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Abstract—The classical shift retrieval problem considers two sig-
nals in vector form that are related by a shift. This problem is of
great importance in many applications and is typically solved by
maximizing the cross-correlation between the two signals. Inspired
by compressive sensing, in this paper, we seek to estimate the shift
directly from compressed signals. We show that under certain con-
ditions, the shift can be recovered using fewer samples and less
computation compared to the classical setup. We also illustrate the
concept of superresolution for shift retrieval. Of particular interest
is shift estimation from Fourier coefficients. We show that under
rather mild conditions only one Fourier coefficient suffices to re-
cover the true shift.

Index Terms—Parameter estimation, compressed sensing, signal
processing algorithms, signal sampling.

I. INTRODUCTION

S HIFTS retrieval between two given signals is a funda-
mental problem in many signal processing applications.

For example, to map the ocean floor, an active sonar can be
used. The sonar transmits reference sound pulses through the
water, and the time it takes to receive the echoes of the pulses
indicates the depth of the ocean floor. In target tracking using
two acoustic sensors, the time shift when a sound wave of a
vehicle reaches the microphones indicates the direction to the
vehicle. In global positioning system (GPS) receivers, the cor-
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rect alignment between CDMA (code division multiple access)
codes is sought [1] in order to calculate the synchronization
delay necessary for determining its position. In the case of a
time shift, the shift retrieval problem is often referred to as time
delay estimation (TDE) [2]. In computer vision, the spatial shift
relating two images is often sought and referred to as image
registration or alignment [3]–[5].
Traditionally, the shift retrieval problem is solved by maxi-

mizing the cross-correlation between the two signals [6]. In this
paper, we revisit this classical problem, and show how the basic
premise of compressive sensing (CS) [7]–[10] can be used in the
context of shift retrieval. This allows to recover the shift from
compressed data leading to computational and storage savings.
Compressive sensing is a sampling scheme that makes it pos-

sible to sample at the information rate instead of the classical
Nyquist rate predicted by the bandwidth of the signal [11]. The
majority of the results in compressive sensing discuss condi-
tions and methods for guaranteed reconstruction from an under-
sampled version of the signal. Therefore, the information rate is
typically referred to as the one that guarantees recovery of the
sparse signal.
However, for many applications such as the aforementioned

examples in shift retrieval, obtaining the signal may not be
needed. The goal is to recover some properties or statistics of
the unknown signal. Taking the active sonar for example, one
may wonder if it is really necessary to sample at a rate which
is twice that of the bandwidth of the transmitted signal so that
the received signal can be exactly reconstructed? Clearly the
answer is no. Since the signal itself is not of interest to the
application, we might consider an alternative sampling scheme
to directly estimate the shift without first reconstructing the
signal. These ideas have in fact been recently explored in the
context of radar and ultrasound [12]–[14] with continuous time
signals and multiple shifts. Here we consider a related problem
and ask:What is the minimal information rate for shift retrieval
when two related discrete-time signals are under-sampled?
It turns out that under rather mild conditions, we only need

fractions of the signals. In fact, we will show that only one
Fourier coefficient from each of the signals suffices to recover
the true shift. We refer to this method as compressive shift re-
trieval (CSR). It should be made clear that CSR does not assume
that any of the involved signals are sparse.
As the main contribution of the paper, we will show that when

the sensing matrix is taken to be a partial Fourier matrix, under
suitable conditions, the true shift can be recovered from both
noise-free and noisy measurements using CSR. In fact, our re-
sults show that in some cases sampling as few as one Fourier
coefficient is enough to perfectly recover the true shift. Further-
more, CSR also reduces the computational load. This is of par-
ticular interest since recent developments in sampling [13], [15],
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[16] have shown that Fourier coefficients can be efficiently ob-
tained from space (or time) measurements by the use of an ap-
propriate filter and by subsampling the output. From a user per-
spective, for example, reduced computational complexity could
elongate battery life of GPS enabled devices. Finally, we intro-
duce the concept of shift retrieval in superresolution, whereby
shifts can be recovered at finer granularities than those of the
received signals, based on the proposed CSR framework.

A. Prior Work

Compressive signal alignment problems have been addressed
in only a few publications and, to the authors’ best knowledge,
not in the same setup studied in this paper. In [17], the au-
thors considered alignment of images under random projection.
The work was based on the Johnson-Lindenstrauss property of
random projection and proposed an objective function that can
be solved efficiently using difference-of-two-convex program-
ming algorithms. In this paper, we instead focus on proving the-
oretical guarantees of exact shift recovery when the signal is
subsampled by a partial Fourier basis. The theory developed in
[17] does not apply to this setup.
The smashed filter [18] is another related technique. It is a

general framework for maximum likelihood hypothesis testing
and can be seen as a matched filter of reduced dimension. It can
therefore be applied to the shift retrieval problem. The under-
lying idea of both the smashed filter and CSR are the same in that
both approaches try to avoid reconstructing the signal and ex-
tract the sought descriptor, namely, the shift, from compressive
measurements. However, the analysis and assumptions are very
different. For CSR, we develop requirements for guaranteed re-
covery of the true shift using a given measurement matrix. For
the smashed filter, the analysis focuses on random orthogonal
projections and provides probabilities for correct recovery as a
function of the number of projections.
Motivated by the GPS locking problem, [19], [20] studied

computationally efficient algorithms for recovering shifts of a
random code sequence, which may be corrupted by Gaussian
noise. Their algorithms exploit the sparse nature of the signal
matching problem, where the optimal signal alignment causes
the cross-correlation between the source signal and themeasure-
ment to spike. The main limitation of the work is that their anal-
ysis assumes the source signals are sampled randomly with bi-
nary values in . In this paper, our analysis of CSR and
the conditions for guaranteed recovery is not restricted to sig-
nals with binary values. Motivated by the compressive sensing
framework, the new algorithms are also sufficiently different
from the ones in [19], [20].

B. Notation

We use normal fonts to represent scalars and bold fonts for
vectors and matrices. The notation represents the absolute
value for scalars and it returns the cardinality of a set if the
argument is a set. For both vectors and matrices, is the
-norm that counts the number of nonzero elements of its ar-

gument. Similarly, represents the -norm: for a vector ,

, where is the th element of , and

for a matrix , , where is the
-th element of . Furthermore, denotes the complex

conjugate transpose of . Let denote an identity

matrix, an matrix of zeros, and be the set of in-
tegers. returns the real part of its argument and denotes
the floor function.
We say that two -dimensional vectors and are related by

an cyclic-shift if , where is defined as

(1)

Throughout the paper, we assume that the (cyclic) shift is unique
up to a multiple of .

C. Organization

In Sections II and III, we study the CSR problem under the
assumption that the measurements are noise free. We extend the
results to noisy measurements in Section IV. As we are partic-
ularly interested in Fourier measurements, we tailor the results
to this choice of sensing matrix. We illustrate the concept of su-
perresolution for shift retrieval in Section V, and conclude in
Section VI.

II. NOISE-FREE COMPRESSIVE SHIFT RETRIEVAL

Consider two vectors and that are related
by a cyclic shift, i.e., . The shift retrieval problem is
a multi-hypothesis testing problem: Define the th hypothesis
, , as

- -

and accept if and otherwise reject. Since the true
shift is assumed unique, only one hypothesis will be accepted.
To determine we minimize the error . Now,

(2)

where we used the fact that . Therefore, min-
imizing is equivalent to maximizing the real part
of the cross-correlation with respect to :

(3)

The goal of CSR is to recover the shift relating and
from compressed measurements and . The compressed mea-
surement signals are assumed related to the ground-truth signals

and its shifted version via a sensing
matrix , with :

(4)

Since only the compressed measurements and are as-
sumed available, we cannot evaluate or maximize

for each hypothesis . However,
if and commute for all , then

(5)

Therefore,

(6)

Hence, in this case, we can consider the test:

and otherwise reject (7)
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It is clear that if is such that , then
will also hold. However, the other way around might not be true.
Therefore, we might erroneously accept a wrong hypotheses
using (7). Theorem 1 below lists conditions under which testing
(7) is guaranteed to accept the correct hypothesis.
Before stating the theorem, note that testing the condition

is equivalent to minimizing
with respect to . Now,

(8)

Since the only term depending on is ,
seeking satisfying is equivalent to maxi-
mizing . Note that if , then the
implication in (5) holds in both directions and maximizing

reduces to the classical test using uncom-
pressed signals given in (3).
Theorem 1 (Shift Recovery from Low-Rate Data): Let be

an matrix with th column equal to ,
and define . If the sensing matrix satisfies the
following conditions:
1) ,
2) and
3) all columns of are different,
then

(9)

or equivalently the test (7) recovers the true shift.
Proof: See Appendix A.

The conditions of Theorem 1 may seem restrictive. However,
as we will show in Lemma 3, if is chosen as a partial Fourier
matrix, then the first two conditions are trivially satisfied. The
last condition is the only one that needs to be checked and will
lead to a requirement on the sampled Fourier coefficients.
The conditions of Theorem 1 can be checked prior to esti-

mating the shift. However, knowing the estimate of the shift, it
is easy to see from the proof (see the proof of Lemma 9) that it
is enough to check if the column of associated with the es-
timate of the shift is different than all the other columns of .
Hence, we do not need to check if all columns of are dif-
ferent. This conclusion is formulated in the following corollary,
which is less conservative than Theorem 1.
Corollary 2 (Test for True Shift): Let be an matrix

with the th column equal to , and define
. If the sensing matrix satisfies the following

conditions:
1) , and
2) ,
then

(10)

is the true shift if the th column of is different than all the
other columns of .

Proof: See Appendix A.

III. COMPRESSIVE SHIFT RETRIEVAL USING
FOURIER COEFFICIENTS

Of particular interest is the case in which is made up of a
partial Fourier basis. That is, takes the form

. . .
...

...

where . For this spe-
cific choice,

. . .
...

where denotes the th Fourier coefficient of the Fourier
transform of .
For a sensing matrix made up by a partial Fourier basis, we

have the following useful result:
Lemma 3: Let be a partial Fourier matrix. Then

for all .
Proof: See Appendix A.

Applying this result to Theorem 1 gives the following
corollary:
Corollary 4 (Shift Recovery from Low Rate Fourier

Data): Suppose is chosen as a partial Fourier matrix
with . Let and be
the th elements of and . Then (9) is simplified
as

(11)

and it recovers the true shift if there exists such
that and contains no integers. In
particular, measuring only the first Fourier coefficients
of and would, as long as the coefficients are nonzero, suffice
to recover the true shift.

Proof: See Appendix A.
Remarkably, in the extreme case when , the corol-

lary states that all we need is two scalar measurements, and
, to perfectly recover the true shift. The scalar measurements
can be any nonzero Fourier coefficient of and as long as

contains no integers. As noted in the corol-
lary, the first Fourier coefficients of and would
suffice. Also note that only multiplications are required
to evaluate the test. This should be compared with
multiplications to evaluate the cross-correlation for the full un-
compressed signals and [21].
Example 1 (Noise Free Compressive Shift Retrieval): To vali-

date the results, we carry out the following example. In each trial
we let the sample dimension and the shift be random inte-
gers between 1 and 9 and generate by sampling from an -di-
mensional uniform distribution. We let and generate a
partial Fourier matrix by picking from
at random without replacement. The coefficients are
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regenerated if the assumptions of Corollary 4 are not met. The
true shift is successfully recovered in each trial by the simplified
test (11), namely, with 100% success rate. This is quite remark-
able since when , we recover the true shift using only two
scalar measurements and and one fifth of the multiplications
that (3) would require.

IV. NOISY COMPRESSIVE SHIFT RETRIEVAL

We now consider the noisy version of CSR, where the mea-
surements and are perturbed by noise:

(12)

Similar to the noise-free case, we can guarantee recovery of
the true shift. In particular, if the columns of the noisy version
of are far enough apart with respect to the noise, then it
can be shown that the columns of the noise free version of
are distinct and the true shift is recovered. We note that a more
natural scenario in some applications might be to assume that
is a known reference signal and noise free. Our derivations

below also handle this case by setting .
Our main result is given in the following theorem:
Theorem 5 (Noisy Shift Recovery from Low-Rate Data): Let
be such that and let the th column of be shifted

by , i.e., . Assume that is a partial Fourier matrix and that
the noisy measurements are used in (11) to estimate the shift.
If the -norm difference between any two columns of is
greater than

(13)

then the estimate of the shift is not affected by the noise.
Proof 4: See Appendix B.

The result of Theorem 5 is that, by requiring the difference
between columns of to be greater than , we assure that
the noise does not affect the outcome of the test (11).
Note that and might not be available in practice

but could be replaced by an upper bound on the -norm of the
noise if the noise is known to be bounded. Also note that the
theorem only states that the noise does not affect the estimate of
the shift. It does not state that the shift will be the true shift.
Example 2 (Recovery of a Shift from Noisy Data): We illus-

trate the results by running a Monte Carlo simulation consisting
of 10,000 trials for each sample dimension and
for two different SNR levels. In Fig. 1, 10 histograms are shown
(corresponding to ) for
being 2 (low SNR) and in Fig. 2, (high SNR). The er-
rors and are both generated by sampling from

We further use , and sample from a
uniform (0,1)-distribution. The conclusion from the simulation
is that the smaller the , the more the estimate of the shift is
sensitive to noise. Notice that when , the test (11) re-
duces to the classical test of maximizing the cross-correlation.
We can use Theorem 5 to check if the noise affects the es-

timate of the shift or not in each of the trials. For and
high SNR, 40% of the trials satisfy the conditions of Theorem
5 and the noise therefore does not affect the shift estimates in

Fig. 1. Histogram plots for the estimated shift and low SNR. From left to right,
top to bottom, . The true shift is set to 5 in all trials.

Fig. 2. Histogram plots for the estimated shift and high SNR. From left to right,
top to bottom, . The true shift is set to 5 in all trials.

those cases. Of the trials that satisfy the conditions, all success-
fully predict the true shift and none of them are false shifts. Note
however that Theorem 5 only states that if the conditions are sat-
isfied, then the estimated shift is the same as if we would have
used the noise free compressed measurements in the test (11). It
does not state that the estimate will be the true shift.
Example 3 (Varying SNR): To further illustrate the ability of

CSR to handle different SNR levels, in this example, we vary
SNR and study the recovery rate predicted by the theory and
obtained in simulations. Let , and generate
by sampling from a uniform distribution between 0 and 1 (we
have also sampled from a standard Gaussian distribution but
the results were essentially the same and therefore not shown
here). We generate the true shift by sampling an integer ran-
domly between 0 and 99, add Gaussian complex noise to and
and repeat the experiment 1,000 times for each SNR level.

The results are shown in Fig. 3. The solid curve shows the rate
of recovery seen in simulations. The dashed curve shows rate at
which the condition (13) of Theorem 5 holds. The dashed-dotted
line shows the rate at which the difference between columns of

is greater than . This test, as shown in Corollary 6, is
relevant for guaranteeing that the estimated shift is the true one.
Theorem 5 provides conditions under which the noise does

not affect the estimate of the shift. A better result would be to
guarantee the recovery of the true shift. We saw in the first part
of this paper that if the columns of are distinct, then the true
shift is recovered. To guarantee the recovery of the true shift
from noisy measurements we need:
1) that (11) gives the same shift estimate for the noisy mea-
surements as for the noise free measurement (Theorem 5),
and in addition,

2) that the columns of are far enough apart so that if
the noise would be removed, the columns would still be
distinct. The details are given by the following corollary.

Corollary 6 (Recovery of the True Shift from Noisy Low-Rate
Data): If the -norm difference between any two columns of

is greater than and the conditions of Theorem 5 are
fulfilled, then (11) recovers the true shift.
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Fig. 3. The recovery rate (solid line), the rate at which the condition of Theorem
5 holds (dashed curve), the rate at which the difference between columns of
are greater than (dashed-dotted line) for SNRs between 0.1 and 100 dB.

Proof: See Appendix B.
Note that the result is not independent of the noise since

the conditions of Theorem 5 depend on it.
If the estimate of the shift has been computed, a less conser-

vative test can be used to check if the computed estimate has
been affected by noise and if it is the true one. We summarize
our conclusion in the following corollary.
Corollary 7 (Test for True Shift in the Presence of Noise):

Assume that (11) gives as an estimate of the shift. If the
difference between any column and the -column of is
greater than and , then is the true shift.

Proof: See Appendix B.
Note that and might not be available in practice

but can be replaced by an upper bound if the noise is known to
be bounded. This holds for both Corollaries 6 and 7.

V. SHIFT RETRIEVAL IN SUPERRESOLUTION

The resolution of any classical electromagnetic sensing
system is limited by the wavelength of the measured electro-
magnetic wave, and details finer than a wavelength cannot be
observed [22]. This limitation can be improved to some extent
by imposing some structural information about the image to
enhance its resolution, also known as superresolution [23],
[24]. In this section, we study an analogue of superresolution
for shift retrieval. The goal is to recover shifts in higher resolu-
tion/precision than those by maximizing the cross-correlation
in the source signal resolution.
First, we observe that under the conditions of Theorem 1,

CSR recovers the shift with a resolution defined by , the di-
mension of and . Hence, the resolution is independent of the
number of measurements acquired. It implies that in the noise
free case, the correct shift can be recovered up to any accuracy
without increasing the number of measurements, as long as the
conditions of Theorem 1 are satisfied.
Also note that the above observation would not be practical

if we first had to sample and to compute their partial Fourier

transforms and . The concept of superresolution is more
meaningful if the signals and are measured directly. The
details are given in the following corollary:
Corollary 8 (Shift Retrieval in Superresolution): Let
be a continuous time signal, and

. Assume that is a multiple of
for some . Let the th element of be

, and define similarly by sampling . Let be an
matrix with th column equal to , , and

let be a partial Fourier matrix. Suppose that we are
given and . Then the true shift can be recovered
from and as with solving (11), as long as
has distinct columns.

Proof: From the construction of , , , , we have that

and , for some . Using Theorem 1 it
follows that as long as has distinct columns.
Note that has to be a multiple of for Corollary 8 to hold.

If this is not the case, and the grid does not include the true shift,
we may ask under what conditions (11) recovers the shift esti-
mate that minimizes the error . To
answer this question, consider the following setup: Let

be a continuous time signal, and
. Introduce by stacking

the (possibly noisy) samples De-
fine accordingly. Let be the
smallest offset such that is a multiple of and introduce

by stacking the samples ;
define accordingly. Let be a partial Fourier
matrix and generate , , and .
By identifying and , we can view the
misalignment in the grid as noise and use the theory developed
for noisy compressive shift retrieval to give guarantees for re-
covery. We demonstrate this through an example.
Example 4 (Superresolution): The aim of this example is to

illustrate superresolution for both the noise free and noisy cases.
Let the continuous time signal be a realization of a frac-
tional Brownian motion (a continuous-time Gaussian process)
on the time interval [0, 1600), ,

and sample the delay ran-
domly from . Assume that we are given 10
noise-free Fourier transform measurements of and at fre-
quencies randomly chosen from .We
stack these 10 measurements in and , respectively.
To recover the shift we grid the time interval [0, 1600). We

start by a rather coarse grid:

(14)

with . The grid is successively refined for ,
5,4,3,2,1,0, each time using the same 10 Fourier measurements.
Note that by construction, the true shift does not match any grid
points for ,6, 5,4,3,2,1. One example of the estimated
shifts in the different resolutions is illustrated in Fig. 4.
For , the two grid points closest to the true shift are

shown with blue circles and the true shift by the red vertical
line. The filled circle shows the estimate of the shift given by
(11) using the 10 Fourier samples. As seen, the grid point closest
to the true time delay is correctly found. This was also verified
by checking that the column difference of exceeded
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Fig. 4. An illustration of the grid for different ’s. The true shift is illustrated
by a red vertical line and the shift predicted by CSR marked by a red bullet.

TABLE I
SUCCESS RATES OF SHIFT RETRIEVAL IN SUPERRESOLUTION IN A MONTE

CARLO SIMULATION. FOR BOTH THE NOISE-FREE CASE AND THE NOISY CASE,
THE PERCENTAGE OF SUCCESSFUL TRIALS IN WHICH THE OPTIMAL SHIFT
ESTIMATES (CLOSEST TO THE TRUE SHIFT) IN DIFFERENT RESOLUTIONS

ARE RECOVERED BY CSR AND THE PERCENTAGE
PREDICTED BY THE THEORY ARE SHOWN

and . Since the conditions of Corollary 6 are satisfied, the
true shift must be within of the estimate.
For each of ,5,4,3, the closest grid point to the true shift

is found. For this particular example, since all column differ-
ences exceeded and , the true shift is guaranteed to
be within of the estimates by Corollary 6. For ,
CSR does not return the grid point closest to the true shift and

exceeds the smallest distances between two columns. For
, CSR returns the grid point closest to the true shift

but exceeds the smallest distances between two columns.
When , one grid point is aligned with the true shift and
this grid point is correctly identified by CSR. It can be also ver-
ified that has distinct columns.
The above experiment is further repeated 100 times and the

results summarized in Table I. We also run the above Monte
Carlo simulation with noise added to and .
The results are also reported in Table I.

VI. CONCLUSION

To recover the cyclic shift relating two signals, the cross-cor-
relation is usually evaluated for all possible shifts. Recent ad-
vances in hardware, signal acquisition and signal processing
have made it possible to sample or compute Fourier coefficients
of a signal efficiently. It is therefore of particular interest to see
under what conditions the true shift can be recovered from the

Fourier coefficients. We have proposed a criterion that is com-
putationally more efficient than using the time samples, and we
have shown that the true shift can be recovered using as few as
one Fourier coefficient. We have also derived bounds for per-
fect recovery for both noise free and noisy measurements and
introduced the concept of superresolution for shift retrieval.

APPENDIX A
PROOFS: NOISE-FREE COMPRESSIVE SHIFT RETRIEVAL

Before proving Theorem 1, we state two lemmas.
Lemma 9 (Recovery of a Shift using Projections): Let be

the -matrix made up of cyclically shifted versions of as
columns. If the columns of are distinct, then the true shift
can be recovered by

(15)

Proof of Lemma 9: Since the shift relating and is assumed
unique, it is clear that the true shift is recovered by

(16)

Assume that the solution of (15) is not equivalent to that of (16).
Namely, assume that (16) gives , (15) gives and . Since
will give a zero objective value in (15), somust .We therefore
have that and hence

(17)

Since , , and ,
implies that two columns of are identical. This is a

contradiction and we therefore conclude that both (15) and (16)
recover the true shift.
Lemma 10 (From (15) to (9)): Under conditions 1) and 2) of

Theorem 1, the shifts recovered by (15) and (9) are the same.
Proof of Lemma 10: Consider the objective of (15):

(18)

Notice that we can write

(19)

for some . This follows from the construction of as a matrix
with delayed versions of as its columns and from the fact that
selects exactly one of these columns. Problem (15) is then equal
to

(20)

Using the assumption and that
for a shift matrix, we have

(21)

which is independent of . Therefore, the shift recovered by (20)
is the same as that of

(22)
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Lastly, if we again use that and ,
then (9) follows from

(23)

where and .
We are now ready to prove Theorem 1.
Proof of Theorem 1: The assumptions of Theorem 1 imply

that the requirements of both Lemmas 9 and 10 are satisfied.
The theorem therefore follows trivially.
We next prove Corollary 2.
Proof of Corollary 2: In the proof of Lemma 9,
leads to if the columns of were all distinct. Now,
if

(24)

then the th element of is one and all other elements zero.
Hence, Lemma 9 can be made less conservative if is known
by requiring that only the th column of is different than
all other columns.
Proof of Lemma 3: Let and . By the

definition of , is a column permutation of where the
columns are shifted times to the right. Thus, the th column of
is equal to the th column of where .

It is also easy to see that permutes the columns of by
to the left so that the th column of is equal to the th column
of where . Now, the th element of

is given by

(25)

where is used to denote the th column of and the
th column or . On the other hand, the -th element of

is given by

(26)

Clearly, the two are equivalent.
We are now ready to prove Corollary 4.
Proof of Corollary 4: Lemma 3 gives that Condition 1)

of Theorem 1 is satisfied. Since a full Fourier matrix is or-
thonormal, a matrix made up of a selection of rows of a
Fourier matrix satisfies Condition 2). The last condition of
Theorem 1 requires columns of to be distinct. A suf-
ficient condition is that there exists a row with all distinct
elements. As shown previously, the -th element of

is . If is assumed nonzero, then a suf-
ficient condition for to have distinct columns is that

. This
condition can be simplified to . By real-
izing that takes values in
we get that the condition is equivalent to requiring that there
are no integers in . Due

to symmetry, a sufficient condition for distinct columns is
that there exists a such that and

contains no integers.
Lastly, writing out we get that the th element is

equal to , leading to the simplified test proposed
in (11).

APPENDIX B
PROOFS: NOISY COMPRESSIVE SHIFT RETRIEVAL

Proof of Theorem 5: From Lemma 10 we can see that seeking
that maximizes is equivalent to seeking that

solves

(27)

where the first column of is equal to (which defines the
first column of ) and the th column of is a circular shift of
the first column of steps.
Assume that solves (27). Since our measurements are noisy,

we cannot expect a zero loss. The loss can be shown to be given
by

(28)

Now, consider . Assume that solves the noise-
free version of (27) and let . We have the following
inequality:

where we used the fact that and the reverse triangle
inequality. Therefore

(29)

Since , equals the
difference between two columns of . It is hence sufficient to
require that the difference between any two columns of
is greater than for .
Proof of Corollary 6: Let and be any vectors such that

, and . Using the triangle
inequality and the fact that and are shifted versions of
the same vector, we have that

(30)

(31)

(32)

Hence, if , then is
greater than zero. Now since Theorem 5 gives that (11) recovers
the same shift as if the measurements would have been noise-
free, and since Theorem 1 gives that the noise-free estimate is
equal to the true shift if is greater than zero
(or equivalently that all columns of are distinct), we can
guarantee the recovery of the true shift also in the noisy case.
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Proof of Corollary 7: The corollary follows trivially by set-
ting the th element of to one and all other elements to zero
in the proofs of Theorem 5 and Corollary 6.
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