scanning angles uni-
formly spanning a 75° sector. For this imaging setup, we 
found numerically that the 20 most significant elements 
of {Qk,m;θ[n]} contain, on average, more than 95% of the 
entire energy irrespective of the choice of k, m, or θ. Beam-
forming in frequency therefore is performed using the 20 
most significant elements in {Qk,m;θ[n]} throughout our 
work. Such a numerical study can be performed for any 
phased-array geometry before imaging to estimate the 
number of elements of {Qk,m;θ[n]} containing the desired 
percentage of the entire energy.

Substitution of (12) into (6) yields a relationship be-
tween the Fourier coefficients of the beam and the indi-
vidual signals:

	 c k M c k nQ n
m

M

n N

N

m k m[ ]
1

[ ] [ ].
=1 =

, ;
1

2

� ∑ ∑
−

− θ 	 (13)

Applying an inverse Fourier transform on {c[k]} results 
in the beamformed signal in time. We then proceed to 
standard image generation steps which include log-com-
pression and interpolation.

To avoid confusion, we emphasize that the distortion 
function, defined in (9), is not related to the array point 
spread function (PSF), commonly used in array process-
ing. The array PSF can be viewed as a spatial impulse 
response of an imaging system, whereas the distortion 
function we define is a way to treat the nonlinear time-
dependent delays that are applied to the received signals 
in the process of beamforming.

B. Simulations and Validation

To demonstrate the equivalence of beamforming in 
time and frequency, we applied both methods on in vivo 
cardiac data, yielding the images shown in Fig. 3. The im-
aging setup is described in Section II-B with fs = 16 MHz 
for both beamforming in time and in frequency. No rate 
reduction was applied at this stage. As can be readily 
seen, the images look identical. Quantitative validation 
of the proposed method was performed with respect to 
both one-dimensional beamformed signals and the result-
ing two-dimensional image.

To compare the one-dimensional signals, we calculated 
the normalized root-mean-square error (NRMSE) between 
the signals obtained by beamforming in frequency and 
those obtained by standard beamforming in time. Both 
classes of signals were compared after envelope detection, 
performed by a Hilbert transform to remove the carrier. 
Denote by Φ[n;θj] the signal obtained by standard beam-
forming in direction θj, j = 1, …, J, and let Φ̂[ ; ]n jθ  denote 
the signal obtained by beamforming in frequency. The Hil-
bert transform is denoted by H(·). For the set of J = 120 
image lines, we define NRMSE as
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where H(Φ[n;θj])max and H(Φ[n;θj])min denote the maximal 
and minimal values of the envelope of the beamformed 
signal in time.

Comparison of the resulting images was performed by 
calculating the structural similarity (SSIM) index [24], 
commonly used for measuring similarity between two im-
ages. The first line of Table II summarizes the resulting 
values. These values verify that both one-dimensional sig-
nals and the resulting images are extremely similar.

Fig. 2. Fourier coefficients {Qk,m;θ[n]} of qk,m(t;θ ) are characterized by a 
rapid decay, where most of the energy is concentrated around the DC 
component. Here, k = 100, m = 14, and θ = 0.421 rad. 
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IV. Rate Reduction by Beamforming  
in Frequency

We next demonstrate that beamforming in frequency 
allows reduction of the required number of samples of the 
individual signals. Reduction can be achieved in two dif-
ferent ways. First, we exploit the low effective bandwidth 
of ultrasound signals and bypass oversampling, dictated 
by digital implementation of beamforming in time. This 
allows processing to be performed at the effective Nyquist 
rate, defined with respect to the effective bandwidth of 
the signal, which is impossible when beamforming is per-
formed in time. At this stage, the structure of the beam-
formed signal is not exploited. As a second step, we show 
that further rate reduction is possible when we take into 
account the FRI structure of the beamformed signal and 
use CS techniques for recovery.

We begin this section by addressing rate reduction ob-
tained by frequency-domain beamforming. At this stage, 
the structure of the beamformed signal is not taken into 
account.

A. Exploiting the Frequency-Domain Relationship

Denote by β the set of Fourier coefficients of the re-
ceived signal that correspond to its bandwidth, namely, 
the values of k for which cm[k] is nonzero (or larger than 
a threshold). Let B denote the cardinality of β. Note that 
(13) implies that the bandwidth of the beamformed sig-
nal, βBF, will contain at most (B + N1 + N2) nonzero 
frequency components. In a typical imaging setup, the size 
of B is on the order of hundreds, whereas N1 and N2, de-

fined by the decay properties of {Qk,m;θ[n]}, are typically 
no larger than 10. This implies that B + N1 + N2 ≈ B, so 
the bandwidth of the beam is approximately equal to the 
bandwidth of the received signals.

To compute the elements in βBF according to (13), we 
need a set β of each of the received signals. This allows 
exploitation of the low effective bandwidth of the received 
signals and application of beamforming at a rate corre-
sponding to the effective Nyquist rate of the received sig-
nals; namely, the signal’s effective band-pass bandwidth. 
The ratio between the cardinality of the set β and the 
overall number of samples N = T f⋅ s , required by the 
standard beamforming rate fs, is dictated by the oversam-
pling factor. As mentioned in Section II-B, we define fs as 
4 to 10 times the band-pass bandwidth of the received 
signal, leading to B/N = 1/4 to 1/10. Assume that it is 
possible to obtain the required set β for each of the re-
ceived signals by sampling at the effective Nyquist rate. In 
this case, the ratio between N and B implies a potential 
4- to 10-fold reduction in the required sampling rate.

Having obtained the set β of each one of the received 
signals, we calculate the elements of βBF by low-rate  
frequency-domain beamforming. Finally, we reconstruct 
the beamformed signal in time by performing an inverse 
Fourier transform. Note that it is possible to pad the ele-
ments of βBF with an appropriate number of zeroes to im-
prove time resolution. In our experiments, to compare the 
proposed method with standard processing, we padded 
βBF with N − B zeros, leading to the same sampling grid 
used for high-rate beamforming in time. For the imaging 
setup described in Section II-B with fs = 16 MHz, we get 
N = 3360 and B = 416, leading to an 8-fold rate reduc-
tion. We emphasize that this rate reduction is obtained 
solely by translation of the beamforming operator into the 
frequency domain without exploiting any structure of the 
beamformed signal.

Images obtained by the proposed method, using 416 
samples per image line to perform beamforming in fre-
quency, and by standard beamforming, using 3360 sam-
ples to perform beamforming in time, are shown in Fig. 4. 

Fig. 3. Cardiac images constructed with different beamforming techniques: (a) time-domain beamforming, (b) frequency-domain beamforming.

TABLE II. Quantitative Validation of Beamforming in 
Frequency With Respect to Beamforming in Time. 

Method NRMSE SSIM

Beamforming in frequency 0.0349 0.9684
Beamforming in frequency,  
  reduced rate sampling

0.0368 0.9603
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Corresponding values of NRMSE and SSIM are reported 
in the second line of Table II. These values validate close 
similarity between the two methods. However, in this case, 
NRMSE is slightly higher and SSIM is lower, compared 
with the values obtained in Section III-B. Note that these 
values depict similarity between the signals. Differences 
can therefore be explained by the following practical as-
pect. When we obtain the set of all nonzero Fourier coef-
ficients of the beamformed signal, βBF, all the signal en-
ergy is captured in the frequency domain. However, the 
signal obtained by beamforming in time contains noise, 
which occupies the entire spectrum. When only the Fou-
rier coefficients within the bandwidth are computed in 
the frequency domain, the noise outside the bandwidth is 
effectively filtered out. In the signal obtained by standard 
beamforming, the noise is retained, reducing the similarity 
between the two signals.

B. Reduced Rate Sampling

To perform beamforming in frequency, we need a cer-
tain number of Fourier coefficients of the received signals 
which is lower than the number of samples required by 
standard beamforming. However, sampling is performed 
in time, whereas our goal is to extract the coefficients in 
the frequency domain. We now address the following ques-
tion: how do we obtain the required set β corresponding 
to the effective band-pass bandwidth, using B low-rate 
samples of each one of the received signals?

A general approach to this problem is to use the Xam-
pling mechanism proposed in [3]. Xampling allows one to 
obtain an arbitrary set κ, comprised of K frequency com-
ponents, from K point-wise samples of the signal filtered 
with an appropriate analog kernel s t∗ −( ). The kernel is 
designed according to the required set κ. It effectively ze-
roes those frequency components of the signal that are not 
included in κ. The required Fourier coefficients are equal 
to the Fourier transform of the output; therefore, the 
number of taken samples is equal to the number of Fourier 
coefficients of interest. Theoretically, for a general and 

possibly nonconsecutive set of frequency components, the 
sum of sincs kernel can be used [3]. Practical aspects of 
the Xampling approach implementation for sub-Nyquist 
sampling of radar signals are considered in [11]. This work 
led to the implementation of a hardware Xampling proto-
type (see Fig. 5) allowing sampling of radar signals far 
below their Nyquist rate.

In the context of ultrasound imaging, where a modu-
lated transmitted pulse has one main band of energy, a 
simpler sampling approach is often possible. We aim to 
obtain a consecutive set β of the Fourier coefficients of 
the received signals. This can be achieved by filtering the 
received signal with a simple band-pass filter correspond-
ing to the frequency band defined by β. The resulting 
signal can then be sampled at the Nyquist rate, defined 
with respect to the bandwidth of β, using band-pass [25] 
or quadrature sampling [26] techniques. Applying the Fou-
rier transform to the resulting low-rate samples yields the 
required set β. In this approach, the received signals are 
sampled at their effective Nyquist rate, implying a rate 
reduction of N/B.

Further reduction in rate can be achieved if we want 
to obtain only a partial frequency beam’s data. Explicitly, 
assume that now we are interested in μBF ⊂ βBF of size 
MBF of Fourier coefficients of the beam. The challenge 
now is to recover the beam from such partial frequency 
data, because a simple inverse Fourier transform is insuf-
ficient in this case. The recovery, performed by CS, will be 
discussed in detail in Section V. We note that according 

Fig. 4. Cardiac images constructed with different beamforming techniques. (a) Time-domain beamforming. (b) Frequency-domain beamforming, 
obtained with 8-fold reduction in sampling rate.

Fig. 5. A Xampling-based hardware prototype for sub-Nyquist sampling. 
The prototype computes low-rate samples of the input from which the 
required set of Fourier coefficients can be computed on the outputs. 
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to (13), μBF can be calculated from at most M = (MBF 
+ N1 + N2) Fourier coefficients of each of the received 
signals. Denote the required subset of M coefficients of the 
received signal by μ. In this case, the received signals are 
sampled at a rate which is N/M lower than the standard 
beamforming rate and B/M lower than their effective Ny-
quist rate, while the required analog kernel is defined by 
the subset μ.

The choice of μ, and consequently the analog kernel, is 
dictated by the transmitted pulse shape. When imaging 
is performed with a modulated Gaussian pulse, the opti-
mal choice of μ is to take M consecutive elements around 
the central frequency. This choice captures the maximal 
amount of the signal energy and can be implemented with 
a band-pass filter defined by the frequency band corre-
sponding to μ.

On the other hand, if the spectrum of the transmit-
ted pulse is flat, which is the case for linear frequency-
modulated chirps [27], [28], then the performance of CS 
recovery improves when μ is comprised of elements of β 
chosen uniformly at random. The resulting sampling op-
eration can be implemented using the techniques proposed 
in [3] and [11].

The entire scheme, performing low-rate sampling and 
frequency-domain beamforming, is depicted in Fig. 6. Sig-
nals { } ,ϕm m

Mt( ) =1  received at each transducer element are 
filtered with an appropriate analog kernel s t∗ −( ) and sam-
pled at a low rate. Both the analog kernel and the sam-
pling rate are defined by the set of Fourier coefficients of 
interest. Fourier coefficients of the received signals are 
then computed and beamforming is performed directly in 
frequency at a low rate.

V. Further Reduction Through  
Compressed Sensing

We now address reconstruction of the beamformed 
signal from partial frequency data. Explicitly, we aim to 
reconstruct the beamformed signal from its MBF Fourier 
coefficients, denoted by μBF. To this end, we use CS tech-
niques while exploiting the FRI structure of the beam-
formed signal. To formulate the recovery as a CS problem, 
we begin with a parametric representation of the beam. 
To simplify the notation, we will eliminate the subindex 
BF in μBF and MBF throughout this section.

A. Parametric Representation

According to [5], a beamformed signal obeys an FRI 
model; that is, it can be modeled as a sum of replicas of 
the known transmitted pulse, h(t), with unknown ampli-
tudes and delays:

	 Φ( ; ) ( )
=1

t b h t t
l

L

l lθ �∑ −� .	 (15)

Here L is the number of scattering elements in direction θ, 
{ } =1
�bl lL  are the unknown amplitudes of the reflections, and 

{ } =1tl lL  denote the times at which the reflection from the 
lth element arrived at the reference receiver m0. Because 
the transmitted pulse is known, such a signal is complete-
ly defined by 2L unknown parameters: the amplitudes and 
the delays. The Fourier coefficients of the beam are giv-
en by
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where h[k] is the Fourier coefficient of the transmitted 
pulse. By quantizing the delays { } =1tl lL  with quantization 
step Ts = 1/fs, such that tl = qlTs ∈ Z, we may write the 
Fourier coefficients of the beamformed signal as
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We conclude that recovery of the beamformed signal in 
time is equivalent to determining bl, 0 ≤ l ≤ N − 1 in (17).

We now recast the problem in vector-matrix notation. 
Defining a length-M measurement vector c with kth entry 
c[k], k ∈ μ, we can rewrite (17) as

	 c HDb Ab= = ,	 (19)

where H is an M × M diagonal matrix with h[k] as its 
kth entry, D is an M × N matrix formed by taking the 
set μ of rows from an N × N Fourier matrix, and b is a 
length-N vector with lth entry bl. Our goal is to determine 
b from c. We next discuss and compare possible recovery 
approaches.

B. Prior Work

One approach to determine b is to view (19) as a com-
plex sinusoid problem. For M ≥ 2L, it can be solved using 

Fig. 6. Fourier-domain beamforming scheme. The block Qi represents 
averaging the Fourier coefficients of the received signals with weights 
{Qk,m;θ[n]} according to (13). 
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standard spectral analysis methods such as matrix pencil 
[29] or annihilating filter [30]. Rate reduction is achieved 
when 2L ≪ N, where N is the number of samples dic-
tated by the standard beamforming rate. In the presence 
of moderate to high noise levels, the unknown parameters 
can be extracted more efficiently using a CS approach, as 
was shown in [5]. Note that (19) is an underdetermined 
system of linear equations which has infinitely many solu-
tions, because A is an M × N matrix with M ≪ N. The 
solution set can be narrowed down to a single value by 
exploiting the structure of the unknown vector b. In the 
CS framework, it is assumed that the vector of interest 
is reasonably sparse, whether in the standard coordinate 
basis or with respect to some other basis.

The regularization introduced in [5] relies on the as-
sumption that the coefficient vector b is L-sparse. The 
formulation in (19) then has a form of a classic CS prob-
lem, where the goal is to reconstruct an N-dimensional 
L-sparse vector b from its projection onto K orthogonal 
rows captured by the measurement matrix A. This prob-
lem can be solved using numerous CS techniques when A 
satisfies well-known properties such as restricted isometry 
(RIP) or coherence [6].

In our case, A, defined in (19), is formed by taking 
K scaled rows from an N × N Fourier matrix. It can be 
shown that by choosing K ≥ CL(log N)4 rows uniformly 
at random for some positive constant C, the measurement 
matrix A obeys the RIP with high probability [31]. In or-
der for this approach to be beneficial, it is important that 
L ≪ N. Because random frequency sampling is not prac-
tical from a hardware perspective, it is possible instead 
to sample several frequency bands, distributed randomly 
throughout the spectrum [11]. This approach is imple-
mented in the board of Fig. 5.

A typical beamformed ultrasound signal is comprised of 
a relatively small number of strong reflections, correspond-
ing to strong perturbations in the tissue, and many weaker 
scattered echoes, originating from microscopic changes in 
acoustic impedance of the tissue. The framework proposed 
in [5] attempts to recover only strong reflectors in the tis-
sue and treat weak echoes as noise. Hence, the vector of 
interest b is indeed L-sparse with L ≪ N. To recover b, 
Wagner et al. consider the following optimization problem:

	 min
b
b Ab c0 2 ,subject to − ≤ ε 	 (20)

where ε is an appropriate noise level, and approximate its 
solution using orthogonal matching pursuit (OMP) [32].

A significant drawback of this method is its inability 
to restore weak reflectors. In the context of this approach, 
they are treated as noise and are disregarded by the signal 
model. As a result, the speckle—the granular pattern that 
can be seen in Fig. 3—is lost. This severely degrades the 
value of the resulting images because information carried 
by speckle is of major importance in many medical imag-
ing modalities. For example, in cardiac imaging, speckle 
tracking tools allow analysis of the motion of heart tis-

sues and effective tracking of myocardial deformations 
[33], [34].

C. Alternative Approach

Fortunately, with a small conceptual change of the 
model, we can restore the entire signal; that is, recover 
both strong reflectors and weak scattered echoes.

As mentioned previously, a beamformed ultrasound sig-
nal is comprised of a relatively small number of strong re-
flections and many scattered echoes that are, on average, 
two orders of magnitude weaker. It is therefore natural 
to assume that the coefficient vector b, defined in (19), 
is compressible or approximately sparse, but not exactly 
sparse. This property of b can be captured by using the l1 
norm, leading to the optimization problem

	 min
b
b Ab c1 2 .subject to − ≤ ε 	 (21)

Problem (21) can be solved using second-order methods 
such as interior point methods [35], [36] or first-order 
methods, based on iterative shrinkage ideas [37], [38].

We emphasize that although it is common to view (21) 
as a convex relaxation of (20), in our case, such a substitu-
tion is crucial. It allows us to capture the structure of the 
signal and to boost the performance of sub-Nyquist pro-
cessing, as will be shown next, through several examples.

The problem of signal reconstruction from partial fre-
quency data can be handled alternatively by an analysis-
based approach [39]. In this approach, the set βBF is recon-
structed using appropriate l1-norm regularization based 
on signal structure, leading to comparable results [40].

VI. Simulations and Results

In this section, we examine the performance of low-rate 
frequency-domain beamforming using l1 optimization and 
compare it to the previously proposed l0-based approach. 
This is done by applying both methods to stored RF data 
acquired from a healthy volunteer. We then integrate our 
method into a stand-alone ultrasound machine and show 
that such processing is feasible in practice using real hard-
ware.

A. Simulations on In Vivo Cardiac Data

To demonstrate low-rate beamforming in frequency 
and evaluate the impact of rate reduction on image qual-
ity, we simulated digitally the application of our technique 
to in vivo cardiac data. The data acquisition setup is de-
scribed in Section II-B with fs = 16 MHz, leading to N 
= 3360 samples. To perform beamforming in frequency, 
we used a subset μBF of 100 Fourier coefficients, which 
can be obtained from M = 120 low-rate samples by the 
scheme illustrated in Fig. 6 with an appropriate choice of 
band-pass filter. This implies 28-fold reduction in sam-
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pling and 14-fold reduction in processing rate compared 
with standard beamforming, which requires 3360 samples 
for this particular imaging setup. The difference between 
the sampling and processing rates stems from the com-
plex nature of Fourier coefficients. Having computed the 
Fourier coefficients of the beamformed signal, we obtain 
its parametric representation by solving (21). To this end, 
we used the NESTA algorithm [41]. This fast and accu-
rate first-order method, based on the work of Nesterov 
[42], is shown to be highly suitable for solving (21) when 
the signal of interest is compressible with high dynamic 
range, which is particularly true for ultrasound imaging. 
An additional advantage of NESTA is that it does not 
depend on fine tuning of numerous controlling parameters. 
A single smoothing parameter must be selected based on 
a trade-off between the accuracy of the algorithm and its 
speed of convergence. This parameter was chosen empiri-
cally to yield optimal performance with respect to image 
quality. To reconstruct the signal, we assumed a noiseless 
scenario; that is, the parameter ε in (21) was chosen to 
be zero.

The resulting images, corresponding to two different 
frames, are shown in Figs. 7(c) and 7(d). Although the 
images are not identical to those obtained by standard 
beamforming [Figs. 7(a) and 7(b)], it can be easily seen 
that l1 optimization, based on the assumption that the 
signal of interest is compressible, allows one to reconstruct 
both strong reflectors and weak echoes. To compare the 
proposed method with the previously developed l0-based 
approach, we solved (20) with OMP, while assuming L = 
25 strong reflectors in each direction θ. The resulting im-
ages, shown in Figs. 7(e) and 7(f), depict the strong reflec-
tors, observed in Figs. 7 (a) and 7(b), while the speckle is 
lost, degrading the overall image.

To verify the assumption that the weak echoes seen in 
Figs. 7(c) and 7(d) correspond to fully developed speckle 
patterns, we evaluated their spatial statistics. Accord-
ing to [43], [44], the amplitude of fully developed speckle 
obeys a Rayleigh probability density function (pdf). To 
determine the image regions that follow a Rayleigh pdf, 
we divided the data, corresponding to the envelope of the 
image, to overlapping patches of 20 × 15 pixels. For each 
patch, the Kolmogorov–Smirnov test (K-S) was applied. 
This test is a widely used statistical hypothesis test that 
verifies whether there is enough evidence in data to de-
duce that the hypothesis under consideration is true. In 
our case, the hypothesis is that the investigated patch 
obeys a Rayleigh pdf. The patches that passed the K-S 
test with significance level α = 0.05 were included into 
the speckle region. This process was performed for images 
obtained by both standard and low-rate frequency-domain 
beamforming.

Figs. 8(c) and 8(d) show the speckle regions of images 
corresponding to frames 1 and 2 obtained by the standard 
method. The patches that did not pass the test are zeroed 
out. As can be seen from comparison with the original im-
ages, Figs. 8(a) and 8(b), the regions defined by the K-S 

test as speckle are in good agreement with our expecta-
tion: the strong reflectors such as the valves and the heart 
wall are excluded while the regions with typical granular 
structure are preserved. Speckle regions in the images ob-
tained by low-rate frequency-domain beamforming with 
l1-based reconstruction can be seen in Figs. 8(e) and 8(f). 
As can be seen, there is significant correspondence be-
tween the speckle areas. To quantify this correspondence, 
we defined the speckle area in an image obtained by the 
standard method as a reference and calculated which per-
centage of it is defined as speckle in an image obtained 
by the proposed technique. For frames 1 and 2, the cor-
respondences are 72.99% and 74.10%, respectively. 

For completeness, we applied the K-S test to the im-
ages obtained by low-rate frequency-domain beamforming 
with l0-based reconstruction, although by construction, 
this method is not able to recover weak reflectors. As ex-
pected, the correspondence in this case is extremely low, 
8.48% and 7.68% in frames 1 and 2, respectively.

To conclude, images obtained with 28-fold rate reduc-
tion clearly preserve the strong reflectors. In addition, ini-
tial spatial statistics analysis allows one to deduce that 
more than 70% of speckle is retained. A more detailed 
study of speckle statistics should be performed in future 
work.

Table III reports corresponding values of NRMSE and 
SSIM. Although the quantitative values, corresponding to 
the proposed method with l1-based reconstruction, are re-
duced compared with those obtained in Section IV-B, im-
portant information, e.g., the thickness of the heart wall 
and the valves, as well as the speckle pattern, essential 
for tracking tools, are preserved. We emphasize that the 
values of NRMSE and SSIM are provided to give a sense 
of performance of the proposed method compared with 
the established technique of time-domain beamforming. 
In practice, validation is typically performed visually by 
sonographers, radiologists, and physicians. Furthermore, 
our approach inherently reduces noise, so high similarity 
with beamforming in time may not necessarily be advan-
tageous.

B. Implementation on Stand-Alone Imaging System

As a next step, we implemented low-rate frequency-
domain beamforming on an ultrasound imaging system 
[45]. The lab setup used for implementation and testing is 
shown in Fig. 9 and includes a state-of-the-art GE ultra-
sound machine, a phantom, and an ultrasound scanning 
probe. In our study, we used a breadboard ultrasonic scan-
ner with 64 acquisition channels. The radiated depth r = 
15.7 cm and speed of sound c = 1540 m/s yield a signal of 
duration T = 2r/c � 204 μs. The acquired signal is char-
acterized by a narrow band-pass bandwidth of 1.77 MHz, 
centered at a carrier frequency f0 ≈ 3.4 MHz. The signals 
are sampled at the rate of 50 MHz and then are digitally 
demodulated and downsampled to the demodulated pro-
cessing rate of fp ≈ 2.94 MHz, resulting in 1224 samples 
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per transducer element. Linear interpolation is then ap-
plied to improve beamforming resolution, leading to 2448 
samples being used to perform beamforming in time.

Fig. 10 presents a schematic block diagram of the 
transmit and receive front-end of the medical ultrasound 
system being used. At this point of our work, as illus-
trated in Fig. 11, in-phase and quadrature components of 
the received signals were used to obtain the desired set of 

their Fourier coefficients. Using this set, beamforming in 
frequency was performed according to (13), yielding the 
Fourier coefficients of the beamformed signal. In this set-
up, the sampling rate remained unchanged, but frequency-
domain beamforming was performed at a low rate. In our 
experiments, we computed MBF = 100 Fourier coefficients 
of the beamformed signal, using M = 120 Fourier coeffi-
cients of each of the received signals. This corresponds to 

Fig. 7. Experimental results. The first column, (a), (c), (e), corresponds to frame 1; the second column, (b), (d), (f), corresponds to frame 2. (a), (b) 
Time-domain beamforming. (c), (d) Frequency-domain beamforming, l1 optimization solution. (e), (f) Frequency-domain beamforming, l0 optimiza-
tion solution.
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240 real-valued samples used for beamforming in frequen-
cy. The number of samples required by the demodulated 
processing rate is 2448. Hence, beamforming in frequency 
is performed at a rate corresponding to 240/2448 ≈ 1/10 
of the demodulated processing rate. Images obtained by 
low-rate beamforming in frequency and standard time-
domain beamforming are presented in Fig. 12. As can be 

Fig. 8. Speckle pattern preservation. The first column, (a), (c), (e), corresponds to frame 1, the second column, (b), (d), (f), corresponds to frame 
2. (a), (b) Time-domain beamforming, original images. (c), (d) Speckle regions, defined by the K-S test within the original images. (e), (f) Speckle 
regions, defined by the K-S test within the images obtained by low-rate frequency-domain beamforming.

TABLE III. Quantitative Validation of Beamforming in 
Frequency at Sub-Nyquist Rates. 

Method

Frame 1 Frame 2

NRMSE SSIM NRMSE SSIM

l1-based reconstruction 0.0682 0.7043 0.0587 0.6843
l0-based reconstruction 0.0803 0.5525 0.0697 0.5539
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readily seen, we are able to retain sufficient image quality 
despite the significant reduction in processing rate.

Our implementation was done on a state-of-the-art 
system, sampling each channel at a high rate. Data and 
processing rate reduction took place following the Fourier 
transform, in the frequency domain. However, by imple-
menting the Xampling scheme described in Section IV-B, 
the set of 120 Fourier coefficients of the received signals 
required for frequency-domain beamforming can be ob-
tained directly from only 120 low-rate samples.

VII. Discussion and Conclusions

In this work, we propose an entire framework enabling 
compressed ultrasound imaging, including the step of sub-
Nyquist data acquisition, low-rate processing, and beam-
formed signal reconstruction. The proposed framework is 
based on Xampling, frequency-domain beamforming, and 
CS. It allows not only sampling of the received signals 
at a low rate, but also enables low-rate processing, clos-
ing the gap between the acquisition of the raw data and 
reconstruction of the beamformed signals comprising the 
resulting image.

We extended the compressed beamforming framework, 
proposed in [5], to a general concept of beamforming in 
frequency, equivalent to standard time-domain beam-
forming. We have shown that when performed directly 
in frequency, beamforming does not require oversampling, 
which is essential for its digital implementation in time. 
Hence, 4- to 10-fold reduction in sampling rate is achieved 
by the translation of beamforming into the frequency do-
main, without compromising image quality and without 
involving any additional assumptions on the signal.

Further reduction in sampling rate is obtained when 
only a portion of the beam’s bandwidth is used. In this 
case, the received signals are sampled at a sub-Nyquist 
rate, leading to up to 28-fold reduction in sampling rate. 
We emphasize that in our approach no projection onto a 

Fig. 9. Lab setup: ultrasound system, probe and cardiac phantom.

Fig. 10. Transmit and receive front-end of a medical ultrasound system.

Fig. 11. Transmit and receive paths of a medical ultrasound system with 
beamforming in the frequency domain.

Fig. 12. Cardiac images obtained by demo system. (a) Time-domain beamforming. (b) Frequency-domain beamforming, obtained with 10-fold reduc-
tion in processing rate.
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random basis before sampling is required. Our Xampling 
scheme is simple and can be implemented with a band-
pass filter.

To reconstruct the beamformed signal from such partial 
frequency data, we rely on the fact that the beamformed 
signal obeys an FRI model and use CS techniques. To 
improve the performance of sub-Nyquist processing and 
avoid the loss of speckle information, we assumed that 
the coefficient vector is compressible. This assumption al-
lows one to capture both strong reflections, correspond-
ing to large perturbations in the tissue, and much weaker 
scattered echoes, originating from microscopic changes in 
acoustic impedance of the tissue. The latter is initially 
tested by applying spatial statistical analysis, while a 
more detailed study of the recovered speckle patterns is 
left for future work.

Finally, we implemented our frequency-domain beam-
forming on a stand-alone ultrasound machine. Low-rate 
processing is performed on the data obtained in real-time 
by scanning a heart with a 64-element probe. The pro-
posed approach allows for 10-fold rate reduction with re-
spect to the lowest processing rates that are achievable 
today.

The FRI model implies an assumption that the trans-
mitted pulse shape remains unchanged during its propa-
gation through the tissue. This is, of course, a simplified 
model of ultrasound propagation, because frequency-
dependent attenuation [46, ch. 5] is not taken into ac-
count. The results reported in this work can be potentially 
improved with an appropriate generalization of the FRI 
model.

Our results prove that the concept of sub-Nyquist pro-
cessing is feasible for medical ultrasound, leading to the 
potential of considerable reduction in future ultrasound 
machines size, power consumption and cost.
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