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Abstract—In light of the ever-increasing demand for new spec-
tral bands and the underutilization of those already allocated, the
concept of Cognitive Radio (CR) has emerged. Opportunistic users
could exploit temporarily vacant bands after detecting the absence
of activity of their owners. One of the crucial tasks in the CR cycle
is therefore spectrum sensing and detection which has to be pre-
cise and efficient. Yet, CRs typically deal with wideband signals
whose Nyquist rates are very high. In this paper, we propose to
reconstruct the power spectrum of such signals from sub-Nyquist
samples, rather than the signal itself as done in previous work,
in order to perform detection. We consider both sparse and non
sparse signals as well as blind and non blind detection in the sparse
case. For each one of those scenarios, we derive the minimal sam-
pling rate allowing perfect reconstruction of the signal’s power
spectrum in a noise-free environment and provide power spectrum
recovery techniques that achieve those rates. The analysis is per-
formed for two different signal models considered in the literature,
which we refer to as the analog and digital models, and shows that
both lead to similar results. Simulations demonstrate power spec-
trum recovery at the minimal rate in noise-free settings and the im-
pact of several parameters on the detector performance, including
signal-to-noise ratio, sensing time and sampling rate.

Index Terms—Cognitive radio, spectrum sensing, sub-
Nyquist sampling, compressed sensing (CS), power spectrum
reconstruction.

I. INTRODUCTION

S PECTRAL resources are traditionally allocated to licensed
or primary users (PUs) by governmental organizations.

Today, most of the spectrum is already owned and new users
can hardly find free frequency bands. In light of the ever-in-
creasing demand from new wireless communication users,
this issue has become critical over the past few years. On
the other hand, various studies [1]–[3] have shown that this
over-crowded spectrum is usually significantly underutilized
and can be described as the union of a small number of narrow-
band transmissions spread across a wide spectrum range. This
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is the motivation behind cognitive radio (CR), which would
allow secondary users to opportunistically use the licensed
spectrum when the corresponding PU is not active [4], [5].
Even though the concept of CR is said to have been introduced
by Mitola [4], [6], the idea of learning machines for spectrum
sensing can be traced back to Shannon [7].
One of the crucial tasks in the CR cycle is spectrum sensing

[8]. The CR has to constantly monitor the spectrum and detect
the PU’s activity in order to select unoccupied bands, before
and throughout its transmission. At the receiver, the CR samples
the signal and performs detection to assert which band is unoc-
cupied and can be exploited for opportunistic transmissions. In
order to minimize the interference that could be caused to PUs,
the spectrum sensing task performed by a CR should be reliable
and fast [9]–[11]. On the other hand, in order to increase the
chance to find an unoccupied spectral band, the CR has to sense
a wide band of spectrum. Nyquist rates of wideband signals are
high and can even exceed today’s best analog-to-digital con-
verters (ADCs) front-end bandwidths. Besides, such high sam-
pling rates generate a large number of samples to process, af-
fecting speed and power consumption.
To overcome the rate bottleneck, several new sampling

methods have recently been proposed [12]–[14] that reduce
the sampling rate in multiband settings below the Nyquist rate.
In [12]–[14], the authors derive the minimal sampling rate
allowing for perfect signal reconstruction in noise-free settings
and provide sampling and recovery techniques. However, when
the final goal is spectrum sensing and detection, reconstructing
the original signal is unnecessary. Following the ideas in
[15]–[18], we propose, in this paper, to only reconstruct the
signal’s power spectrum from sub-Nyquist samples, in order to
perform signal detection.
Several papers have considered power spectrum reconstruc-

tion from sub-Nyquist samples, by treating two different signal
models. The first, and most popular so it seems, is a digital
model which is based upon a linear relation between the sub-
Nyquist and Nyquist samples obtained for a given sensing time
frame. Ariananda et al. [15], [16] have deeply investigated this
model with multicoset sampling [13], [19]. They consider both
time and frequency domain approaches and discuss the recon-
struction of the autocorrelation or power spectrum respectively,
from underdetermined and overdetermined systems. For the first
case, they exploit sparsity properties of the signal and apply
compressed sensing (CS) [20] reconstruction techniques but do
not analyze the sampling rate. The authors rather focus the anal-
ysis on the second case, namely the overdetermined system,
and show that it can be solved without any sparsity assump-
tion. They demonstrate that the so-called minimal sparse [21]

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3898 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 15, AUGUST 1, 2014

and minimal circular sparse ruler patterns [22] provide sub-op-
timal and optimal solutions for sub-Nyquist sampling, within
the class of multicoset samplers.
The second is an analog model that treats the class of wide-

sense stationary multiband signals, whose frequency support
lies within several continuous intervals (bands). Here, a linear
relation between the Fourier transform of the sub-Nyquist sam-
ples and frequency slices of the original signal’s spectrum is
exploited. In [17], [18], the authors propose a method to esti-
mate finite resolution approximations to the true power spec-
trum exploiting multicoset sampling. That is, they estimate the
average power within subbands rather than the power spectrum
for each frequency. They consider both overdetermined and un-
derdetermined, or compressive, systems. In the latter case, CS
techniques are used, which exploit the signal’s sparsity, whereas
the former setting does not assume any sparsity. In [17], the au-
thors assume that the sampling pattern is such that the system
they obtain has a unique solution but no specific sampling pat-
tern or rate satisfying this condition is discussed. In [18], sam-
pling patterns generated uniformly at random and the Golomb
ruler are considered in simulations but no analysis of the re-
quired rate is performed. Another recent paper [23] considers
the analog model with multicoset sampling in the non sparse
setting. The authors derive necessary and sufficient conditions
for perfect power spectrum reconstruction in noise-free settings.
They show that any universal sampling pattern guarantees per-
fect recovery under those sufficient conditions. They further in-
vestigate two other sub-optimal patterns that lead to perfect re-
construction under higher sampling rates.
In this paper, we aim at filling several gaps in the current lit-

erature. First, to the best of our knowledge, no comparison has
been made between the two models and their respective results.
As a consequence, results such as the minimal sampling rate
required for perfect power spectrum reconstruction, obtained
for either of the models cannot be compared nor applied to the
other. Second, the general conditions required from the sam-
pling matrix and the resulting minimal sampling rate for perfect
power spectrum reconstruction in a noiseless environment have
not been analyzed. In [15], [16], only multicoset sampling is
considered and no universal minimal rate is provided. Rather,
several compression ratios given by the sub-optimal solution of
the minimal sparse ruler are shown to suffice. In [17], [18], no
proof of the uniqueness of the solution is given. The authors in
[23] provide necessary and sufficient conditions for perfect re-
covery, but only for the analog model in the non sparse setting.
One of the main objectives of this paper is to provide a

unified framework for power spectrum reconstruction from
sub-Nyquist samples by bridging between two models: the
analog or multiband model, and the digital one that we relate
to a multi-tone model in order to anchor it to the original
analog signal. For the analog model, we focus on sampling
schemes that operate on the bins of the signal’s spectrum and
provide samples that are linear transformations of these. Two
examples of such schemes are the sampling methods proposed
in [12]–[14], namely multicoset sampling and the Modulated
Wideband Converter (MWC). For the digital model, we an-
alyze a generic sampling scheme and provide two different
reconstruction approaches. The first, considered for example in

[15], [16], is performed in the time domain whereas the second
is realized in frequency. While the analysis of the conditions
for perfect reconstruction turns out to be difficult in time, we
show that it is convenient in the frequency domain. There, both
the analog and digital models lead to similar relations and can
therefore be investigated jointly. In particular, we show that
this framework can be used to derive the minimal sampling rate
for perfect power spectrum reconstruction in both models. It is
interesting to note that other applications based on sub-Nyquist
sampling, such as radar [24], and ulstrasound [25], use a fre-
quency domain analysis as well.
We examine three different scenarios: (1) the signal is not

assumed to be sparse, (2) the signal is assumed to be sparse
and the carrier frequencies of the narrowband transmissions are
known, (3) the signal is sparse but we do not assume carrier
knowledge. We show that the same sub-Nyquist sampling and
power spectrum reconstruction methods can be applied in all
cases, exploiting either the a priori knowledge available at the
receiver on the sparsity or the carrier locations.
The main contributions of this paper are twofold. First, for

each one of the scenarios, we derive the minimal sampling rate
for perfect power spectrum reconstruction. We show that this
rate is half the rate that allows for perfect signal reconstruc-
tion, for each one of the scenarios, namely the Nyquist rate, the
Landau rate [26] and twice the Landau rate [13], respectively.
Second, we present reconstruction techniques that achieve those
rates for both signal models. Throughout the paper, minimal
sampling rate refers to the lowest rate enabling perfect recon-
struction of the power spectrum in a noiseless environment for
a general sampling scheme.We do not consider the minimal rate
achievable for a specific design of the sampling system. For in-
stance, in [15], [16], the authors show that designing the mul-
ticoset sampling matrix according to the minimal sparse ruler
pattern results in a sampling rate below ours. Some other spe-
cific sampling patterns are considered in [23]. In contrast, we
focus on generic systems without any particular structure.
This paper is organized as follows. In Section II, we present

the multiband and multi-tone models and formulate our
problem. Section III describes the sub-Nyquist sampling stage
and ties the original signal’s power spectrum to the correlation
between the samples. In Section IV, we derive the minimal
sampling rate for each one of the three scenarios described
above and present recovery techniques that achieve those
rates. Numerical experiments are presented in Section V. We
demonstrate power spectrum reconstruction from sub-Nyquist
samples, show the impact of several practical parameters on
the detection performance, and compare our detection results
to Nyquist rate sampling and to spectrum based detection from
sub-Nyquist samples.

II. SYSTEM MODELS AND GOAL
A. Analog Model

Let be a real-valued continuous-time signal, supported
on and composed of up to un-
correlated stationary transmissions, such that

(1)
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Here and is a zero-mean wide-sense stationary
signal. The value of determines whether or not the th trans-
mission is active. The bandwidth of each transmission is as-
sumed to not exceed (where we consider both positive and
negative frequency bands). Formally, the Fourier transform of

defined by

(2)

is zero for every . We denote by the
Nyquist rate of and by the support of .
The power spectrum of is the Fourier transform of its

autocorrelation, namely

(3)

where is the autocorrelation function
of . From [27], it holds that

(4)

Thus, obviously, the support of is identical to that of
, namely . Our goal is to reconstruct from

sub-Nyquist samples. In Section III, we describe our sampling
schemes and show how one can relate to the correlation
of the samples.
We consider three different scenarios.
1) No Sparsity Assumption: In the first scenario, we assume

no a priori knowledge on the signal and we do not suppose that
is sparse, namely can be on the order of .

2) Sparsity Assumption and Non Blind Detection: Here, we
assume that is sparse, namely . We denote

. In Section IV, we will express the minimal sam-
pling rate as a function of . Moreover, the support of the po-
tentially active transmissions is known and corresponds to the
frequency support of licensed users defined by the communica-
tion standard. However, since the PUs’ activity can vary over
time, we wish to develop a detection algorithm that is indepen-
dent of a specific known signal support.
3) Sparsity Assumption and Blind Detection: In the last sce-

nario, we assume that is sparse, but we do not assume any a
priori knowledge on the carrier frequencies. Only the maximal
number of transmissions and the maximal bandwidth
of each one are known.

B. Digital Model

The second model we consider is the multi-tone model. Let
be a continuous-time signal defined over the interval

and composed of up to transmissions, such that

(5)

Again, and is a wide-sense stationary
signal. Since is defined over , it has a Fourier series
representation

(6)

where is the maximal possible frequency in . Each
transmission has a finite number of Fourier coefficients,
up to , so that

(7)

where is a set of integers with and
. Thus, here the support of is

.
For mathematical convenience, for this model we will con-

sider the Nyquist samples of , namely

(8)

where . Let us define
. Since is wide-sense stationary, it follows that

is wide-sense stationary as well. From (6), the auto-
correlation of , namely , has a Fourier
representation

(9)

where

(10)

The stationarity property of the signal [28] implies that

(11)

From (10)–(11), it is obvious that the Fourier coefficients of
lie in the same support as those of , namely .

Again, we consider three different scenarios.
1) No Sparsity Assumption: In the first scenario, we assume

no a priori knowledge on the signal and we do not suppose that
is sparse, namely can be on the order of .

2) Sparsity Assumption and Non Blind Detection: Here, we
assume that is sparse, namely and
that the Fourier frequencies in the Fourier series expansions of

, namely are known. We denote
.

3) Sparsity Assumption and Blind Detection: In the last sce-
nario, we assume that is sparse but we do not have any a
priori knowledge on the Fourier frequencies in the Fourier se-
ries expansions of .

C. Problem Formulation

In each one of the scenarios defined in the previous section,
our goal is to assess which of the transmissions are active
from sub-Nyquist samples of . For each signal, we define
the hypothesis and , namely the th transmission is
absent and active, respectively.
In order to determine which of the transmissions are ac-

tive, we first reconstruct the power spectrum of for the first
model (3), or the Fourier coefficients of the signal’s sampled au-
tocorrelation for the second one (10). In the first and third sce-
narios, we fully reconstruct the power spectrum. In the second
one, we exploit our prior knowledge and reconstruct it only at
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the potentially occupied locations. We can then perform detec-
tion on the fully or partially reconstructed power spectrum. Note
that, to do so, we do not sample at its Nyquist rate, nor com-
pute its Nyquist rate samples. For each one of the scenarios, we
derive the minimal sampling rate enabling perfect reconstruc-
tion of (3) and (10) respectively, in a noise-free environment,
and present recovery techniques that achieve those rates.
By performing e.g., energy detection on the reconstructed

power spectrum, we can detect unoccupied spectral bands,
namely spectrum holes, from sub-Nyquist samples. This makes
the detection process faster, more efficient and less power
consuming, which fits the requirements of CRs. Other forms of
detection are also possible, once the power spectrum is recov-
ered, such as eigenvalue-based [29], [30] or covariance-based
[31] techniques.

III. SPECTRUM RECONSTRUCTION FROM
SUB-NYQUIST SAMPLES

A. Analog Model: Sampling and the Analog Spectrum

We begin with the analog model. For this model, we con-
sider two different sampling schemes: multicoset sampling [13]
and the MWC [12] which were previously proposed for sparse
multiband signals. We show that both schemes lead to identical
expressions of the signal’s power spectrum in terms of that of the
samples. In this section, we consider reconstruction of the whole
power spectrum. In Section IV.B, we show how we can recon-
struct the power spectrum only at potentially occupied locations
when we have a priori knowledge on the carrier frequencies.
1) Multicoset Sampling: Multicoset sampling [19] can be

described as the selection of certain samples from the uniform
grid. More precisely, the uniform grid is divided into blocks of
consecutive samples, from which only are kept. The th

sampling sequence is defined as

(12)

where . Let
be the sampling rate of each channel and
.

Following the derivations from multicoset sampling [13], we
obtain

(13)

where are the discrete-
time Fourier transforms (DTFTs) of the multicoset samples and

(14)

where for odd and
for even . Each entry of is referred

to as a bin since it consists of a spectrum slice from . The
th element of the matrix is given by

(15)

2) MWC Sampling: The MWC [12] is composed of par-
allel channels. In each channel, an analog mixing front-end,

where is multiplied by a mixing function , aliases the
spectrum, such that each band appears in baseband. The mixing
functions are required to be periodic. We denote by
their period and we require . The function
has a Fourier expansion

(16)

The signal then goes through a lowpass filter with cut-off fre-
quency and is sampled at rate . For the sake of
simplicity, we choose . The overall sampling rate is

where .
Repeating the calculations in [12], the relation between the

known DTFTs of the samples and the unknown is
given by

(17)

where is a vector of length with th element
. The unknown vector is given by (14). The

matrix contains the coefficients :

(18)

For both sampling schemes, the overall sampling rate is

(19)

3) Analog Power Spectrum Reconstruction: Systems (13)
and (17) are identical for both sampling schemes: the only dif-
ference is the samplingmatrix .We assume that is full spark
in both cases [12], [13], namely, that every columns of
are linearly independent. We thus can derive a method for re-
construction of the analog power spectrum for both sampling
schemes jointly. In particular, we will reconstruct from
the correlation between , defined in (13) and (17).
Since is a wide-sense stationary process, we have [27]

(20)

where is given by (3). We define the autocorrelation
matrix , where denotes the
Hermitian operation. From (20), is a diagonal matrix
with [17], where is defined in
Section III.A1. Clearly, our goal can be stated as recovery of

, since once is known, follows for all .
We now relate to the correlation of the sub-Nyquist

samples. From (13) or (17), we have that

(21)

where . Therefore,

(22)

where , and denotes the conjugate
matrix of . Here is the Kronecker product, denotes the
Khatri-Rao product, , and is a
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selection matrix that has a 1 in the th column and
th row, and zeros elsewhere. Thus,

and by recovering for all , we
recover the entire power spectrum of .
We now discuss the sparsity of for the second and third

scenarios. We chose so that each transmission con-
tributes only a single non zero element to (referring to a
specific ), and consequently has at most non
zeros for each [12], corresponding to . In the next section,
we derive conditions on the sampling rate for (22) to have a
unique solution.
It is interesting to note that (22), which is written in the fre-

quency domain, is valid in the time domain as well. We can
therefore estimate and reconstruct in the frequency
domain, or alternatively, we can estimate and reconstruct

in the time domain using

(23)

Note that is -sparse for each specific frequency
, whereas is -sparse since each transmission can

be split into two bins. Therefore, in Section IV.C, we show that
the minimal sampling rate is achieved only in the frequency do-
main. Since the vectors are jointly sparse, we can recover
the support from one sample in each channel, provided that
the value of the samples in the occupied bins is not zero for
each . However, in order to ensure robustness to noise and
better performance, we consider more than one sample in the
simulations.
As a final comment, below we assume full knowledge of
or , or the possibility to compute them. In Section V,

we show how to approximate and from a finite data
block.

B. Discrete Model: Reconstruction of the Digital Spectrum

In this model, we wish to recover the Fourier coefficients of
the autocorrelation of , defined in (10). The traditional ap-
proach in this setting exploits the time domain characteristics
of the stationary signal. Unfortunately, the analysis of the re-
covery conditions of the Fourier coefficients of turns out to
be quite involved. Therefore, we propose a second approach,
that exploits the equivalent frequency domain properties of the
signal. We show that in that case, the same analysis as for the
analog model can be performed.
1) Time Domain: Define the autocorrelation matrix as

...
...

. . .
...

(24)

From (9),

(25)

where is defined in (10), is the DFT matrix and

(26)

Therefore,

(27)

where is a repetition matrix whose th row is given
by the th row of the
identity matrix.
We now relate to the covariance matrix of the sub-Nyquist

samples . We start by deriving the relationship
between and . From (32), we have

(28)

Vectorizing both sides of (28) and using (27), we obtain

(29)

where is of size . We recall that
is a vector of size and is a vector of size .
Since is invertible, . Note

that we can express as shown in

...

where denotes the th column of . Analyzing conditions
for to be full rank does not appear to be straightforward. We
therefore propose instead to investigate the following frequency
domain approach.
2) Frequency Domain: From (6),

(30)

Here, is given by (8), the entries of are the Fourier coeffi-
cients of (see (6)) and is the DFT matrix. Since
is orthonormal,

(31)

Define the autocorrelation matrix . From (11),
is a diagonal matrix and it holds that

. Clearly, our goal can be stated as recovery of , since
once is known, follows.
We now relate to the correlation of the sub-Nyquist sam-

ples. A variety of different sub-Nyquist schemes can be used to
sample [12], [13], [32], even when its Fourier series is not
sparse as we will show in Section IV.A. Let denote
the vector of sub-Nyquist samples of , sam-
pled at rate with . For simplicity, we assume that

is an integer. We express the sub-Nyquist sam-
ples in terms of the Nyquist samples as

(32)

where is a matrix. Combining (31) and (32), we obtain

(33)
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TABLE I
PARAMETER NOTATION IN BOTH MODELS

where . We assume that is full spark, namely
.

Let be the covariance matrix of the
sub-Nyquist samples. We now relate to . From (33), we
have

(34)

Vectorizing both sides of (34),

(35)

Here, is as defined in Section III.A3, is
of size and is a vector of size that contains the
potentially non-zero elements, namely the diagonal elements, of
, that is .
In the second and third scenarios, has only non

zero elements, which correspond to the non zero Fourier
cofficients in . In Section IV, we discuss the conditions for
(35) to have a unique solution, and we derive the minimal sam-
pling rate accordingly.
Again, we assume full knowledge of and will show how it

can be approximated in Section V.
We observe that we obtain a similar relation (22) and (35) in

both models. Therefore, the next section refers to both together.
We used the same notation for different parameters in the two
models so that they both lead to the same relation. In order to
avoid confusion, we summarize the notation in Table I. We also
note that, in the analog model, we define an infinite number of
equations (22), more precisely one per frequency ,
whereas in the digital model we obtain a single equation (35).

IV. MINIMAL SAMPLING RATE AND RECONSTRUCTION

A. No Sparsity Constraints

1) Minimal Rate for Perfect Reconstruction: The systems
defined in (22) and (35) are overdetermined for , if
is full column rank. The following proposition provides condi-
tions for the systems defined in (22) and (35) to have a unique
solution.
Proposition 1: Let be a full spark matrix

and be a selection matrix that has a 1 in the th
column and th row, and zeros
elsewhere. The matrix is full column
rank if and .

Proof: First, we require in order for to have a
smaller or equal number of columns than of rows.
Let be a vector of length in the null space of , namely

. We show that if , then . Assume by
contradiction that . We denote by the set of indices

such that and . It holds that
.

Note that we can express as

where denotes the th column of . Let

where is the element of on the th row and th column.
Then if and only if

(36)

That is, the vectors are in the null space of .
If , then since is full spark, (36) holds if and only

if . Again, since is
full spark, none of its columns is the zero vector and therefore

and we obtained a contradiction.
If , then we show that the vectors

are linearly independent. Since is full spark, every set of
columns are linearly independent. Let us consider columns
of such that . It follows that

if and only if . From the definition of , this holds
if and only if , that is the vectors are lin-
early independent. Thus, the vectors are linearly inde-
pendent as well. We denote by the dimension of the
null space of . From the rank-nullity theorem,

. Since the dimension of the space
spanned by is , if , then .
We note that Proposition 1 is the same as Lemma 1 in [33],

which is derived in a different context. However, our proof is
different and included here for completeness.
The following theorem results directly from Proposition 1.
Theorem 1: The systems (22) (analog model) and (35) (dig-

ital model) have a unique solution if
1) in the analog model and in the digital model are
full spark.

2) and .
The second condition of Theorem 1 can happen even for
which is our basic assumption. If , we have
. Thus, in this case, the values of for which we obtain

a unique solution are . The minimal sampling
rate is then

(37)

This means that even without any sparsity constraints on the
signal, we can retrieve its power spectrum by exploiting its sta-
tionarity property, whereas the measurement vector exhibits
no stationary constraints in general. This was already observed
in [34] for the digital model, but no proof was provided. In [23],
the authors show that is a sufficient condition on
so that is full column rank in the analog model. Then, a uni-
versal sampling pattern can guarantee the full column rank of .
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In [17], [18], [23], the authors claim that the system is overde-
termined if and if the multicoset sampling
pattern is such that it yields a full column rank matrix . In
[23], some simple sub-optimal multicoset sampling patterns are
given, that achieve compression rate below . Some exam-
ples of optimal patterns, namely that guarantee a unique solu-
tion under , are given in [17], [18] but it is
not clear what condition is required from the pattern, or alterna-
tively from the sampling matrix , in order for to have full
column rank. Here, the condition for having a solution is given
with respect to the sampling matrix , which directly depends
on the sampling pattern, rather than the matrix .
2) Power Spectrum Reconstruction: If the conditions of The-

orem 1 are satisfied, namely if the sampling rate , then
the systems defined in (22) and (35) are overdetermined, respec-
tively. The power spectrums and are given by

(38)

in the analog model, and

(39)

in the digital one, where denotes the Moore-Penrose pseudo-
inverse.

B. Sparsity Constraints—Non Blind Detection

1) Minimal Rate for Perfect Reconstruction: We now con-
sider the second scheme, where we have a priori knowledge on
the frequency support of and we assume that it is sparse.
Instead of reconstructing the entire power spectrum, we ex-
ploit knowledge of the signal’s frequencies in order to recover
the potentially occupied bands (analog model) or the potential
Fourier series coefficients of the autocorrelation function (dis-
crete model). This will allow us to further reduce the sampling
rate.
In this scenario, (first model) and (second model)

contain only potentially non zero elements as dis-
cussed in Section III. In the first model, the reduced problem
can be expressed as

(40)

Here, is the vector reduced to its potentially
non zero elements and contains the corresponding
columns of . The support of depends on the specific
frequency since the support of the power spectrum of each
transmission can split into two different bins of .
Obviously, can be calculated for each from the known .
In the second model, the reduced problem becomes

(41)

where, is the reduction of to its potentially non zero
elements, and contains the corresponding columns of
. In the digital case, the support satisfies .
The following proposition provides conditions for the sys-

tems defined in (40) and (41) to have a unique solution.

Proposition 2: Let be a full spark matrix
and be defined as in Proposition 1. Let and
be the that selects any columns of .

The matrix is full column rank if and
.

Proof: First, we require in order for to have
a smaller or equal number of columns than of rows. Let be
the matrix composed of the columns of corre-
sponding to the selected columns of :

Here denotes the column of corresponding
to the th selected column of . We have

If , then, since is full spark
as well. Applying Proposition 1 with , we have that is full
column rank if .
If , then from is full

column rank. Since , the
matrix is also full column rank. It can be seen that the
matrix is obtained by selecting columns from .
It follows that is full column rank as well.
Proposition 2 is similar to Lemma 1 in [35]; however,

its proof is different. Thus, we have included it here for
completeness.
The following theorem is a direct result of Proposition 2.
Theorem 2: The systems (40) (analog model) and (41) (dig-

ital model) have a unique solution if
1) in the analog model and in the digital model are
full spark.

2) and .
FromTheorem 2, theminimal sampling rate for perfect power

spectrum reconstruction in a non blind scenario is

(42)

Landau [26] developed a minimal rate requirement for perfect
signal reconstruction in the non blind setting, which corresponds
to the actual band occupancy, namely . Here, we find that
the minimal sampling rate for perfect power spectrum recovery
in this setting is half the Landau rate.
2) Power Spectrum Reconstruction: If the conditions of The-

orem 2 are satisfied, namely the sampling rate , then
we can reconstruct the signal’s power spectrum by first reducing
the systems as shown in (40) and (41). The reconstructed power
spectrum and are given by

(43)

in the first model, and

(44)

in the second one.
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C. Sparsity Constraints—Blind Detection

1) Minimal Rate for Perfect Reconstruction: We now con-
sider the third scheme, namely is sparse, without any a
priori knowledge on the support. In the previous section, we
showed that is full column rank, for any choice of

columns of . Thus, for , we have .
Therefore, in the blind setting, if or is -sparse, with

, then it is the unique sparsest solution to (22) or (35),
respectively [20]. In this case, the minimal sampling rate is

(45)

which is twice the rate obtained in the previous scenario. As
in signal recovery, the minimal rate for blind reconstruction is
twice the minimal rate for non blind reconstruction [13].
The authors in [18] consider the sparse case as well for a

model similar to our analog model. The conditions for the
system to be overdetermined are given with respect to , as
in the non sparse case. Moreover, the authors reconstruct the
average spectrum of the signal over each bin, rather than the
spectrum itself at each frequency. Here, the two approaches
become fundamentally different since in this scenario, we deal
with a system of equations of infinite measure whereas in [18],
the authors obtain a standard CS problem aimed at recovering
a finite vector.
2) Power Spectrum Reconstruction: In this scenario, there

exists an inherent difference between the two models. In the
digital model, we have to solve a single equation (35) whereas
in the analog model, (22) consists of an infinite number of linear
systems because is a continuous variable.
Therefore, in the digital case, we can use classical CS tech-

niques [20] in order to recover the sparse vector from the
measurement vector , namely

(46)

In the analog model, the reconstruction can be divided into
two stages: support recovery and power spectrum recovery. We
use the support recovery paradigm from [13] that produces a fi-
nite system of equations, called multiple measurement vectors
(MMV) from an infinite number of linear systems. This reduc-
tion is performed by what is referred to as the continuous to
finite (CTF) block. From (22), we have

(47)

where

(48)

is a matrix and

(49)

is a matrix. We then construct a frame such that
. Clearly, there are many possible ways to select .

We construct it by performing an eigendecomposition of and
choosing as the matrix of eigenvectors corresponding to the

TABLE II
MINIMAL SAMPLING RATES FOR POWER SPECTRUM RECONSTRUCTION

non zero eigenvalues. We can then define the following linear
system

(50)

From [13] (Propositions 2–3), the support of the unique sparsest
solution of (50) is the same as the support of our original set of
equations (22).
As discussed in Section III, is -sparse for each spe-

cific . However, after combining the frequencies, the ma-
trix is -sparse (at most), since the spectrum of each trans-
mission can be split into two bins of . Therefore, the above
algorithm, referred to as SBR4 in [13] (for signal reconstruc-
tion as opposed to power spectrum reconstruction), requires a
minimal sampling rate of . In order to achieve the minimal
rate , the SBR2 algorithm regains the factor of two in the
sampling rate at the expense of increased complexity [13]. In a
nutshell, SBR2 is a recursive algorithm that alternates between
the CTF described above and a bi-section process. The bi-sec-
tion splits the original frequency interval into two equal width
intervals on which the CTF is applied, until the level of sparsity
of is less or equal to . As opposed to SBR4 which can be
performed both in the time and in the frequency domains, SBR2
can obviously be performed only in the frequency domain. We
refer the reader to [13] for more details.
Once the support is known, perfect reconstruction of the

power spectrum can be obtained as follows

(51)

The results of this section are summarized in Table II.

V. SIMULATION RESULTS

We now demonstrate power spectrum reconstruction from
sub-Nyquist samples for the first and third scenarios, respec-
tively. We also investigate the impact of several simulation pa-
rameters on the receiver operating characteristic (ROC) of our
detector: signal-to-noise ratio (SNR), sensing time, number of
averages (for estimating the autocorrelation matrix as ex-
plained below) and sampling rate. Last, we compare the perfor-
mance of our detector to one based on spectrum reconstruction
from sub-Nyquist samples and a second one based on power
spectrum reconstruction from Nyquist samples. Throughout the
simulations we consider the analog model and use the MWC
analog front-end for the sampling stage.

A. Detection in Time and Frequency Domains

We first explain how we estimate the elements of . The
overall sensing time is divided into frames of length sam-
ples. In Section V.C, we examine different choices of and
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for a fixed sensing time. In the digital model, the estimate of
is simply obtained by averaging the autocorrelation between the
samples over frames as follows

(52)

where is the vector of sub-Nyquist samples of the th frame.
In the analog model, in order to estimate the autocorrelation

matrix in the frequency domain, we first compute the
estimates of , using the fast Fourier
transform (FFT) on the samples over a finite time window.
We then estimate the elements of as

(53)

where is the number of frames for the averaging of the spec-
trum and is the value of the FFT of the samples
from the th frame, at frequency . In order to estimate the au-
tocorrelation matrix in the time domain, we convolve the
samples over a finite time window

(54)

We then use (38) or (51) in order to reconstruct , or their
time-domain equivalents to reconstruct .
We note that the number of samples dictates the number of

discrete Fourier transform (DFT) coefficients in the frequency
domain and therefore the resolution of the reconstructed power
spectrum in the frequency domain.
For the analog model, we use the following test statistic

(55)

where the sum is performed over frequency or over time, de-
pending on which domain we chose to reconstruct . Obvi-
ously, other detection statistics can be used on the reconstructed
power spectrum.
Last, throughout the simulations we consider additive white

Gaussian noise (AWGN), so that the received signal can be
written as

(56)

where is the wideband signal defined in (1) and is the
wideband AWGN. The SNR is defined as the ratio between the
power of the wideband signal and that of the wideband noise as
follows

(57)

B. Spectrum Reconstruction

We first consider spectrum reconstruction of a non sparse
signal. Let be white Gaussian noise with variance 100, and
Nyquist rate GHz with two stop bands. We consider

spectral bands and analog channels, each

Fig. 1. Original and reconstructed spectrum of a non sparse signal at half the
Nyquist rate.

with sampling rate MHz and with sam-
ples each. The overall sampling rate is therefore equal to 50.8%
of the Nyquist rate. Fig. 1 shows the original and the recon-
structed spectrum at half the Nyquist rate (both with averaging
over ).
We now consider blind reconstruction of the power spectrum

of a sparse signal. Let the number of potentially active transmis-
sions . Each transmission is generated from filtering
white Gaussian noise with a low pass filter whose two-sided
bandwidth is MHz, and modulating it with a carrier
frequency drawn uniformly at random between
GHz and GHz.We consider spectral bands
and analog channels, each with sampling rate
MHz andwith samples per channel and per frame. The
overall sampling rate is equal to 10.8% of the Nyquist rate, and
2.2 times the Landau rate. Figs. 2–7 shows the original and the
reconstructed power spectrum for different values of the number
of frames and the SNR.

C. Practical Parameters

In this section, we consider the influence of several practical
parameters on the performance of our detector. The experiments
are set up as follows. We consider two scenarios where the ac-
tual number of transmissions is 2 and 3, namely and
respectively, as defined in Section II.C. The number of poten-
tially active transmissions is set to be 6. Each transmission
is similar to those described in the previous experiment.We con-
sider spectral bands and analog channels, each
with sampling rate MHz. The number of samples per
channel and per frame is and the averaging is performed over
frames. Each experiment is repeated over 500 realizations.
In the first experiment, we illustrate the impact of SNR on

the detection performance. We consider channels. The
overall sampling rate is thus 696 MHz, which is a little below
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Fig. 2. Original and reconstructed spectrum: and dB.

Fig. 3. Original and reconstructed spectrum: and dB.

7% of the Nyquist rate and a little above 1.4 times the Landau
rate. Here, and frames. Fig. 8 shows the ROC
of the detector for different values of SNR. We observe that up
to a certain value of SNR (between 5 dB and 0 dB in this setting),
the detection performance does not decrease much. Below that,
performance decreases rapidly. Another observation that can be
made concerns the particular form of the ROC curves. These
can be split into two parts. The first part corresponds to a regular
ROC curve, where the probability of detection increases faster
than linearly with the probability of false alarm. Above a certain
point, the increase is linear. This corresponds to the realizations
where the support recovery failed and the energy measured in
the band of interest is zero both for and . The more such
realizations there are, the lower the point where the curve’s na-
ture changes. As one can expect, this point is lower for lower
SNRs.

Fig. 4. Original and reconstructed spectrum: and dB.

Fig. 5. Original and reconstructed spectrum: and dB.

In the second experiment, we vary the sensing time per frame
and keep the number of frames constant. We consider
the same sampling parameters as in the previous experiment and
set the SNR to be 2 dB. Fig. 9 shows the ROC of the detector
for different values of the number of samples per frame.
In the third experiment, we vary the number of frames and

keep the number of samples per frame constant. We
consider the same sampling parameters as above and set the
SNR to be 0 dB. Fig. 10 shows the ROC of the detector for
different values of the number of frames. We observe that above
a certain threshold, increasing the number of averages almost
does not affect the detection performance.
An interesting question is, given a limited overall sensing

time, or equivalently a limited number of samples, how should
one set the number of frames and the number of samples
per frame . In the next experiment, we investigate different



COHEN AND ELDAR: SUB-NYQUIST SAMPLING FOR POWER SPECTRUM SENSING 3907

Fig. 6. Original and reconstructed spectrum: and dB.

Fig. 7. Original and reconstructed spectrum: and dB.

choices of and for a fixed number of samples per channel
. The rest of the parameters remain unchanged.

Fig. 11 shows the ROC of the detector for different settings.
We can see that in this case, the best performance is attained for
a balanced division of the number of samples, namely
frames with samples each.
Last, we show the impact of the number of channels, namely

the overall sampling rate, on the detection performance. The
sampling parameters are set as above and the SNR is 0 dB.
Fig. 12 shows the ROC of the detector for different values of
the number of channels. The minimal number of channels in
this case is 7. Due to the presence of noise, we need to sample
above that threshold to obtain good detection performance. We
observe that above 9 channels, the performance increases very
little with the number of channels whereas below the threshold
of 7 it decreases drastically.

Fig. 8. Influence of the SNR on the ROC.

Fig. 9. Influence of the number of samples per frame on the ROC.

D. Performance Comparisons

We now compare our approach to sub-Nyquist spectrum
sensing and Nyquist power spectrum sensing.
1) Power Spectrum Versus Spectrum Reconstruction: First,

we consider the approach of [12] where the signal itself is recon-
structed from sub-Nyquist samples. We compute the energy of
the frequency band of interest and compare this spectrum based
detection to our power spectrum based detection. We consider
the exact same signal as in the previous section. The sampling
parameters are chosen as spectral bands and
analog channels, each with sampling rate MHz. We re-
call that the minimal sampling rate for signal recovery is twice
that needed for power spectrum recovery. The overall sampling
rate is therefore 1.04 GHz, a little above 10% of the Nyquist
rate and almost 2.2 times the Landau rate. The number of sam-
ples per channel and per frame is and the averaging
is performed over frames. In the signal reconstruction
approach, no averaging needs to be performed. Therefore, we
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Fig. 10. Influence of the number of frames on the ROC.

Fig. 11. Trade-off between the number of frames and the number of samples
per frame.

use a total of samples. Each experiment is repeated
over 500 realizations. Fig. 13 shows the ROC of both detectors
for different values of SNR. We observe that power spectrum
sensing outperforms spectrum sensing.
2) Nyquist Versus Sub-Nyquist Sampling: We now compare

our approach to power spectrum sensing fromNyquist rate sam-
ples.We consider the same signal and sampling parameters as in
Section V.D1 except for the number of channels which is set to

, leading to an overall sampling rate of 783 GHz, a little
above 7.8% of the Nyquist rate and 1.6 times the Landau rate.
Fig. 14 shows the ROC of both detectors for different values of
SNR. It can be seen that our detector performs similarly as the
Nyquist rate one up to a certain SNR threshold (around 5 dB
in this setting). Below that threshold, the performance of our
sub-Nyquist receiver decreases with SNR whereas the Nyquist
rate performance detection remains almost unchanged. This is a

Fig. 12. Influence of the sampling rate on the ROC.

Fig. 13. Power spectrum versus spectrum reconstruction.

result of the amplified sensitivity of energy detection when per-
formed on sub-Nyquist samples due to noise aliasing [36].

VI. CONCLUSION

In this paper, we considered power spectrum reconstruction
of stationary signals from sub-Nyquist samples. We investi-
gated two signal models: the multiband model referred to as
the analog model and the multi-tone model converted into a
digital model. For the analog setting, two sampling schemes
were adopted and for the digital one, two power spectrum
reconstruction schemes were considered. We showed that all
variations of both the analog and the digital models can be
treated and analyzed in a uniform way in the frequency domain
whereas a time domain analysis is a lot more complex.
We derived the minimal sampling rate for perfect power spec-

trum reconstruction in noiseless settings for the cases of sparse
and non sparse signals as well as blind and non blind detection.
We also presented recovery techniques for each one of those
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Fig. 14. Sub-Nyquist versus Nyquist sampling.

scenarios. Simulations show power spectrum reconstruction at
sub-Nyquist rates as well as the influence of practical parame-
ters such as noise, sensing time and sampling rate on the ROC of
the detector. We also showed that sub-Nyquist power spectrum
sensing outperforms sub-Nyquist spectrum sensing and that our
detectors performance is comparable to that of a Nyquist rate
power spectrum based detector up to a certain SNR threshold.
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