
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 8, AUGUST 2014 4739

Channel Capacity Under Sub-Nyquist
Nonuniform Sampling

Yuxin Chen, Student Member, IEEE, Andrea J. Goldsmith, Fellow, IEEE,
and Yonina C. Eldar, Fellow, IEEE

Abstract— This paper investigates the effect of sub-Nyquist
sampling upon the capacity of an analog channel. The channel
is assumed to be a linear time-invariant Gaussian channel,
where perfect channel knowledge is available at both the
transmitter and the receiver. We consider a general class of
right-invertible time-preserving sampling methods which includes
irregular nonuniform sampling, and characterize in closed form
the channel capacity achievable by this class of sampling methods,
under a sampling rate and power constraint. Our results indicate
that the optimal sampling structures extract out the set of
frequencies that exhibits the highest signal-to-noise ratio among
all spectral sets of measure equal to the sampling rate. This can be
attained through filterbank sampling with uniform sampling grid
employed at each branch with possibly different rates, or through
a single branch of modulation and filtering followed by uniform
sampling. These results reveal that for a large class of channels,
employing irregular nonuniform sampling sets, while are typi-
cally complicated to realize in practice, does not provide capacity
gain over uniform sampling sets with appropriate preprocessing.
Our findings demonstrate that aliasing or scrambling of spectral
components does not provide capacity gain in this scenario, which
is in contrast to the benefits obtained from random mixing in
spectrum-blind compressive sampling schemes.

Index Terms— Nonuniform sampling, irregular sampling,
sampled analog channels, sub-Nyquist sampling, channel
capacity, Beurling density, time-preserving sampling systems.

I. INTRODUCTION

THE capacity of analog Gaussian channels and their
capacity-achieving transmission strategies were pio-

neered by Shannon [2], which has provided fundamental
insights for modern communication system design. Shan-
non’s work focused on capacity of analog channels sampled
at or above twice the channel bandwidth. However, these
results do not explicitly account for sub-Nyquist sampling
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rate constraints that may be imposed by hardware limitations.
This motivates exploration of the effects of sub-Nyquist sam-
pling upon the capacity of an analog Gaussian channel, and
the fundamental capacity limits that result when considering
general sampling methods that include irregular nonuniform
sampling.

A. Related Work and Motivation

Shannon introduced and derived the information-theoretic
metric of channel capacity for time-invariant analog waveform
channels [2], which established the optimality of water-filling
power allocation based on signal-to-noise ratio (SNR) over the
spectral domain [3], [4]. A key idea in determining the analog
channel capacity is to convert the continuous-time channel into
a set of parallel discrete-time channels based on the Shannon-
Nyquist sampling theorem [5]. This paradigm was employed,
for example, by Medard et. al. to bound the maximum mutual
information in time-varying channels [6], [7], and was used
by Forney et. al. to investigate coding and modulation for
Gaussian channels [8]. Most of these results focus on the
analog channel capacity commensurate with uniform sampling
at or above the Nyquist rate associated with the channel
bandwidth. There is another line of work that characterizes
the effects upon information rates of oversampling with quan-
tization [9], [10]. In practice, however, hardware and power
limitations may preclude sampling at the Nyquist rate for
a wideband communication system.

More general irregular sampling methods beyond point-
wise uniform sampling have been extensively studied in the
sampling literature, see [11]–[13]. One example is sampling
on non-periodic quasi-crystal sets, which has been shown to
be stable for bandlimited signals [14], [15]. These sampling
approaches are of interest in some practical situations where
signals are only sampled at a nonuniformly spaced sampling
set due to constraints imposed by data acquisition devices.
Many sophisticated reconstruction algorithms have been devel-
oped for the class of bandlimited signals or, more generally,
the class of shift-invariant signals [11], [16], [17]. For all these
nonuniform sampling methods, the Nyquist sampling rate is
necessary for perfect recovery of bandlimited signals [11],
[18], [19].

However, for signals exhibiting certain structure, the
Nyquist sampling rate may exceed that required for perfect
signal reconstruction from the samples [20], [21]. For example,
consider multiband signals, whose spectral contents reside
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within several subbands over a wide spectrum. If the spectral
support is known, then the necessary sampling rate for the
multiband signals is their spectral occupancy, termed the
Landau rate [22]. Such signals admit perfect recovery when
sampled at rates approaching the Landau rate, provided that the
sampling sets are appropriately chosen (see [23], [24]). One
type of sampling mechanism that can reconstruct multiband
signals sampled at the Landau rate is a filter bank followed
by sampling, studied in [25]–[27]. Inspired by recent “com-
pressive sensing” [28]–[30] ideas, spectrum-blind sub-Nyquist
sampling for multiband signals with random modulation has
been developed [31] as well.

Although sub-Nyquist nonuniform sampling methods have
been extensively explored in the sampling literature, they are
typically investigated either under a noiseless setting, or based
on statistical reconstruction measures (e.g. mean squared
error (MSE)) instead of information-theoretic measures.
Gastpar et. al. [32] studied the necessary sampling density for
nonuniform sampling. Recent work by Wu and Verdu [33]
investigated the tradeoff between the number of samples
and the reconstruction fidelity through information theoretic
measures. However, these works did not explicitly consider
the capacity metric for an analog channel. The most relevant
capacity result to our work was by Berger et. al. [34], who
related MSE-based optimal sampling with capacity for several
special types of channels (e.g. AWGN channels). But they
did not derive the sub-Nyquist sampled channel capacity for
more general channels, nor did they consider nonuniformly
spaced sampling. Our recent work [35] established a new
framework that characterizes sampled capacity for a broad
class of sampling methods, including filter and modulation
bank sampling [31], [36], [37]. For these sampling methods,
we determined optimal sampling structures based on capacity
as a metric, illuminated connections between MIMO channel
capacity and capacity of undersampled channels, as well
as a new connection between capacity and MSE. However,
this prior work did not investigate analog channel capacity
using more general nonuniform sampling under a sub-Nyquist
sampling rate constraint.

One interesting fact discovered in [35] is the non-
monotonicity of capacity with sampling rate under filter- and
modulation-bank sampling, assuming an equal sampling rate
per branch for a given number of branches. This indicates that
more sophisticated sampling techniques, adaptive to the chan-
nel response and the sampling rate, are needed to maximize
capacity under sub-Nyquist rate constraints, including both
uniform and nonuniform sampling. However, none of the
aforementioned work has investigated the question as to which
sampling method can best exploit channel structure, thereby
maximizing sampled capacity under a given sampling rate
constraint. Although several classes of sampling methods
were shown in [35] to have closed-form capacity solutions,
the capacity limits might not even exist under general sampling
methods. This raises the question as to whether there exists
a capacity upper bound over a general class of sub-Nyquist
sampling systems beyond the structures we discussed in [35]
and, if so, when the bound is achievable. That is the question
we investigate herein.

B. Contributions and Organization

Our main contribution is to derive the maximum capacity
of sub-Nyquist sampled analog channels achievable under a
general class of right-invertible time-preserving nonuniform
sampling methods, subject to a sub-Nyquist sampling rate
constraint. The channel is assumed to be a linear time-invariant
(LTI) Gaussian channel, where perfect channel knowledge is
available at both the transmitter and the receiver. The class of
sampling systems we consider subsumes sampling structures
employing irregular nonuniform sampling grids.

We first develop in Theorem 2 an upper bound on the
sampled channel capacity, which corresponds to the capacity
of a channel whose spectral occupancy is no larger than the
sampling rate fs . As a key step in the analysis framework for
Theorem 2, we characterize in closed form the sampled chan-
nel capacity for any specific periodic sampling system, for-
mally defined in Definition 8 (Lemma 1). We demonstrate that
this fundamental capacity limit can be achieved by filterbank
sampling with varied sampling rates at different branches,
or by a single branch of modulation and filtering followed
by a uniform sampling set (Theorems 3-4). In particular, the
optimal sampler extracts out a spectral set of size fs with the
highest SNR, and suppresses all signal and noise components
outside this spectral set.

Our results indicate that irregular nonuniform sampling sets,
while typically complicated to realize in hardware, do not
improve channel capacity relative to analog preprocessing
with regular uniform sampling sets. We also show that when
optimal filterbank or modulation sampling is employed, a
mild perturbation of the optimal sampling grid does not
change the capacity. Our findings demonstrate that aliasing
or scrambling of spectral contents does not provide capacity
gain in the presence of perfect channel state information. This
is in contrast to the benefits obtained from random mixing of
frequency components in many sub-Nyquist sampling schemes
with unknown signal support (see [31]).

The main innovation of this paper compared to our previous
sub-sampled channel capacity results in [35] is as follows.

• While [35] characterized the capacity under two types
of sampling mechanisms that are widely used in practice
(filter-bank sampling and modulation-bank sampling), the
focus of this paper is instead to develop capacity results
over a much more general class of sampling methods.

• While all results of [35] hold only under uniform
sampling, our analysis herein accommodates irregular
nonuniform sampling. Our results in turn corroborate the
optimality of uniform sampling in achieving sampled
capacity, assuming that the analog channel output is
appropriately pre-processed.

The remainder of the paper is organized as follows.
In Section II, we introduce our system model of sampled
analog channels, and provide formal definitions of time-
preserving systems, sampling rates, and sampled channel
capacity. We then develop, in Section III-A, an upper bound on
the sampled channel capacity ranging over all right-invertible
time-preserving sampling methods, along with an approximate
analysis highlighting insights into the result. The achievability
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TABLE I

SUMMARY OF NOTATIONS AND PARAMETERS

of this upper bound is derived in Section III-B. The proof of
Theorem 2 is provided in Appendix A. The implications of
our main results are summarized in Section IV.

Before continuing, we introduce some notation that will
be used throughout. We use μ(·) to represent the Lebesgue
measure, and denote by F and F−1 the Fourier and inverse

Fourier transform, respectively. We let [x]+ �= max(x, 0), and
use card (A) to denote the cardinality of a set A. These and
other notation in the paper are summarized in Table I.

II. SAMPLED CHANNEL CAPACITY

A. System Model

We consider an analog waveform channel, which is modeled
as an LTI filter with impulse response h(t) and frequency
response H ( f ) = ∫∞

−∞ h(t) exp(− j2π f t)dt . With x(t) denot-
ing the transmitted signal, the analog channel output is
given by

r(t) = h(t) ∗ x(t) + η(t), (1)

where the noise process η(t) is assumed to be an additive
stationary zero-mean Gaussian process with power spectral
density Sη( f ). We also define sη(t) := F−1

(√
Sη( f )

)
.

Unless otherwise specified, we assume throughout that perfect
channel state information (i.e. the knowledge of both H ( f )
and Sη( f )) is available at both the transmitter and the receiver.

The analog channel output r(t) is passed through M (1 ≤
M ≤ ∞) branches of linear preprocessing systems, each
followed by a pointwise sampler, as illustrated in Fig. 1.
The preprocessed output yi (t) at the i th branch is obtained
by applying a linear bounded operator Ti to the channel
output r(t):

yi (t) = Ti (r(t)) = ∫
qi (t, τ ) r (τ ) dτ, (2)

where qi (t, τ ) denotes the impulse response of the time-
varying system represented by Ti , i.e. the output seen at time t

Fig. 1. The input x(t) is passed through the analog channel and contaminated
by noise η(t). The analog channel output r(t) is then passed through M (1 ≤
M ≤ ∞) linear preprocessing system {Ti | 1 ≤ i ≤ M}. At the ith branch, the
preprocessed output yi (t) is sampled on the sampling set �i = {

ti,n | n ∈ Z
}
.

due to an impulse in the input at time τ . Note that the linear
operator Ti can be time-varying, which subsumes filtering and
modulation as special cases. For example, a modulation system
Ti (x(t)) = p(t)x(t) for some given modulation sequence p(t)
has an impulse response q(t, τ ) = p(τ )δ (t − τ ). A cascade
combination of two systems T1 and T2 has an impulse response
q(t, τ ) = ∫∞

−∞ q2(t, τ1)q1(τ1, τ )dτ1, with q1 (·, ·) and q2(·, ·)
denoting respectively the impulse responses of T1 and T2 [38].
When an operator T is LTI, we use q(τ ) := q(t, t − τ ) as
shorthand to represent its impulse response.

The pointwise sampler following the preprocessor can be
uniform or irregular [11]. Specifically, the preprocessed output
yi (t) (at the i th branch) is sampled at times ti,n (n ∈ Z),
yielding a sample sequence yi [n] = yi

(
ti,n

)
. Here, we define

the sampling set (or sampling grid) �i at the i th branch as

�i := {
ti,n | n ∈ Z

}
. (3)

In particular, if ti,n = nTi,s , then the sampling set at the i th
branch is said to be uniform with period Ti,s .

B. Sampling Rate Definition

Our metric of interest is the sampled channel capacity under
a sampling rate constraint. We first formally define sampling
rate for general nonuniform sampling mechanisms.

In general, the sampling set � = {tn | n ∈ Z} may be
irregular and hence aperiodic, which calls for a general-
ized definition of sampling rate. One notion commonly used
in sampling theory is the Beurling density introduced by
Beurling [18] and Landau [22], as defined below [11].

Definition 1 (Beurling Density): For a sampling set
� = {tk | k ∈ Z}, the upper and lower Beurling density are
given respectively as

D+ (�) = lim
r→∞ sup

z∈R

card (� ∩ [z, z + r ])

r
,

D− (�) = lim
r→∞ inf

z∈R

card (� ∩ [z, z + r ])

r
.

When D+ (�) = D− (�), the sampling set � is said to be of
uniform Beurling density D (�) := D− (�).

When the sampling set is uniform with period Ts , the
Beurling density is D(�) = 1/Ts , which coincides with
the conventional definition of sampling rate. The notion of
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Beurling density allows the Shannon-Nyquist sampling
theorem to be extended to nonuniform sampling. Moreover,
we will use Beurling density to define sampling rate for a large
class of sampling mechanisms with preprocessing.

Under a nonuniform sampling set �, the set of exponen-
tial functions {exp ( j2π tn f ) | n ∈ Z} forms a non-harmonic
Fourier series [12]. Whether the class of original signals
are recoverable from the nonuniform sampled sequence
is determined by the completeness of the associated
non-harmonic set. In particular, when � is uniform, the set
{exp ( j2π tn f ) | n ∈ Z, tn = n/ fs} with D(�) = fs forms a
Riesz basis [39] of L2(− fs/2, fs/2) by the Shannon-Nyquist
sampling theorem. For the class of sampling systems without
preprocessing, a fundamental rate limit necessary for perfect
reconstruction of bandlimited signals has been characterized
by Landau using the definition of Beurling density, as stated
in the following theorem.

Theorem 1 (Landau Rate [22]): Consider the set B� of all
signals whose spectral contents are supported on the frequency
set �. Suppose that pointwise sampling without preprocessing
is employed with a sampling set �. If all signals f (t) ∈ B�

can be uniquely determined by the samples { f (tn) | tn ∈ �},
then one must have D−(�) ≥ μ (�). The value μ (�) is
termed the Landau rate.

Theorem 1 characterizes the fundamental sampling rate
requirement for perfect signal reconstruction under pointwise
sampling without preprocessing. In particular, when � =
[−B/2, B/2], Theorem 1 reduces to the Shannon-Nyquist
theorem.

We will therefore use Beurling density to characterize the
sampling rate for a general sampling set. However, since
the preprocessor might distort the time scale of the input,
the resulting “sampling rate” might not characterize the true
sampling rate applied to the original signal, as illustrated in
the following example.

Example 1 (Compressor): Consider a preprocessing system
defined by the relation

y(t) = T (r(t)) = r (Lt)

with L ≥ 2 being a positive integer. If we apply a uniform
sampling set � = {tn : tn = n/ fs} on the preprocessed
output y(t), the sampled sequence at a “sampling rate” fs is
given by

y[n] = y (n/ fs) = r (nL/ fs),

which corresponds to sampling the system input r(t) at rate
fs/L. The compressor effectively time-warps the signal, thus
resulting in a mismatch of the time scales between the input
and output.

The compressor example illustrates that the notion of sam-
pling rate may be misleading for systems that experience
time warping. Hence, this paper will focus only on sampling
that preserves time scales. One class of linear systems that
preserves time scales are modulation operators

(
y(t) =

p(t)x(t)
)
, which perform pointwise scaling of the input,

and hence do not change the time scale. Another class is
the periodic system which includes LTI filtering, defined as
follows.

Definition 2 (Periodic System): A linear preprocessing
system is said to be periodic with period Tq if its impulse
response q(t, τ ) satisfies

q(t, τ ) = q(t + Tq , τ + Tq), ∀t, τ ∈ R. (4)
A more general class of systems that preserve the time scale

can be generated through modulation and periodic subsystems.
Specifically, we can define a general time-preserving system
by connecting a set of modulation or periodic operators in
parallel or in serial. This leads to the following definition.

Definition 3 (Time-Preserving System): Given a finite
index set I, a preprocessing system T : x(t) 
→ {yk(t), k ∈ I}
is said to be time-preserving if

(1) The system input is passed through |I| branches of linear
preprocessors, yielding a set of analog outputs {yk(t) | k ∈ I}.

(2) In each branch, the preprocessor comprises a set of
periodic or modulation operators connected in serial.

With a preprocessing system that preserves the time scale,
we can now define the aggregate sampling rate through the
Beurling density.

Definition 4 (Sampling Rate for Time-Preserving Systems):
A sampling system is said to be time-preserving with sampling
rate fs if

(1) Its preprocessing system T is time-preserving.
(2) The preprocessed output yk(t) is sampled by a sampling

set �k = {
tl,k | l ∈ Z

}
with a uniform Beurling density fk,s,

which satisfies
∑

k∈I fk,s = fs .
We note that the class of time-preserving sampling struc-

tures does not preclude random sampling schemes. For exam-
ple, the preprocessing system can be a random modulator
and the sampling set can be randomly spaced. Our definition
also includes multibranch sampling methods. In fact, each
multibranch sampling can be converted to an equivalent single
branch sampling as follows.

Proposition 1: Suppose that a multibranch sampling system
has sampling rate fs . Then there exists a single branch
sampling system with sampling rate fs that yields the same
set of sampled output values as the original system. This holds
simultaneously for all input signals.

Proof: Suppose that the impulse response for the kth
branch is given by qk (t, τ ) with sampling set
�k = {

tk,n | n ∈ Z
}
. Without loss of generality,1 suppose

that �k ∩ �k′ = ∅ for any k 
= k ′. By ordering all sample
times in ∪k∈I�k and renaming them to be

{
t̃l | l ∈ Z

}
such

that t̃l < t̃l+1 for all l, we can construct an equivalent single
branch sampling system such that

q̃
(
t̃l , τ

) = qk
(
tk,n , τ

)

if t̃l corresponds to t̃k,n in the original sampling set.
The sampling rate f̃s of the new system is given by
f̃s = ∑

k∈I D(�k) = fs .
The samples obtained through this new single branch system

preserve all information we can obtain from the samples of the

1In fact, if �k ∩ �k′ 
= ∅, then we can introduce a new shifted pair(
qδ

k (t, τ ),�δ
k

)
such that qδ

k (t + δ, τ ) := qk (t, τ ) and �δ
k = {t + δ | t ∈ �k}

for some δ such that �δ
k ∩ �k = ∅, i.e. we can introduce certain delay to the

preprocessed output and shift the sampling set correspondingly. Apparently,
this new sampling structure leads to the same collection of sample outputs.
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original multibranch system. As will be seen, this proposition
allows us to simplify the analysis.

C. Capacity Definition

There are two levels of capacity definitions that are of
interest in sub-Nyquist sampled channels: (1) the sampled
capacity for a given sampling system; (2) the maximum
capacity achievable by a large class of sampling systems under
a sampling rate constraint. We now detail these definitions.

Suppose that the transmit signal x(t) is constrained to the
time interval [−T, T ], and the received signal y(t) is sampled
with sampling rate fs and observed over the time interval
[−T, T ]. For a given sampling system P that consists of a
preprocessor T and a sampling set �, and for a given time
duration T , we define the information metric CP

T (P) to be

CP
T (P) = sup

1

2T
I
(
x ([−T, T ]) , {y[tn]}[−T ,T ]

)
, (5)

where the supremum is over all input distributions subject
to a power constraint E( 1

2T

∫ T
−T |x(t)|2dt) ≤ P . Here,

{y[tn]}[−T ,T ] denotes the set of samples obtained at times
within [−T, T ] ∩ � by the sampling system P , i.e.
{y[tn] | n ∈ Z, tn ∈ [−T, T ]}.

The capacity of the undersampled channel under a given
sampling system can then be studied by taking the limit as
T → ∞. It was shown in [35] that limT →∞ CP

T (P) exists
for a broad class of sampling methods, including sampling via
filter banks and sampling via periodic modulation. We caution,
however, that the existence of the limit is not guaranteed for all
sampling methods, e.g. the limit might not exist for irregular
sampling. We therefore define the information capacity for a
given sampling system as follows.

Definition 5: (1) CP is said to be the information capacity
of a given sampled analog channel (or sampled channel
capacity) if limT →∞ CP

T (P) exists and

CP (P) = lim
T →∞ CP

T (P).

(2) CP
u (P) is said to be a capacity upper bound on the

sampled channel if CP
u (P) ≥ lim supT∞ CP

T (P)
Note that any sampled analog channel can be converted to

a set of independent discrete channels via a Karhunen Loeve
decomposition. The metric CP (P) then quantifies asymptot-
ically the maximum mutual information between the input
and output of these discrete channels, or equivalently, the
maximum data rate that can be conveyed reliably through these
channels.

The above capacity is defined for a given sampling mech-
anism. Another metric of interest is the maximum data rate
achievable by all sampling schemes within a general class.
This motivates us to define the sub-Nyquist sampled channel
capacity for a class of sampling systems as follows.

Definition 6 (Sampled Capacity Under a Class of Sampling
Systems): CA( fs , P) is said to be the capacity of an analog
channel over all a class A of sampling systems under a given
sampling rate fs if

CA( fs , P) = sup
P∈A

CP (P).

The above definition of sub-sampled channel capacity
characterizes the capacity limit of an analog channel over
a large set of sampling mechanisms subject to a sampling rate
constraint. This gives rise to the natural problem of jointly
optimizing the input and the sampling mechanism to maximize
capacity, a goal we address in the next section.

III. MAIN RESULTS

This section characterizes in closed form the sampled
channel capacity for a very general class of sampling sys-
tems, under a sampling rate constraint. Specifically, we are
concerned with the sampled channel capacity CA( fs , P),
where

A := {all right-invertible time-preserving sampling systems}.
Here, the right-invertibility represents some mild regularity
constraints that ensure each sample contains innovation infor-
mation, as will be formally defined later. Unless otherwise
specified, all sampling systems mentioned in this section
are assumed to be right-invertible time-preserving linear
systems.

Before proceeding, we shall assume, throughout, that for
any frequency f , the following holds

Sη ( f ) 
= 0,
∫

f

H 2 ( f )

Sη( f )
d f < ∞,

∫

f
Sη( f )d f < ∞ or Sη ( f ) ≡ 1. (6)

A. An Upper Bound on Sampled Channel Capacity

1) The Converse: A time-preserving sampling system
preserves the time scale of the signal, and hence does not
compress or expand the frequency scale. We now determine
an upper limit on the sampled channel capacity for this class of
general nonuniform sampling systems. Proposition 1 implies
that any multibranch sampling system can be converted into a
single branch sampling system without loss of information.
Therefore, we restrict our analysis in this section to the
class of single branch sampling systems, which provides
exactly the same upper bound as the one accounting for
multibranch systems. In addition, we constrain our atten-
tion to sampling methods that are right-invertible, as defined
below.2

Definition 7 (Right-Invertible Sampling System): A samp-
ling system with sampling set � and impulse response q(ti , τ )
(ti ∈ �) is said to be right-invertible with respect to Sη( f ) if

1) for any k ∈ Z, the frequency response F (qk (τ )) is
bounded everywhere;

2) for any frequency f and any T with its associated
sampling subset

�[−T ,T ] = [−T, T ] ∩ � := {
t1, . . . , tNT

}
,

2We impose the right-invertibility constraint primarily for the sake of math-
ematical convenience. We conjecture, however, that removing this constraint
does not change our main result (Theorem 2).
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the least singular value of the NT × ∞-dimensional
matrix FT ( f ) is uniformly bounded away from 0.

Here, qk (τ ) := q (tk, tk − τ ), and FT is a NT × ∞ matrix
defined by

[FT ( f )]k,l = F
(
sη · qk

)
(

f + l

T

)

, 1 ≤ k ≤ NT , l ∈ Z.

The right invertibility of the sampling system essen-
tially implies that for each subset of the impulse response
{q(ti , τ ) | i ∈ I}, the Fourier matrix associated with any sam-
pled response is right-invertible. This typically implies that the
set of samples is a linearly independent family – each sample
contains a sufficient amount of innovative information. Our
main theorem is now stated as follows.

Theorem 2 (Converse): Assume that there exists a small

constant ε > 0 such that F−1
(

H( f )√
Sη( f )

)

(t) = O
( 1

t1.5+ε

)
.

Suppose that there exists a frequency set Bm with μ (Bm) = fs

that satisfies
∫

f ∈Bm

|H ( f )|2
Sη( f )

d f = sup
B:μ(B)= fs

∫

f ∈B

|H ( f )|2
Sη( f )

d f.

Under any time-preserving right-invertible sampling sys-
tem P w.r.t. Sη ( f ) with sampling rate fs , the sampled channel
capacity is upper bounded by

CP (P) ≤ Cu ( fs , P)

:=
∫

f ∈Bm

1

2

[

log

(

ν
|H ( f )|2
Sη( f )

)]+
d f, (7)

where ν is given parametrically by
∫

f ∈Bm

[

ν − Sη( f )

|H ( f )|2
]+

d f = P. (8)

Here, we assume that Cu( fs, P) is continuous in both fs
and P3.

Remark 1: Note that Cu ( fs , P) is monotonically nonde-
creasing in fs and P. In fact, when the sampling rate is
increased from fs to fs + δ, Cu ( fs , P) corresponds to the
optimal value when considering all spectral sets of support
size fs + δ. Since we are still allowed to employ (suboptimal)
strategies to allocate power over smaller spectral sets with size
fs , we are optimizing over a larger set of transmission/power
allocation strategies than the situation with sampling rate fs .
Therefore, Cu ( fs , P) is nondecreasing in fs .

It can be easily shown that the upper limit Cu ( fs , P) is
equivalent to the maximum capacity of a channel whose spec-
tral occupancy is no larger than fs . The above result basically
implies that even if we allow for more complex irregular
sampling sets, the sampled capacity cannot exceed the one
commensurate with the analog capacity when constraining all
transmit signals to the interval of bandwidth fs that experience
the highest SNR. Accordingly, the optimal input distribution
will lie in this maximizing frequency set. This theorem also
demonstrates that the capacity is attained when aliasing is
suppressed by the sampling structure, as will be seen later in
our capacity-achieving scheme. When the optimal frequency

3For most channels of physical interest, the continuity assumption is
naturally satisfied.

interval Bm is selected, a water filling power allocation strategy
is performed over the spectral domain with some water level ν
determined by (8).

2) Approximate Analysis: To give some intuition into the
results, we provide an approximate (but non-rigorous) argu-
ment relying on “noise whitening” and “orthonormal projec-
tions”.

Suppose that the Fourier transform of the analog chan-
nel output r(t) is given by H ( f )X ( f ) + N( f ), where
X ( f ) and N( f ) denote, respectively, the frequency responses
of x(t) and η(t). When the sampled sequence does not
collapse information, we can characterize the sampling process
through a linear injective mapping R from the space of linear
functions H ( f )X ( f ) + N( f ) ∈ L2(−∞,∞) onto the space
L2(− fs/2, fs/2) of bandlimited functions:

φ (·) = R (H X) + R (N).

This way the noise component R (N) can be treated as additive
sampled noise in the frequency domain. We note, however,
that this Gaussian noise R (N) is not necessarily independent
over the spectral support [− fs/2, fs/2]. This motivates us to
whiten it first without loss of information.

Denote by W the whitening operator and suppose that
R (N) is bounded away from 0. Then the prewhitening process
is performed as

Wφ (·) = W (R (H X)) + W (R (N))

such that the noise component W (R (N)) is independent

across the frequency domain. If we set R̃(·) �= W (R (·)),
then we can rewrite the input-output relation as

φ̃ (·) = R̃ (H X) + Ñ ,

with Ñ being white over [− fs/2, fs/2] and R̃ being
an orthonormal operator onto L2 (− fs/2, fs/2). That said,
the operator R̃ effectively projects all spectral components
H ( f )X ( f )+ N( f ) onto a subspace L2(− fs/2, fs/2). Instead
of scrambling the spectral contents, the optimal projection
that maximizes the SNR extracts out a spectral set Bm of
support size fs that contains the frequency components with
the highest SNR. This leads to the capacity upper bound (7).
As illustrated in Fig. 2, scrambling the spectral contents does
not in general improve capacity. This will be formally proved
in Appendix A.

3) Proof Sketch: We now outline the key steps underlying
the proof of Theorem 2 for the white-noise scenario.

i) We start by analyzing the class of periodic sampling
systems: a special type of sampling methods that allow closed-
form capacity expressions. We then demonstrate that the
capacity under any periodic sampling system with sampling
rate fs and transmit power P is bounded above by Cu ( fs , P).

ii) The upper bound is then derived by relating general
(possibly aperiodic) sampled channels with periodic sampled
channels through a finite-duration approximation argument.
In fact, instead of studying the true sampled channel response
directly, we truncate the channel response so that its impulse
response is nonzero only within a finite duration. The capacity
bound for the resulting truncated channel is then bounded by
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Fig. 2. Projection of spectral contents from L (−∞,−∞) onto
L (− fs/2, fs/2). (a) SNR of the analog channel. (b) optimal projection:
it extracts out a frequency set of size fs and zeros out all other contents.
(c) a projection that scrambles the spectral contents, which does not in general
improve capacity.

the capacity of a new periodized channel we construct. As we
will show, the capacity of the truncated channel can be made
arbitrarily close to the capacity of the true sampled channel.

The most technically involved step is Step ii), which
proceeds by considering two cases as follows.

1) Finite-duration h(t). Consider first channels for which
h(t) is of finite duration, h(t) = 0 for any t /∈ [−L0, L0]
for some L0 > 0.

(a) Consider any given right-invertible time-preserving
sampling system P with impulse response q(t, τ ), and
suppose that the input x(t) is time constrained to the
interval [−T, T ]. Construct a periodic channel with
period 2(T + L0) based on q(t, τ ). Let CP

p (P) denote
the capacity of the periodized channel, whose sampling
rate is bounded above by fs + ε for some arbitrarily
small ε > 0.

(b) Show that CP
T (P) ≤ T +L0

T CP
p

(
T

T +L0
P
)

holds

uniformly for all P . Since we know that CP
p (P) ≤

Cu ( fs + ε, P) for any periodized channel (or, equiv-
alently, any channel followed by a periodic sampling
system), this establishes the capacity upper bound for
this class of finite-duration channels, provided that T is
sufficiently large.

2) Infinite-duration h(t). We next extend the results to
channels for which h(t) is non-zero over infinite dura-
tion.

(a) Construct a truncated channel such that

h̃(t) =
{

h(t), if |t| ≤ L1,

0, else,

for some sufficiently large L1. The capacity upper bound
holds for the truncated channel, as shown in Step 1).

(b) For any given sampling system P and any time
interval [−T, T ], compare the capacity of the original

channel (denoted by CP
T (P)) with the capacity of the

truncated channel (denoted by C̃P
T (P)), which can be

completed by investigating the spectrum of the operators
associated with both sampled channels. It can be shown
that CP

T (P) can be upper bounded by C̃P
T (P + ξ) + ξ

for some arbitrarily small constant ξ > 0, which holds
uniformly over all sampling systems P . Combining this
with results shown in Step 1), we demonstrate that
C̃P

T (P) (and hence C̃P
T (P)) is bounded arbitrarily close

by Cu ( fs , P), which establishes the claim for the whole
class of infinite-duration channels.

B. Achievability

It turns out that for most scenarios of interest, the capacity
upper bound given in Theorem 2 can be attained through
filterbank sampling, as stated in the following theorem.

Theorem 3 (Achievability – Sampling With a Filter Bank):
Suppose that the maximizing frequency set Bm introduced
in Theorem 2 exists and is piecewise continuous or, more
precisely,

Bm = ∪i Bi∈X,

where X is a finite index set, and Bi ’s are some non-
overlapping continuous intervals. Consider the following fil-
terbank sampling mechanism PFB: in the kth branch, the
frequency response of the filter is given by

Sk( f ) =
{

1, if f ∈ Bk,

0, otherwise,
(9)

and each filter is followed by an ideal uniform sampler with
sampling rate μ (Bk). Then

CPFB (P) = Cu ( fs , P),

where Cu ( fs , P) is the upper bound given by (7).
Proof: The spectral components in Bi can be perfectly

reconstructed from the sequence that is obtained by first
extracting out a subinterval Bi and then uniformly sampling
the filtered output with sampling rate fs,i . The capacity
under PFB is commensurate to the analog capacity when
constraining the transmit signal to ∪i Bi , which is equivalent
to Cu ( fs , P).

Note that the bandwidth of Bi may be irrational and the
system may require an infinite number of filters. Theorem 3
indicates that filterbank sampling with varied sampling rates
in different branches maximizes capacity.

The optimality of filterbank sampling immediately leads
to another optimal sampling structure under mild conditions.
As we have shown in [35], filterbank sampling with equal
rates on different branches is equivalent to a single branch
of modulation, as illustrated in Fig. 3. This approach attains
the sampled capacity achievable by filterbank sampling if
the SNRs of the analog channel are piecewise constant in
frequency. Although the filterbank sampling we derive in (9)
does not employ equal rates on different branches, for most
channels of physical interest we can simply divide each branch
further into a number of sub-branches to allow the rates
at different branches to be reasonably close to each other.
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Fig. 3. (a) Filterbank sampling: each branch filters out a frequency interval
of bandwidth Bk , and samples it with rate fk,s = Bk ; (b) A single branch
of modulation and filtering: the channel output is prefiltered by a filter with
impulse response p(t), modulated by a sequence q(t), post-filtered by another
filter of impulse response s(t), and finally sampled by a uniform sampler at a
rate fs . If the SNR |H ( f )|2/Sη( f ) is piecewise flat, then p(t), q(t) and s(t)
can be chosen such that the two systems are equivalent in terms of sampled
capacity.

Therefore, for most channels of physical interest (say, the
channels whose SNRs in frequency are Riemann-integrable),
the capacity achievable through filterbank sampling can be
approached arbitrarily closely by a single branch of sampling
with modulation. This achievability result is formally stated in
the following theorem.

Theorem 4 (Achievability – A Single Branch of Sampling
With Modulation and Filtering): Under the assumptions of
Theorem 3, suppose further that |H ( f )|2/Sη( f ) is constant
within each set Bi . Then for any small constant ε > 0, there
exists a time-preserving sampling system PMF with sampling
rate fs using a single branch of sampling with modulation
and filtering such that CPMF (P) ≥ Cu ( fs , P) − ε, where
Cu ( fs , P) is defined in (7).

Proof: It is straightforward to see that there exists a set
of non-overlapping intervals

{
B̃k
}

each with equal measure
that can approximate the original sets {Bl | 1 ≤ l ≤ n} arbi-
trarily well. Employing the sampling method described in
[35, Sec. V.D] achieves a sampled capacity arbitrarily close
to Cu ( fs , P).

A channel of physical interest can often be approximated
as piecewise constant over frequency in this way. Given
the maximizing frequency set Bm, the sampling structure
suggested in [35, Section V.D] first suppresses the fre-
quency components outside Bm using an optimal LTI prefilter.
A modulation module is then applied to scramble all frequency
components within Bm. The aliasing effect can be significantly
mitigated by appropriate choices of modulation weights for
different spectral subbands. We then employ another band-pass

filter to suppress out-of-band signals, and sample the output
using a pointwise uniform sampler. Compared with filterbank
sampling, a single branch of modulation and filtering only
requires the design of a lowpass filter, a band-pass filter, and
a multiplication module, which might be of lower complexity
to implement than a filter bank.

IV. DISCUSSION

Some properties of the capacity and capacity-achieving
strategies are now discussed.

• Monotonicity. It can be seen from Theorem 2 that
increasing the sampling rate from fs to f̃s results in
another frequency set B̃m of support size f̃s that has
the highest SNRs. By definition, the original frequency
set Bm must be a subset of B̃m. Therefore, the sampled
capacity with rate f̃s is no lower than the sampled
capacity with rate fs .

• Irregular sampling set. Sampling with irregular nonuni-
form sampling sets, while requiring complicated recon-
struction and interpolation techniques [11], does not
outperform filterbank or modulation bank sampling with
regular uniform sampling sets in maximizing capacity for
the channels considered herein.

• Alias suppression. We have seen that aliasing does not
allow a higher capacity to be achieved when perfect chan-
nel state information is known at both the transmitter and
the receiver. The optimal sampling method corresponds to
the optimal alias-suppression strategy. This is in contrast
to the benefits obtained through random mixing of spec-
tral components in many sub-Nyquist sampling schemes
with unknown signal supports. When we are allowed to
jointly optimize over both input and sampling schemes
with perfect channel state information, scrambling of
spectral contents does not in general maximize capacity.

• Perturbation of the sampling set. If optimal filter-
bank or modulation sampling is employed, then mild
perturbation of post-filtering uniform sampling sets does
not degrade the sampled capacity. One surprisingly
general example was proved by Kadec [40]. Suppose
that a sampling rate f̂s is used in any branch and
the sampling set satisfies

∣
∣t̂n − n/ f̂s

∣
∣ ≤ f̂s/4. Then{

exp
(

j2π t̂n f
) | n ∈ Z

}
also forms a Riesz basis

of L2(− f̂s/2, f̂s/2), thereby preserving information
integrity. These nonuniform sampling and reconstruc-
tion schemes, while generally complicated to implement
in practice, significantly broaden the class of sampling
mechanisms that allow perfect reconstruction of bandlim-
ited signals, and indicate stability and robustness of the
sampling sets. Kadec’s result immediately implies that the
sampled capacity is invariant under mild perturbation of
the sampling sets.

• Hardware implementation. When the sampling rate is
increased from fs1 to fs2, we need only to insert an
additional filter bank of overall sampling rate fs2 − fs1
to extract out another set of spectral components with
bandwidth fs2− fs1. Thus, the adjustment of the sampling
hardware system for filterbank sampling is incremental
with no need to rebuild the whole system from scratch.
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• Spectrum Blind Sampling. This paper focuses on the
scenario with perfect channel state information known
at the transmitter, the receiver, and the sampler. This is
different from the setting of compressed sensing, where
the signal spectrum is unknown to the sampler and the
decoder. In fact, the alias-suppressing sampler requires
knowledge of the channel. If this knowledge is not
available, then alias-suppressing samplers might result in
low capacity. When the sampler is spectrum blind and
the channel realization is uncertain, random sampling that
scrambles the spectral contents [31], [41] outperforms
alias-suppressing sampling in minimizing the rate loss
due to channel-independent sampling design. We investi-
gate the capacity of sub-Nyquist sampled channels with
unknown CSI in our companion paper [42].

V. CONCLUDING REMARKS

We developed the maximum achievable information rate for
a general class of right-invertible time-preserving nonuniform
sampling methods under a sampling rate constraint. It is shown
that nonuniformly spaced sampling sets, while requiring fairly
complicated reconstruction/approximation algorithms, do not
provide any capacity gain. Encouragingly, filterbank sampling
with varied sampling rates on different branches, or a single
branch of sampling with modulation and filtering, are sufficient
to achieve the sampled channel capacity. In addition, both
strategies suppress aliasing effects. In terms of maximizing
capacity, there is no need to employ irregular sampling sets
that are more complicated to implement in practical hardware
systems. The resulting sampled capacity is shown to be
monotonically increasing in sampling rate.

Our results in this paper are based on the assumption that
perfect channel state information is known at both the trans-
mitter and the receiver. It remains to be seen what sampling
strategies can optimize information rates when only partial
channel state information is known. It is unclear whether anti-
aliasing methods are still optimal in maximizing capacity.
Moreover, when it comes to the multi-user information theory
setting, anti-aliasing methods might not outperform other
spectral-mixing approaches in the entire capacity region.
It would be interesting to see how to optimize the sampling
schemes in multi-user channels, for example, joint sampling
schemes in sampled multiple access analog channels.
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APPENDIX A

PROOF OF THEOREM 2

For simplicity of presentation, we assume throughout that
the noise is white, i.e. Sη ( f ) ≡ 1. In fact, under the assump-
tion (6), we can always split the channel filter H ( f ) into
two parts with respective frequency response H ( f ) /

√
Sη( f )

and
√
Sη( f ). Since the colored noise is equivalent to a white

Fig. 4. Equivalent representation of sampling systems in the presence of
colored noise.

Gaussian noise passed through a filter with transfer function√
Sη( f ), the original system can be redrawn as in Fig. 4.

The filter with frequency response
√
Sη( f ) can then be

incorporated into the preprocessing system to generate a new
time-preserving preprocessor.

Recall that Proposition 1 indicates that any multibranch
sampling system can be converted into a single branch
sampling system without loss of information. As a result,
we restrict our proof to the class of single branch sampling
systems.

A. Capacity Under Periodic Sampling Systems

Recall that for a time varying system, the impulse response
q(t, τ ) is defined as the output seen at time t due to an impulse
in the input at time τ . The sampling system may not be time-
invariant, but a broad class of sampling mechanisms applied
in practice exhibits block-wise time invariance properties.
Specifically, we introduce the notion of periodic sampling
systems as follows.

Definition 8 (Periodic Sampling): Consider a sampling
system with a preprocessing system of impulse response
q(t, τ ) followed by a sampling set � = {tk | k ∈ Z}. A linear
sampling system is said to be periodic with period Tq and
sampling rate fs ( fs Tq ∈ Z) if the preprocessing system is
periodic with period Tq and the sampling set satisfies

tk+ fs Tq = tk + Tq , ∀k ∈ Z. (10)
In short, a periodic sampling system consists of a periodic

preprocessor followed by a pointwise sampler with a periodic
sampling set, as illustrated in Fig. 5. Since the impulse
response can be arbitrary within a period, this allows us
to model multibranch sampling methods with each branch
using the same sampling rate. Periodic sampling schemes
subsume as special cases a broad class of sampling techniques,
e.g. sampling via filter banks, sampling via periodic modula-
tion, and recurrent nonuniform sampling [13], [43].

The periodicity of the sampling system renders the linear
operator associated with the whole system to be block Toeplitz.
The asymptotic spectral properties of block Toeplitz operators
(see [44]) guarantee the existence of limT →∞ CP

T (P) for a
given periodic sampling system P , and allows a capacity
expression to be obtained in terms of the Fourier represen-
tation. Denote by Qk( f ) the Fourier transform of the impulse
response q(tk, tk − t) of the sampling system, i.e. Qk( f ) :=∫∞
−∞ q(tk, tk − t) exp(− j2π f t)dt . We further introduce an
fs Tq × ∞ dimensional Fourier series matrix Fq ( f ) associ-
ated with the sampling system, and another infinite diagonal
square matrix Fh ( f ) associated with the channel response.
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Fig. 5. The sampling set of a periodic sampling system with period 1/ fq and sampling rate fs .

For all m, l ∈ Z and 1 ≤ k ≤ fs Tq , we set
⎧
⎨

⎩

(
Fq
)

k,l ( f ) := Qk
(

f + l fq
)
,

(Fh)l,l ( f ) := H( f +l fq)√
S( f +l fq)

.
(11)

We can then express the sampled analog capacity for a given
periodic system P in closed form as follows.4

Lemma 1: Suppose the sampling system P is periodic
with period Tq and sampling rate fs , where fs Tq ∈ Z.
Let fq := 1/Tq. Assume that Sη( f ) 
= 0 for every f ,
|H ( f )Qk( f )|2 /Sη( f ) is bounded and integrable for all
1 ≤ k ≤ fs Tq . We also assume that the smallest singular
value of Fq F∗

q ( f ) is uniformly bounded away from 0 over
all f ∈ [− fq/2, fq/2

]
.

(1) The sampled channel capacity under optimal power
allocation is given by

CP (P) = 1

2

∫ fq/2

− fq/2

fs Tq∑

i=1

log [ν · λi ]+ d f, (12)

where ν satisfies

∫ fq/2

− fq/2

fs Tq∑

i=1

[

ν − 1

λi

]+
d f = P.

Here, λi denotes the i th largest eigenvalue of the matrix
(
Fq F∗

q

)− 1
2 Fq Fh F∗

h F∗
q

(
Fq F∗

q

)− 1
2 .

(2) Suppose further that H ( f ) = 0 for any f /∈ [0, W ],
and that the transmitter employs equal power allocation over
[0, W ]. Then the sampled channel capacity is given by

CP
eq (P) =

∫ fq/2

− fq/2

1

2
log

(

I + P

W

(
Fq F∗

q

)− 1
2

Fq

·Fh F∗
h F∗

q

(
Fq F∗

q

)− 1
2
)

d f. (13)

Proof: See Appendix B.
In Lemma 1, ν is the water-level with respect to the optimal

water-filling power allocation strategy over the eigenvalues of

the matrix
(
Fq F∗

q

)− 1
2 Fq Fh F∗

h F∗
q

(
Fq F∗

q

)− 1
2 . The capacity

expression (12) admits a simple upper bound, as stated below.

4We note that a periodic sampling system can be equivalently converted to a
filterbank sampling system, and hence [35, Th. 4] immediately leads to (12).
While the analysis framework in [35] relies on a discretization argument,
we provide here a more general approach based on operator analysis that
no longer requires discretization. More importantly, this approach allows to
accommodate any sampled channel with integrable |H ( f )Qk( f )|2 /Sη( f ),
which subsumes channels under band-limited filterbank sampling. In compar-
ison, [35] requires F−1 (|H ( f )Qk ( f )| /√Sη( f )

)
to lie in L1, which is far

more restrictive (e.g. it does not subsume band-limited filterbank sampling as
the sinc function is not absolutely integrable).

Corollary 1: (a) Consider the setup and assumptions in
Lemma 1. Under all periodic sampling systems with period
Tq and sampling rate fs , the sampled channel capacity can
be bounded above by

C fq ( fs , P) = 1

2

∫ fq/2

− fq/2

fs Tq∑

i=1

[
log

(
νpλi

{
Fh F∗

h

})]+ d f, (14)

where νp satisfies

∫ fq/2

− fq/2

fs Tq∑

i=1

[

νp − 1

λi
{

Fh F∗
h

}

]+
d f = P.

(b) Suppose that there exists a frequency set Bm that satisfies
μ (Bm) = fs and

∫

f ∈Bm

|H ( f )|2
Sη( f )

d f = sup
B:μ(B)= fs

∫

f ∈B

|H ( f )|2
Sη( f )

d f.

Then

C fq ( fs , P) ≤ Cu ( fs , P), (15)

where Cu ( fs , P) is given by (7).
Proof: (a) Following the same steps as in

[35, Proposition 1], we can see that the i th largest eigenvalue
satisfies

λi

{(
Fq F∗

q

)− 1
2

Fq Fh F∗
h F∗

q

(
Fq F∗

q

)− 1
2
}

≤ λi
(
Fh F∗

h

)
,

which immediately leads to (14).
(b) For any given fq , the upper bound (14) is obtained

by extracting out a certain frequency set B that has measure
μ(B) = fs and suppressing all spectral components outside B .
By our definition of Bm , any choice of B with spectral size
fs will not outperform Bm . Hence, choosing B = Bm leads
to a universal upper bound.

Corollary 1 reveals that the capacity under any periodic
sampling system, no matter what its period is, cannot exceed
the upper bound Cu ( fs , P) in Theorem 2. Our remaining
proof is then established by observing that any aperiodic
sampling system can be related to a periodic sampling system
by truncation and periodization, as elaborated in the next two
subsections.

B. General Upper Bound: Finite-Duration h(t)

In this subsection, we focus on the channel whose impulse
response is of finite duration 2L0, i.e.

h(t) = 0, ∀t (|t| > L0).
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Our goal is to prove that the capacity upper bound (7) holds
for this type of channel.

For any transmission block of duration 2T , we call the
transmit signal x(t) over this block a codeword (or a symbol)
of code length 2T . The information conveyed through such
finite-duration codewords can be bounded via capacity of
certain analog channels as long as we can preclude inter-
symbol interference. The key idea here is to separate con-
secutive codewords with a guard zone with sufficient length
and then apply capacity-achieving strategies separately and
independently for each codeword. When the code length 2T
is sufficiently large, the transmission time wasted on the
guard zones becomes negligible, which in turn allows us
to approach the true capacity arbitrarily well. The detailed
analysis proceeds as follows.

Step 1: Consider an input x(t) that is constrained to the
interval [−T, T ]. Since h(t) is of finite duration 2L0, the
channel output r(t) = h(t) ∗ x(t) + η(t) will be affected by
the input only when t ∈ [−T − L0, T + L0]. Define a window
operator and its complement operator such that

wT ( f (t)) =
{

f (t), if |t| ≤ T + L0,

0, else; (16)

and

w⊥
T ( f (t)) =

{
0, if |t| ≤ T + L0,

f (t), else.
(17)

Then for any linear sampling operator P with impulse
response q(t, τ ), the sampled output is P (r(t)) =
P (wT (r(t)))+P

(
w⊥

T (r(t))
)
. One can easily observe that the

component P
(
w⊥

T (r(t))
)

contains absolutely no information
about x(t), and is statistically independent of P (wT (r(t)))
due to the whiteness assumption of the noise. In other words,
the sampling input outside the interval [−T −L0, T +L0] does
not improve capacity at all. Consequently, it suffices to restrict
attention to the class of sampling systems whose system input
is constrained to the interval [−T − L0, T + L0].

Step 2: Construct a periodization of the above sampled
channel model with finite input duration. Set the impulse
response qp

T +L0
(t, τ ) of the preprocessor of the periodized

sampling system to be a periodic extension of q(t, τ ) in the
block [−T − L0, T + L0] × [−T, T ]. Specifically, we write
any τ as if τ = k · 2 (T + L0) + τr for some k ∈ Z and
τr ∈ [−T − L0, T + L0], then

qp
T +L0

(t, τ ) =

⎧
⎪⎨

⎪⎩

q (t − 2k(T + L0), τr) , if |t − 2k(T +L0)|
≤ T + L0,

0, else.
(18)

Apparently, qp
T+L0

(t, τ ) represents a periodic preprocessing
system with period 2 (T + L0).

Suppose without loss of generality that the indices of the
sample times residing in [−T −L0, T +L0] are 0, 1, . . . , K −1,
i.e. {k | tk ∈ [−T − L0, T + L0]} = {0, 1, . . . , K − 1}.
We can then set the sampling set �

p
T +L0

of the periodized

Fig. 6. The code words of duration 2T are separated by guard zones
of duration 2L0. There is no inter-symbol interference among different
observation intervals.

system such that for any sampling time tk ∈ �
p
T +L0

, we have

tk = tk mod K + 2(T + L0) ·
⌊

k

K

⌋

, (19)

where �x� �= max {n | n ∈ Z, n ≤ x}. Clearly, this forms a
periodic sampling set with period 2 (T + L0). The definition
of Beurling density ensures that for any ε > 0, there exists a
sufficiently large TD such that for every T > TD ,

fs − ε ≤ D
(
�

p
T +L0

) ≤ fs + ε.

Due to the finite-duration assumption of h(t), our construc-
tion (18) guarantees that the input x(t) within the time interval
[2k(T + L0)−T, 2k(T + L0)+T ] will only affect the sampled
output at the kth time block [(2k − 1) (T + L0), (2k + 1)
(T + L0)], as illustrated in Fig. 6. Since the noise η(t) is
assumed to be white, the noise components across different
time blocks are independent. In fact, the intervals [2k(T +
L0) + T, (2k + 1)(T + L0) − T ] (k ∈ Z) behave effectively
as guard zones in order to avoid leakage of signals across
different time blocks.

Based on the above argument, we can separate codewords of
duration 2T in [2k(T +L0)+T, (2k+1)(T +L0)−T ] (k ∈ Z)
on the analog channel by a guard zone 2L0 (as illustrated in
Fig. 6). The ratio of guard space to the length of the time block
vanishes as T → ∞, and there is no intersymbol interference
under the new system we construct. By our capacity definition,
for any δ > 0, there exists a T0 such that ∀T > T0, we have

T + L0

T
< 1 + δ, and

T

T + L0
> 1 − δ.

Consequently,

CP
T (P)

(i)≤ T + L0

T
CP

p

(
T

T + L0
P

)

≤ (1 + δ) CP
p ((1 − δ) P), (20)

where CP
p denotes the capacity under our periodized sampling

system. The inequality (i) follows from the following three
arguments:

• CP
T is the information rate when we observe the sam-

ples within the interval [−T, T ], which is smaller than
the information rate, termed ĈP

T , when we observe all
samples within [−T − L0, T + L0];

• ĈP
T is equivalent to the maximum information rate

achievable by the periodized system, under the constraint
that there is no input signal transmitted over the guard
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zones. Clearly, this rate will be smaller than the capacity
without this transmission constraint, which is T +L0

T CP
p .

Here, the multiplication factor T +L0
T arises from the fact

that we only use a portion T
T +L0

of time for transmission;
• Since the total energy over each transmission block is PT

and each guard zone has zero power, the average power
allocated to the transmitted signal is T

T +L0
P .

We know from Corollary 1(b) that

CP
p ((1 − δ) P) ≤ Cu

(
D
(
�

p
T +L0

)
,
(
1 − δ

)
P
)

≤ Cu ( fs + ε, (1 − δ) P), (21)

where the last inequality arises from observing that Cu( fs , P)
is monotonically non-decreasing in fs and P . Putting
(20) and (21) together yields

CP
T (P) ≤ (1 + δ) Cu ( fs + ε, P) (22)

as soon as T > max {T0, TD}. Since ε and δ can be chosen
arbitrarily small, we have that

lim sup
T →∞

CP
T (P) ≤ Cu ( fs , P)

when h(t) is of finite duration and η(t) is white.

C. General Upper Bound: Infinite-Duration h(t)

We now investigate the capacity bound when h(t) is not
time-limited. We would like to prove that for any given
sampling system P and any ε > 0, there exists T1 such that
for any T > T1, one has

CP
T ≤ Cu ( fs , P) + ε.

Our proof proceeds by comparing the original channel with
a truncated channel whose channel response h̃( f ) satisfies

h̃(t)
�=
{

h(t), if |t| ≤ L1,

0, otherwise.

Let ξ > 0 be an arbitrary small constant, and L1 chosen such
that

∫ −L1

−∞
|h(t)|2 dt +

∫ ∞

L1

|h(t)|2 dt ≤ ξ. (23)

We further constrain the input and the observed sampled
output to the time interval [−T, T ]. For both the original
and truncated channel, the sampled noise is not white, which
motivates us to first perform prewhitening.

Suppose without loss of generality that the sampled times
within [−T, T ] are {ti | 1 ≤ i ≤ KT }. For convenience of
notation, we introduce a linear operator P̂T associated with
the sampling system such that

P̂T (r̂(t)) = [y[1], y[2], . . . , y[KT ]] ,

where r̂(t) = g(x) ∗ x(t) + η̂(t) is the sampling system input,
η̂(t) is white, and {y[n]} are the corresponding sampled output.
Thus, for the original channel, one can write

⎡

⎢
⎢
⎢
⎢
⎣

y[1]
y[2]

...

y[KT ]

⎤

⎥
⎥
⎥
⎥
⎦

= P̂T (g(t) ∗ x(t)) + P̂T
(
η̂(t)

)
.

Denote by q̂(ti , τ ) the impulse response associated with this
sampling system. Then, the noise component P̂T

(
η̂(t)

)
can be

whitened by left-multiplying it with a KT -dimensional square
matrix W−1/2

P̂
defined by

W P̂ (i, j) =
∫ ∞

−∞
q̂ (ti , τ ) q̂∗ (t j , τ

)
dτ,

where the invertibility is guaranteed by our assumptions. To

see this, if we denote by η̃
�= W−1/2

P̂
P̂T

(
η̂(t)

)
the KT -

dimensional “prewhitened” noise, then one can verify that for
every i and j ,
[

E

(

P̂T
(
η̂(t)

) (
P̂T

(
η̂(t)

))�)]

i j

= E

[(∫ ∞

−∞
q̂ (ti , τ ) η̂ (τ ) dτ

)(∫ ∞

−∞
q̂∗ (t j , τ

)
η̂(τ )dτ

)]

=
∫ ∞

−∞
q̂ (ti , τ ) q̂∗ (t j , τ

)
dτ

= W P̂ (i, j)

or, equivalently,

E

[

P̂T
(
η̂(t)

) (
P̂T

(
η̂(t)

))�] = W P̂ .

As a result, the covariance of η̃ obeys

E

[
η̃η̃�] = W−1/2

P̂
E

(

P̂T
(
η̂(t)

) (
P̂T

(
η̂(t)

))�)
W−1/2

P̂
= I .

If we denote by P̂w
�= W

− 1
2

P̂
·P̂T and let q̂w (ti , τ ) represent its

associated impulse response, then the above calculation reveals
that

∫ ∞

−∞
q̂w (ti , τ ) q̂∗

w

(
t j , τ

)
dτ =

{
1, if i = j ;
0, else,

(24)

indicating that
{
q̂w (ti , ·) , 1 ≤ i ≤ KT

}
forms a set of ortho-

normal sequences in the corresponding Hilbert space.
For an operator A with an impulse response a(t, τ ) (−T ≤

τ ≤ T , t ∈ {ti | 1 ≤ i ≤ KT }) and input domain D (A),
we denote by ‖A‖F the generalized Frobenius norm of the
operator A with respect to its associated domain, namely,

‖A‖F :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√∑KT
i=1

∫ T
−T |a(ti , τ )|2 dτ ,

if D (A) = {ti | 1 ≤ i ≤ KT } × [−T, T ],√∑KT
i=1

∫∞
−∞ |a(ti , τ )|2 dτ,

if D (A) = {ti | 1 ≤ i ≤ KT } × [−∞,∞],√∫∞
−∞

∫ T
−T |a(t, τ )|2 dτdt,

if D (A) = [−∞,∞] × [−T, T ].
Recall that q̂w (ti , ·) (1 ≤ i ≤ KT ) forms orthonormal
sequences. By Bessel’s inequality [45], an operator A with
D (A) = [−∞,∞] × [−T, T ] satisfies

KT∑

i=1

∣
∣〈q̂w (ti , ·) , a (·, τ )

〉∣∣2 ≤
∫ ∞

−∞
|a (τ1, τ )|2 dτ1
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for every τ ∈ [−T, T ], which immediately gives

∥
∥
∥P̂wA

∥
∥
∥

2

F
=

KT∑

i=1

∫ T

−T

∣
∣
∣
∣

∫ ∞

−∞
q̂w(ti , τ1)a(τ1, τ )dτ1

∣
∣
∣
∣

2

dτ

=
∫ T

−T

KT∑

i=1

∣
∣〈q̂w (ti , ·) , a (·, τ )

〉∣∣2 dτ

≤
∫ T

−T

∫ ∞

−∞
|a (τ1, τ )|2 dτ1dτ ≤ ‖A‖2

F .

Denote by {λi } and {λ̃i } the set of squared singular
values associated with the original sampled channel oper-
ator P̂wG and the operator P̂wG̃ of the truncated sampled
channel, respectively. Here, G and G̃ represent respectively
the operator associated with the original channel response
and the truncated channel response. We can obtain some
properties of {λi } and {λ̃i } as stated in the following
lemma.

Lemma 2: Suppose that
∫∞
−∞ |g(t)|2 dt < Cg < ∞ for

some constant Cg. For any ξ > 0, there exists T0 such that
for every T > T0, one has

(1)
∣
∣
∣ 1

2T

∑
i λi − 1

2T

∑
i λ̃i

∣
∣
∣ ≤ ξ + 2

√
ξCg .

(2) 1
2T

∑
i λi ≤ ∫∞

−∞ |g(t)|2 dt < ∞.

(3) Suppose that h(t) = O
(

1
t1.5+ε

)
for some small ε > 0.

Then there exists T0,ε such that for every T > T0,ε , one has∣
∣
∣λi − λ̃i

∣
∣
∣ ≤ ξ .

Proof: See Appendix C.
For notational simplicity, define two functions as follows

CP
T (ν, {λi }) := 1

2T

KT∑

i=1

1

2

[
log (νλi )

]+ (25)

and

FT (ν, {λi }) := 1

2T

KT∑

i=1

[

ν − 1

λi

]+
(26)

for some water level ν. Note that if ν is chosen such that
FT (ν, {λi }) = P , then

CP
T (ν, {λi }) = CP

T (P).

Apparently, both CP
T (P) and CP

T (ν, {λi }) are non-decreasing
functions of {λi }, which implies that

CP
T (ν, {λi }) ≤ CP

T

(
ν,
{

max
{
λi , ξ

1
3

}})
(27)

and

CP
T (P) ≤ CP

T

(
ν,
{

max
{
λi , ξ

1
3

}})
,

where ν is determined by

FT

(
ν,
{

max
(
λi , ξ

1
3

)})
= P. (28)

Here, ξ > 0 is some arbitrarily small constant. In fact, one can
easily verify that CP

T

(
ν,
{

max
{
λi , ξ

1
3
}})

with ν determined
by (28) is no larger than the sum capacity of two separate

channels with respective eigenvalues {λi } and
{
λ̆i := ξ

1
3

}

each with power allocation P . In other words,

CP
T

(
ν,
{

max
{
λi , ξ

1
3

}})

≤ CP
T (P) + CP

T

(

ν,
{
ξ

1
3

}

1≤i≤KT

)

(29)

≤ CP
T (P) + KT

2T
log

(

1 + PT

KT
ξ

1
3

)

≤ CP
T (P) + KT

2T
· PT

KT
ξ

1
3

= CP
T (P) + P

2
ξ

1
3 . (30)

For any positive water level ν and some small constant
ξ > 0, the Lipschitz constants of the functions

f1 (x) := 1

2

[
log

(
ν max

{
x, ξ

1
3

})]+

f2 (x) :=
[

ν − max
{

x, ξ
1
3

}−1
]+

are bounded above in magnitude by 1
2ξ−1/3 and ξ−2/3, respec-

tively. Using the same water level ν, the corresponding power
for both channels can be computed as

P = 1

2T

KT∑

i=1

⎡

⎣ν − 1

max
{
λi , ξ

1
3

}

⎤

⎦

+
,

P̃ = 1

2T

KT∑

i=1

⎡

⎣ν − 1

max
{
λ̃i , ξ

1
3

}

⎤

⎦

+
.

Combining Lemma 2 and the Lipschitz constants of f2 (x)
immediately suggests that: there exists T0,ε such that for any
T > T0,ε , one has

∣
∣
∣P̃ − P

∣
∣
∣ = 1

2T

KT∑

i=1

1

ξ
2
3

∣
∣
∣λi − λ̃i

∣
∣
∣ ≤ KT

2T ξ
2
3

ξ

≤ ( fs + ε) ξ
1
3 . (31)

Similarly, we can bound
∣
∣
∣CP

T

(
ν,
{

max
{
λi , ξ

1
3

}})
− CP

T

(
ν,
{

max
{
λ̃i , ξ

1
3

}})∣∣
∣

≤ 1

2T

KT∑

i=1

1

2ξ
1
3

∣
∣
∣λi − λ̃i

∣
∣
∣

≤ 1

4
( fs + ε) ξ

2
3 . (32)

Combining (31), (32) and (22) suggests that

CP
T (P) ≤ CP

T

(
ν,
{

max
{
λi , ξ

1
3

}})

≤ CP
T

(
ν,
{

max
{
λ̃i , ξ

1
3

}})
+ 1

4
( fs + ε) ξ

2
3

≤ CP
T

(
P̃
)

+ P̃

2
ξ

1
3 + 1

4
( fs + ε) ξ

2
3

≤ CP
T

(
P + ( fs + ε) ξ

1
3

)
+ P̃

2
ξ

1
3 + 1

4
( fs + ε) ξ

2
3
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≤ P + ( fs + ε) ξ
1
3

2
ξ

1
3 + 1

4
( fs + ε) ξ

2
3 + (1 + δ)

·Cu

(
fs + ε, P + ( fs + ε) ξ

1
3

)
, (33)

where (33) is a consequence of (30). Since δ, ε, and ξ can all
be made arbitrarily small, it follows that

lim sup
T →∞

CP
T (P) ≤ Cu ( fs , P),

completing the proof.

APPENDIX B

PROOF OF LEMMA 1

The proof is restricted to the channel with white noise,
i.e. Sη( f ) ≡ 1. It is straightforward to extend the analysis
to colored noise through the argument presented in the first
paragraph of Appendix A.

Our proof proceeds in the following three steps.

1) We first introduce several correlation functions and
compute the Fourier series associated with them. These
quantities are crucial in deriving the capacity expression.
In particular, when the sampling system is periodic, the
infinite correlation matrices are block Toeplitz.

2) When constrained to a finite time interval
[−nTq , nTq

]
,

the sampled output is a finite vector. The sampled noise
is in general not white, which motivates us to whiten it
first. In fact, the covariance matrix of the sampled noise
can be easily derived in terms of the proposed correlation
functions.

3) For any time interval
[−nTq , nTq

]
, the capacity is

obtained through the Karhunen Loeve expansion. Specif-
ically, the capacity depends on the eigenvalues of
the associated system operator, which is related to
the correlation functions. The asymptotic properties of
block Toeplitz matrices guarantee the convergence when
n → ∞, which allow us to derive in closed form the
sampled channel capacity.

A. Correlation Functions and Fourier Series

For a concatenated linear system consisting of the channel
filter followed by the sampling system, we denote by

s (to, ti) :=
∫ ∞

−∞
h (τ − ti) q (to, τ ) dτ (34)

its system output seen at time to due to an impulse input
at time ti. For notational convenience, we define qk (τ ) :=
q (tk, τ ) as the sampling output response at time tk due to an
impulse input to the sampling system at time τ . Two output
autocorrelation functions are defined as follows

Rhq (tk, tl )
�=
∫ ∞

−∞
s (tk, τ ) s∗ (tl , τ ) dτ (35)

and

Rq (tk, tl)
�=
∫ ∞

−∞
q (tk, τ ) q∗ (tl , τ ) dτ. (36)

For notational simplicity, we use Rhq (k, l) (resp. Rq (k, l))
and Rhq (tk, tl) (resp. Rq (tk, tl)) interchangeably. When the

sampling system is periodic with period Tq , one can easily see
that both

[
Rhq (k, l)

]∞
k,l=−∞ and

[
Rq (k, l)

]∞
k,l=−∞ are infinite

block Toeplitz matrices.
The spectral properties associated with the system operators

are captured by Fourier series matrices Fhq , Fqq , Fh and Fq .
Specifically, Fhq is an fs Tq -dimensional square matrix such
that: for any frequency f and all 1 ≤ k, i ≤ fs Tq ,
(
Fhq

)
k,i ( f ) := ∑∞

l=−∞ Rhq
(
tk, ti+l fs Tq

)
exp ( j2πl f ) (37)

and
(
Fqq

)
k,i ( f ) := ∑∞

l=−∞ Rq
(
tk, ti+l fs Tq

)
exp ( j2πl f ) . (38)

Besides, for every frequency f , we define an fq Ts × ∞
dimensional matrix Fq ( f ) and an infinite square diagonal
matrix Fh ( f ) such that for all l ∈ Z and 1 ≤ k ≤ fq Ts :

(
Fq
)

k,l ( f ) := Qk
(

f + l fq
)
, (39)

(Fh)l,l ( f ) := H
(

f + l fq
)
, (40)

where Qk( f )
�= F (qk(·)) = F (q(tk, ·)).

The key properties of the above autocorrelation functions
and Fourier series are summarized in the following lemma.

Lemma 3: The Fourier series matrices satisfy:

Fhq = Fq Fh F∗
h F∗

q (41)

and

Fqq = Fq F∗
q . (42)

Proof: See Appendix D.

B. Noise Whitening

Denote by Qk (·) the sampling operator associated with the

sample time tk such that Qk (x)
�= ∫∞

−∞ q (tk, τ ) x (τ ) dτ . The
correlation of noise components Qk (η) at different times can
be calculated as

E
[
Qk (η)Q∗

l (η)
]

= E

[∫ ∞

−∞
q (tk, τk) η (τk) dτk

(∫ ∞

−∞
q (tl , τl) η (τl) dτl

)∗]

=
∫ ∞

−∞

∫ ∞

−∞
q (tk, τk) q∗ (tl , τl) E

(
η (τk) η∗ (τl)

)
dτkdτl

=
∫ ∞

−∞
q (tk, τ ) q∗ (tl , τ ) dτ,

which immediately implies that Q
(
η
) = [ · · · ,Q1

(
η
)
,

Q2
(
η
)
, · · · ]� is a zero-mean Gaussian vector with covariance

matrix Rq .
We now constrain both the transmit interval and the obser-

vation interval to
[−nTq , nTq

]
. Let

yn = [
y
[−n fs Tq + 1

]
, . . . , y

[
n fs Tq − 1

]
y
[
n fs Tq

]]�
,

where the sampled output sequence satisfies

y[k] = Qk (h(t) ∗ x(t)) + Qk (η(t)) . (43)

Introduce two 2n fs Tq -dimensional truncated autocorrelation
matrices Rn

hq and Rn
q such that for all −n fs Tq < k, l ≤ n fs Tq ,
(
Rn

hq

)
k,l = Rhq (tk, tl),



CHEN et al.: CHANNEL CAPACITY UNDER SUB-NYQUIST NONUNIFORM SAMPLING 4753

(
Rn

q

)
k,l = Rq (tk, tl).

Clearly, the noise components of yn exhibit a covariance
matrix Rn

q , which motivates to whiten it first.

By left multiplying yn with
(
Rn

q

)− 1
2 , we obtain a new input-

output relation as

ỹn[k] = Q̃k (h(t) ∗ x (t)) + η̃ [k] , ∀k
(|k| ≤ n fs Tq

)
,

where {η̃ [k]} are i.i.d. Gaussian random variables each of
unit variance. Denote by q̃ (tk, τ ) the equivalent impulse
response of this new system. The truncated output autocor-
relation function Rn

q̃ is given as
(
Rn

q̃

)
k,l = Rq̃ (tk, tl) =

∫∞
−∞ q̃ (tk, τ ) q̃∗ (tl , τ ) dτ , satisfying

Rn
q̃ = (

Rn
q

)− 1
2 Rn

hq

(
Rn

q

)− 1
2 (44)

by construction.

C. Capacity via Asymptotic Properties of Block
Toeplitz Matrices

While both Rn
q and Rn

hq are block Toeplitz
matrices, Rn

q̃ is in general not a block Toeplitz matrix.
By exploiting the asymptotic equivalence in Toeplitz matrix
theory [46], one can see that Rn

q̃ is asymptotically equivalent
to a block-Toeplitz matrix generated by the Fourier series

F
(
R− 1

2
q

)
F
(
Rhq

)
F
(
R− 1

2
q

)

= (
Fq F∗

q

)− 1
2 Fq Fh F∗

h F∗
q

(
Fq F∗

q

)− 1
2 .

Therefore, the asymptotic spectral properties of a block-
Toeplitz matrix (see [44]) state that for any nondecreasing
continuous function g(t) with a bounded slope, one has

lim
n→∞

1

2nTq

2n fs Tq∑

i=1

g
(
λi
(
Rn

q̃

))= 1

2πTq

∫ π

−π

fs Tq∑

i=1

g
(
λ̂i
)
dω,

(45)

where λ̂i represents the i th eigenvalue of
(
Fq F∗

q

)− 1
2 Fq Fh F∗

h F∗
q

(
Fq F∗

q

)− 1
2
.

(1) The capacity of the sampled channel with an optimal
water level νp can now be calculated as

CP (P) = lim
n→∞

1

2nTq

2n fs Tq∑

i=1

1

2

[
log

(
νpλi

(
Rn

q̃

))]+
(46)

= 1

2πTq

∫ π

−π

fs Tq∑

i=1

1

2

[
log

(
νpλ̂i

)]+
dω (47)

=
∫ fq/2

− fq/2

fs Tq∑

i=1

1

2

[
log

(
νpλ̂i

)]+
d f,

where (47) is a consequence of (45).
The water level ν is computed through the following

parametric equation

lim
n→∞

1

2nTq

2n fs Tq∑

i=1

⎡

⎣νp − 1

λi

(
Rn

q̃

)

⎤

⎦

+
d f = P,

which by (45) is asymptotically equivalent to

1

2πTq

∫ π

−π

fs Tq∑

i=1

[

νp − 1

λ̂i

]+
dω = P,

or

∫ fq/2

− fq/2

fs Tq∑

i=1

[

νp − 1

λ̂i

]+
d f = P.

by change of variables. This establishes the claim.
(2) We consider now the scenario where equal power

allocation is employed. Classical MIMO channel capacity
results [47] indicate that the optimal power allocation for the
transmitter is to allocate equal amount of power in all transmit
branches. It remains to see how much power is allocated to
the branch associated with λi

(
Rn

q̃

)
.

In fact, if the transmitter knows the channel bandwidth,
almost all power (except for negligible leakage due to finite-
time approximation) will be allocated inside the channel band-
width [0, W ]. Therefore, by the Shannon-Nyquist sampling
theorem, all transmit signals can be equivalently transformed
to a delta train

∑∞
i=−∞ xiδ(t −i/W ), where xi ’s are randomly

generated transmit signals. Consider the input time block[−nTq , nTq
]
, then there are equivalently 2nTq W transmit

branches inside this time block. Since the total power is Ptot =
2nTq P , the power allocated to each transmit branch is given by

P0 = lim
n→∞

Ptot

2nTq/
( 1

W

) = lim
n→∞

2nTq P

2nW Tq
= P

W
.

As a result, the sampled capacity under equal power allocation
is computed as

CP
eq (P) = lim

n→∞
1

2nTq

2n fs Tq∑

i=1

1

2
log

(

1 + P

W
λi

(
Rn

q̃

))

= 1

2πTq

∫ π

−π

fs Tq∑

i=1

1

2
log

(

1 + P

W
λ̂i

)

dω

=
∫ fq/2

− fq/2

1

2
log

(

I + P

W

(
Fq F∗

q

)− 1
2

Fq Fh

·F∗
h F∗

q

(
Fq F∗

q

)− 1
2
)

d f.

APPENDIX C

PROOF OF LEMMA 2

(1) Let G and G̃ denote respectively the operators associated
with g(t) and g̃(t). Then, the triangle inequality yields

∥
∥
∥P̂wG

∥
∥
∥

F
≤
∥
∥
∥P̂wG̃

∥
∥
∥

F
+
∥
∥
∥P̂w

(
G − G̃

)∥∥
∥

F

≤
∥
∥
∥P̂wG̃

∥
∥
∥

F
+
∥
∥
∥G − G̃

∥
∥
∥

F
,
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and hence
∥
∥
∥P̂wG

∥
∥
∥

2

F
≤
∥
∥
∥P̂wG̃

∥
∥
∥

2

F
+
∥
∥
∥G−G̃

∥
∥
∥

2

F
+ 2

∥
∥
∥G̃
∥
∥
∥

F

∥
∥
∥G − G̃

∥
∥
∥

F
. (48)

From (23) one can easily show that for any ξ > 0, there exists
a T0 such that for every T > T0, one has

∥
∥
∥G − G̃

∥
∥
∥

F
≤
√

2T

(∫ −T

−∞
+
∫ ∞

T

)

|h(t)|2 dt ≤ √
2T ξ .

Additionally, suppose that
∫∞
−∞ |h(t)|2 dt ≤ Cg < ∞. Then,

we have

∥
∥
∥G̃
∥
∥
∥

F
≤
√

2T
∫ ∞

−∞
|h(t)|2 dt ≤ √

2T Cg.

This together with (48) immediately gives us
∥
∥
∥P̂wG

∥
∥
∥

2

F
≤
∥
∥
∥P̂wG̃

∥
∥
∥

2

F
+ 2T ξ + 4T

√
ξCg .

Similar to [3, Th. 8.4.1], we can obtain that
∑

i

λi =
∥
∥
∥P̂wG

∥
∥
∥

2

F
and

∑

i

λ̃i =
∥
∥
∥P̂wG̃

∥
∥
∥

2

F
.

Therefore,

1

2T

∑

i

λi − 1

2T

∑

i

λ̃i = 1

2T

∥
∥
∥P̂wG

∥
∥
∥

2

F
− 1

2T

∥
∥
∥P̂wG̃

∥
∥
∥

2

F

≤ ξ + 2
√

ξCg .

Similarly,

1

2T

∑

i

λi − 1

2T

∑

i

λ̃i ≥ −ξ − 2
√

ξCg .

(2) We can also bound the sum of eigenvalues as follows

1

2T

∑

i

λi = 1

2T

∥
∥
∥P̂wG

∥
∥
∥

2

F
≤ 1

2T
‖G‖2

F

=
∫ ∞

−∞
|h(t)|2 dt < ∞.

(3) If g(t) = O
( 1

t1+ε

)
, then one can further control

∥
∥
∥G − G̃

∥
∥
∥

2

F
≤ 2T

(∫ −T

−∞
+
∫ ∞

T

)
|h(t)|2 dt

≤ 2T O

(
1

T 2+2ε

)

= O

(
1

T 1+2ε

)

.

Therefore, applying Weyl’s Theorem [48] yields that
∣
∣
∣λi − λ̃i

∣
∣
∣ ≤

∥
∥
∥P̂wG

(
P̂wG

)∗ − P̂wG̃
(
P̂wG̃

)∗∥∥
∥

F

≤
∥
∥
∥P̂w

(
G − G̃

)∥∥
∥

F

(∥∥
∥P̂wG

∥
∥
∥

F
+
∥
∥
∥P̂wG̃

∥
∥
∥

F

)

≤
∥
∥
∥G − G̃

∥
∥
∥

F

(
‖G‖F +

∥
∥
∥G̃
∥
∥
∥

F

)

≤ O

(
1

T ε

)

.

Therefore, for any small ξ > 0, there exists a constant T0,ε

such that for every T > T0,ε , one has
∣
∣
∣λi − λ̃i

∣
∣
∣ < ξ.

APPENDIX D

PROOF OF LEMMA 3

Simple manipulation yields

Rhq (tk, tl) =
∫ ∞

−∞
s (tk, τ ) s∗ (tl , τ ) dτ

=
∫∫∫

q (tk, τk) h (τk − τ ) h∗ (τl − τ ) q∗

× (tl , τl) dτkdτldτ

=
∫∫

qk (τk)Rh (τl − τ k) q∗
l (τl) dτkdτl,

where

Rh (τl − τ k) :=
∫

τ
h (τk − τ ) h∗ (τl − τ ) dτ

=
∫

τ
h (τk − τl + τ ) h∗ (τ ) dτ

= (
h ∗ h−∗) (τk − τl) .

Here, for any function f (t), we use f −(t) to denote f (−t).
By the periodicity assumption of the sampling system, one

can derive

Rhq
(
tk+a fs Tq , tl+b fs Tq

)

=
∫∫

q
(
tk + aTq , τk

)
Rh (τl − τ k) q∗

× (
tl + bTq, τl

)
dτkdτl

=
∫∫

q
(
tk, τk − aTq

)
Rh (τl − τ k)

·q∗ (tl + (b − a) Tq , τl − aTq
)

dτkdτl

= Rhq
(
tk, tl+(b−a) fs Tq

)
.

Observing that

Rhq
(
tk, ti+l fs Tq

)

=
∫∫

q (tk, τk)Rh (τi − τk) q∗ (ti + lTq , τi
)

dτkdτi

=
∫∫

qk (τk)Rh
(
τi + lTq − τk

)
q∗

i (τi ) dτkdτi

= (
Rh ∗ qk ∗ q−∗

i

) (
lTq

)
,

we can see that
(

Fhq
)

k,i is simply the Fourier transform of
the sampled sequence of Rh ∗ qk ∗ q−∗

i . The properties of the
Fourier transform suggest that

F
(
Rh ∗ qk ∗ q−∗

i

)
( f ) = F (Rh) ( f ) · Qk ( f ) · Q∗

i ( f )

= |H ( f )|2 Qk ( f ) · Q∗
i ( f ),

where Qk( f ) := F (qk). By definition in (37), one can write

(
Fhq

)
k,i ( f ) :=

∞∑

l=−∞
Rhq

(
tk, ti+l fs Tq

)
exp ( j2πl f )

=
∞∑

l=−∞

(
Rh ∗ qk ∗ q−∗

i

) (
lTq

)
exp ( j2πl f ),

which immediately leads to

(
Fhq

)
k,i =

∞∑

l=−∞
Qk

(
f + l fq

) ∣∣H
(

f + l fq
)∣∣2 Q∗

i

(
f + l fq

)
.
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This allows us to express Fhq as

Fhq = Fq Fh F∗
h F∗

q . (49)

Similarly, the equality Fqq = Fq F∗
q is then an immediate

consequence of (49) by setting Fh = I .
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