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Abstract— The performance analysis of random vector
channels, particularly multiple-input-multiple-output (MIMO)
channels, has largely been established in the asymptotic regime of
large channel dimensions, due to the analytical intractability of
characterizing the exact distribution of the objective performance
metrics. This paper exposes a new nonasymptotic framework that
allows the characterization of many canonical MIMO system
performance metrics to within a narrow interval under finite
channel dimensionality, provided that these metrics can be
expressed as a separable function of the singular values of the
matrix. The effectiveness of our framework is illustrated through
two canonical examples. In particular, we characterize the mutual
information and power offset of random MIMO channels, as
well as the minimum mean squared estimation error of MIMO
channel inputs from the channel outputs. Our results lead to
simple, informative, and reasonably accurate control of various
performance metrics in the finite-dimensional regime, as corrob-
orated by the numerical simulations. Our analysis framework is
established via the concentration of spectral measure phenom-
enon for random matrices uncovered by Guionnet and Zeitouni,
which arises in a variety of random matrix ensembles irrespective
of the precise distributions of the matrix entries.

Index Terms— MIMO, massive MIMO, confidence interval,
concentration of spectral measure, random matrix theory,
non-asymptotic analysis, mutual information, MMSE.

I. INTRODUCTION

THE past decade has witnessed an explosion of
developments in multi-dimensional vector channels [1],

particularly multiple-input-multiple-output (MIMO) channels.
The exploitation of multiple (possibly correlated) dimensions
provides various benefits in wireless communication and signal
processing systems, including channel capacity gain, improved
energy efficiency, and enhanced robustness against noise and
channel variation.
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Although many fundamental MIMO system performance
metrics can be evaluated via the precise spectral distributions
of finite-dimensional MIMO channels (e.g. channel
capacity [2], [3], minimum mean square error (MMSE)
estimates of vector channel inputs from the channel
outputs [4], power offset [5], sampled capacity loss [6]),
this approach often results in prohibitive analytical and
computational complexity in characterizing the probability
distributions and confidence intervals of these MIMO system
metrics. In order to obtain more informative analytical insights
into the MIMO system performance metrics, a large number
of works (see [5], [7]–[21]) present more explicit expressions
for these performance metrics with the aid of random matrix
theory. Interestingly, when the number of input and output
dimensions grow, many of the MIMO system metrics taking
the form of linear spectral statistics converge to deterministic
limits, due to various limiting laws and universality properties
of (asymptotically) large random matrices [22]. In fact, the
spectrum (i.e. singular-value distribution) of a random channel
matrix H tends to stabilize when the channel dimension
grows, and the limiting distribution is often universal in the
sense that it is independent of the precise distributions of the
entries of H .

These asymptotic results are well suited for massive
MIMO communication systems. However, the limiting regime
falls short in providing a full picture of the phenomena arising
in most practical systems which, in general, have moderate
dimensionality. While the asymptotic convergence rates of
many canonical MIMO system performance metrics have
been investigated as well, how large the channel dimension
must be largely depends on the realization of the growing
matrix sequences. In this paper, we propose an alternative
method via concentration of measure to evaluate many canon-
ical MIMO system performance metrics for finite-dimension
channels, assuming that the target performance metrics can
be transformed into linear spectral statistics of the MIMO
channel matrix. Moreover, we show that the metrics fall within
narrow intervals with high (or even overwhelming) in the
nonasymptotic regime.

A. Related Work

Random matrix theory is one of the central topics in
probability theory with many connections to wireless com-
munications and signal processing. Several random matrix
ensembles, such as Gaussian unitary ensembles, admit exact
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characterization of their eigenvalue distributions [23] under
any channel dimensionality. These spectral distributions
associated with the finite-dimensional MIMO channels can
then be used to compute analytically the distributions and
confidence intervals of the MIMO system performance metrics
(e.g. mutual information of MIMO fading channels [24]–[28]).
However, the computational intractability of integrating a
large-dimensional function over a finite-dimensional MIMO
spectral distribution precludes concise and informative
capacity expressions even in moderate-sized problems. For this
reason, theoretical analysis based on precise eigenvalue char-
acterization is generally limited to small-dimensional vector
channels.

In comparison, one of the central topics in modern random
matrix theory is to derive limiting distributions for the
eigenvalues of random matrix ensembles of interest, which
often turns out to be simple and informative. Several pertinent
examples include the semi-circle law for symmetric
Wigner matrices [29], the circular law for i.i.d. matrix
ensembles [30], [31], and the Marchenko–Pastur law [32] for
rectangular random matrices. One remarkable feature of these
asymptotic laws is the universality phenomenon, whereby
the limiting spectral distributions are often indifferent to the
precise distribution of each matrix entry. This phenomenon
allows theoretical analysis to accommodate a broad class of
random matrix families beyond Gaussian ensembles. See [22]
for a beautiful and self-contained exposition of these limiting
results.

The simplicity and universality of these asymptotic laws
have inspired a large body of work in characterizing the
asymptotic performance limits of random vector channels. For
instance, the limiting results for i.i.d. Gaussian ensembles
have been applied in early work [2] to establish the linear
increase of MIMO capacity with the number of antennas.
This approach was then extended to accommodate separable
correlation fading models [8], [12], [14]–[16], [33], [34] with
general non-Gaussian distributions (particularly Rayleigh and
Ricean fading [5], [13]). These models admit analytically-
friendly solutions, and have become the cornerstone for many
results for random MIMO channels. In addition, several
works have characterized the second-order asymptotics
(often in the form of central limit theorems) for mutual
information [16], [35], [36], information density [37],
second-order coding rates [38], [39], diversity-multiplexing
tradeoff [40], etc., which uncover the asymptotic convergence
rates of various MIMO system performance metrics under a
large family of random matrix ensembles. The limiting tail of
the distribution (or large deviation) of the mutual information
has also been determined in the asymptotic regime [41].
In addition to information theoretic metrics, other signal
processing and statistical metrics like MMSE [7], [42], [43],
multiuser efficiency for CDMA systems [10], optical
capacity [44], covariance matrix and principal compo-
nents [45], canonical correlations [46], and likelihood ratio
test statistics [46], have also been investigated via asymptotic
random matrix theory. While these asymptotic laws have
been primarily applied to performance metrics in the form of
linear spectral statistics, more general performance metrics can

be approximated using the delicate method of “deterministic
equivalents” (see [47], [48]).

A recent trend in statistics is to move from asymp-
totic laws towards non-asymptotic analysis of random
matrices [49], [50], which aims at revealing statistical effects
of a moderate-to-large number of components, assuming a
sufficient amount of independence among them. One promi-
nent effect in this context is the concentration of spectral
measure phenomenon [51], [52], which indicates that many
separable functions of a matrix’s singular values (called lin-
ear spectral statistics [53]) can be shown to fall within a
narrow interval with high probability even in the moderate-
dimensional regime. This phenomenon has been investigated
in various fields such as high-dimensional statistics [49],
statistical learning [54], and compressed sensing [50].

Inspired by the success of the measure concentration
methods in the statistics literature, our recent work [6]
develops a non-asymptotic approach to quantify the capacity
of multi-band channels under random sub-sampling strategies,
which to our knowledge is the first to exploit the concen-
tration of spectral measure phenomenon to analyze random
MIMO channels. In general, the concentration of measure
phenomena are much less widely recognized and used in the
communication community than in the statistics and signal
processing community. Recent emergence of massive MIMO
technologies [55]–[58], which uses a large number of antennas
to obtain both capacity gain and improved radiated energy
efficiency, provides a compelling application of these methods
to characterize system performance. Other network/distributed
MIMO systems (see [59], [60]) also require analyzing large-
dimensional random vector channels. It is our aim here to
develop a general framework that promises new insights
into the performance of these emerging technologies under
moderate-to-large channel dimensionality.

B. Contributions
We develop a general non-asymptotic framework for

deriving performance bounds of random vector channels or
any general MIMO system, based on the powerful concen-
tration of spectral measure phenomenon of random matrices
as revealed by Guionnet and Zeitouni [51]. Specifically, we
introduce a general recipe that can be used to assess various
MIMO system performance metrics to within vanishingly
small confidence intervals, assuming that the objective metrics
can be transformed into linear spectral statistics associated
with the MIMO channel. Our framework and associated results
can accommodate a large class of probability distributions
for random channel matrices, including those with bounded
support, a large class of sub-Gaussian measures, and heavy-
tailed distributions. To broaden the range of metrics that we
can accurately evaluate, we also develop a general concentra-
tion of spectral measure inequality for the cases where only
the exponential mean (instead of the mean) of the objective
metrics can be computed.

We demonstrate the effectiveness of our approach through
two illustrative examples: (1) mutual information of random
vector channels under equal power allocation; (2) MMSE in
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estimating signals transmitted over random MIMO channels.
These examples allow concise and, informative characteri-
zations even in the presence of moderate-to-high SNR and
moderate-to-large channel dimensionality. In contrast to a
large body of prior works that focus on first-order limits
or asymptotic convergence rate of the target performance
metrics, we are able to derive full characterization of these
metrics in the non-asymptotic regime. Specifically, we obtain
narrow confidence intervals with precise order and reasonably
accurate pre-constants, which do not rely on careful choice
of the growing matrix sequence. Our numerical simulations
also corroborate that our theoretical predictions are reasonably
accurate in the finite-dimensional regime.

C. Organization and Notation

The rest of the paper is organized as follows. Section II
introduces several families of probability measures
investigated in this paper. We present a general framework
characterizing the concentration of spectral measure phenom-
enon in Section III. In Section IV, we illustrate the general
framework using a small sample of canonical examples.
Finally, Section V concludes the paper with a summary of
our findings and a discussion of several future directions.

For convenience of presentation, we let C denote the set of
complex numbers. For any function g(x), the Lipschitz norm
of g(·) is defined as

‖g‖L := sup
x �=y

∣
∣
∣
∣

g (x) − g (y)

x − y

∣
∣
∣
∣
. (1)

We let λi (A), λmax(A), and λmin(A) represent the i th largest
eigenvalue, the largest eigenvalue, and the smallest eigenvalue
of a Hermitian matrix A, respectively, and use ‖·‖ to denote
the operator norm (or spectral norm). The set {1, 2, . . . , n} is
denoted as [n], and we write

([n]
k

)

for the set of all k-element
subsets of [n]. For any set s, we use card(s) to represent the
cardinality of s. Also, for any two index sets s and t, we
denote by As,t the submatrix of A containing the rows at
indices in s and columns at indices in t. We use x ∈ a +[b, c]
to indicate that x lies within the interval [a +b, a +c]. Finally,
the standard notation f (n) = O (g(n)) means that there exists
a constant c > 0 such that f (n) ≤ cg(n); f (n) = � (g(n))
indicates that there are universal constants c1, c2 > 0 such that
c1g(n) ≤ f (n) ≤ c2g(n); and f (n) = � (g(n)) indicates that
there are universal constants c > 0 such that f (n) ≤ cg(n).
Throughout this paper, we use log (·) to represent the natural
logarithm. Our notation is summarized in Table I.

II. THREE FAMILIES OF PROBABILITY MEASURES

In this section, we define precisely three classes of prob-
ability measures with different properties of the tails, which
lay the foundation of the analysis in this paper.

Definition 1 (Bounded Distribution): We say that a random
variable X ∈ C is bounded by D if

P (|X | ≤ D) = 1. (2)

The class of probability distributions that have bounded
support subsumes as special cases a broad class of distributions

TABLE I

SUMMARY OF NOTATION AND PARAMETERS

encountered in practice (e.g. the Bernoulli distribution and
uniform distribution). Another class of probability measures
that possess light tails (i.e. sub-Gaussian tails) is defined as
follows.

Definition 2 (Logarithmic Sobolev Measure): We say that
a random variable X ∈ C with cumulative probability
distribution (CDF) F (·) satisfies the logarithmic Sobolev
inequality (LSI) with uniform constant cls if, for any differen-
tiable function h, one has
ˆ

h2(x) log

(
h2(x)´

h2(z)dF(z)

)

dF(x)≤2cls

ˆ
∣
∣h′(x)

∣
∣2dF(x).

(3)
Remark 1: One of the most popular techniques in

demonstrating measure concentration is the “entropy method”
(see, [61], [62]), which hinges upon establishing inequalities
of the form

KL
(

P
t
X‖PX

) ≤ O
(

t2
)

(4)

for some measure PX and its tilted measure P
t
X , where

KL (·‖·) denotes the Kullback–Leibler divergence. See
[62, Chapter 3] for detailed definitions and derivation. It turns
out that for a probability measure satisfying the LSI, one
can pick the function h(·) in (3) in some appropriate fashion
to yield the entropy-type inequality (4). In fact, the LSI has
been well recognized as one of the most fundamental criteria
to demonstrate exponentially sharp concentration for various
metrics.

Remark 2: While the measure satisfying the LSI necessarily
exhibits sub-Gaussian tails (see [61], [62]), many concentra-
tion results under log-Sobolev measures cannot be extended to
general sub-Gaussian distributions (e.g. for bounded measures
the concentration results have only been shown for convex
functions instead of general Lipschitz functions).

A number of measures satisfying the LSI have been
discussed in the expository paper [63]. One of the most
important examples is the standard Gaussian distribution,
which satisfies the LSI with logarithmic Sobolev constant
cLS = 1. In many situations, the probability measures obeying
the LSI exhibit very sharp concentration of spectral mea-
sure phenomenon (typically sharper than general bounded
measures).
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While prior works on measure concentration focus primarily
on measures with bounded support or measures with sub-
Gaussian tails, it is also of interest to accommodate a more
general class of distributions (e.g. heavy-tailed distributions).
For this purpose, we introduce sub-exponential distributions
and heavy-tailed distributions as follows.

Definition 3 (Sub-Exponential Distribution): Arandomvari-
able X is said to be sub-exponentially distributed with
parameter λ if it satisfies

P (|X | > x) ≤ c0e−λx , ∀x > 0 (5)

for some absolute constant c0 > 0.
Definition 4 (Heavy-Tailed Distribution): A random vari-

able X is said to be heavy-tailed distributed if

lim
x→∞ e−λx

P (|X | > x) = ∞, ∀λ > 0. (6)

That said, sub-exponential (resp. heavy-tailed) distribu-
tions are those probability measures whose tails are lighter
(resp. heavier) than exponential distributions. Commonly
encountered heavy-tailed distributions include log-normal and
power-law distributions.

To facilitate analysis, for both sub-exponential and heavy-
tailed distributions, we define the following two quantities
τc and σc with respect to X for some sequence c(n) such that

P (|X | > τc) ≤ 1

mnc(n)+1
, (7)

and

σc =
√

E
[|X |2 1{|X |<τc}

]

. (8)

In short, τc represents a truncation threshold such that the
truncated X coincides with the true X with high probability,
and σc denotes the standard deviation of the truncated X .
The idea is to study X1{|X |<τc} instead of X in the analy-
sis, since the truncated value is bounded and exhibits light
tails. For instance, if X is exponentially distributed such that
P (|X | > x) = e−x and c(n) = log n, then this yields that

τc = log2 n + log (mn).

Typically, one would like to pick c(n) such that τc becomes a
small function of m and n obeying σ 2

c ≈ E[|X |2].

III. CONCENTRATION OF SPECTRAL MEASURE IN

LARGE RANDOM VECTOR CHANNELS

We present a general mathematical framework that
facilitates the analysis of random vector channels. The
proposed approach is established upon the concentration
of spectral measure phenomenon derived by
Guionnet and Zeitouni [51], which is a consequence of
Talagrand’s concentration inequalities [64]. While the
adaptation of such general concentration results to our
settings requires moderate mathematical effort, it leads to a
very effective framework to assess the fluctuation of various
MIMO system performance metrics. We will provide a few
canonical examples in Section IV to illustrate the power of
this framework.

Consider a random matrix M = [M i j ]1≤i≤n,1≤ j≤m,
where M i j ’s are assumed to be independently distributed.

We use MR
i j and M I

i j to represent respectively the real and
imaginary parts of M i j , which are also generated indepen-
dently. Note, however, that M i j ’s are not necessarily drawn
from identical distributions. Set the numerical value

κ :=
{

1, in the real-valued case,
2, in the complex-valued case.

(9)

We further assume that all entries have matching two moments
such that for all i and j :

E
[

M i j
] = 0, Var

(

MR
i j

)

= ν2
i j , (10)

Var
(

MI
i j

)

=
{

ν2
i j , in the complex-valued case,

0, in the real-valued case,
(11)

where ν2
i j (νi j ≥ 0) are uniformly bounded by

max
i, j

∣
∣νi j
∣
∣ ≤ ν. (12)

In this paper, we focus on the class of MIMO system
performance metrics that can be transformed into additively
separable functions of the eigenvalues of the random channel
matrix (called linear spectral statistics [53]), i.e. the type of
metrics taking the form

n
∑

i=1

f

(

λi

(
1

n
M RR∗M∗

))

(13)

for some function f (·) and some deterministic matrix R ∈
Cm×m , where λi (X) denotes the i th eigenvalue of a matrix X .
As can been seen, many vector channel performance metrics
(e.g. MIMO mutual information, MMSE, sampled channel
capacity loss) can all be transformed into certain forms of
linear spectral statistics. We will characterize in Proposition 1
and Theorem 1 the measure concentration of (13), which
quantifies the fluctuation of (13) in finite-dimensional random
vector channels.

A. Concentration Inequalities for the Spectral Measure

Many linear spectral statistics of random matrices sharply
concentrate within a narrow interval indifferent to the precise
entry distributions. Somewhat surprisingly, such spectral mea-
sure concentration is shared by a very large class of random
matrix ensembles. We provide formal quantitative illustration
of such concentration of spectral measure phenomena below,
which follows from [51, Corollary 1.8]. This behavior, while
not widely used in communication and signal processing, is a
general result in probability theory derived from the Talagrand
concentration inequality (see [64] for details).

Before proceeding to the concentration results, we define

f0 (M) := 1

n

min(m,n)
∑

i=1

f

(

λi

(
1

n
M R R∗M∗

))

(14)

for the sake of notational simplicity.
Proposition 1: Consider a random matrix M =

[

M i j
]

1≤i≤n,1≤ j≤m satisfying (10) and (12). Suppose that
R ∈ Cm×m is any given matrix and ‖R‖ ≤ ρ. Consider
a function f (x) such that g(x) := f

(

x2
)

(x ∈ R+) is a
real-valued Lipschitz function with Lipschitz constant ‖g‖L
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as defined in (1). Let κ and ν be defined in (9) and (12),
respectively.

(a) Bounded Measure: If M i j ’s are bounded by D and g(·)
is convex, then for any β > 8

√
π ,

| f0 (M) − E [ f0 (M)]| ≤ β Dρν ‖g‖L
n

(15)

with probability exceeding 1 − 4 exp
(

−β2

8κ

)

.
(b) Logarithmic Sobolev Measure: If the measure of M i j

satisfies the LSI with a uniformly bounded constant cls, then
for any β > 0,

| f0 (M) − E [ f0 (M)]| ≤ β
√

clsρν ‖g‖L
n

(16)

with probability exceeding 1 − 2 exp
(

−β2

κ

)

.
(c) Sub-Exponential and Heavy-Tailed Measure: Sup-

pose that M i j ’s are independently drawn from either
sub-exponential distributions or heavy-tailed distributions and
that their distributions are symmetric about 0, with τc and σc

defined respectively in (7) and (8) with respect to M i j for
some sequence c(n). If g(·) is convex, then

∣
∣
∣ f0 (M) − E

[

f0

(

M̃
)]∣
∣
∣ ≤ 2κ

√

c(n) log nτcσcρ ‖g‖L
n

(17)

with probability exceeding 1 − 5n−c(n), where M̃ is defined
such that M̃ i j := M i j 1{|M i j |<τc}.

Proof: See Appendix A. �
Remark 3: By setting β = √

log n in Proposition 1(a)
and (b), one can see that under either measures of bounded
support or measures obeying the LSI,

∣
∣
∣ f0 (M) − E

[

f0

(

M̃
)]∣
∣
∣ = O

(√
log n

n

)

(18)

with high probability. In contrast, under heavy-tailed
measures,

∣
∣
∣ f0 (M) − E

[

f0

(

M̃
)]∣
∣
∣ = O

(√

c(n)τ 2
c σ 2

c log n

n

)

(19)

with high probability, where
√

c(n)τcσc is typically a growing
function in n. As a result, the concentration under sub-
Gaussian distributions is sharper than that under heavy-tailed
measures by a factor of

√
c(n)τcσc.

Remark 4: The bounds derived in Proposition 1 scale
linearly with ν, which is the maximum standard deviation of
the entries of M. This allows us to assess the concentration
phenomena for matrices with entries that have non-uniform
variance.

Proposition 1(a) and 1(b) assert that for both measures
of bounded support and a large class of sub-Gaussian
distributions, many separable functions of the spectra of
random matrices exhibit sharp concentration, assuming a
sufficient amount of independence between the entries.
More remarkably, the tails behave at worst like a Gaussian
random variable with well-controlled variance. Note that for
a bounded measure, we require the objective metric of the
form (13) to satisfy certain convexity conditions in order to
guarantee concentration. In contrast, the fluctuation of general

Lipschitz functions can be well controlled for logarithmic
Sobolev measures. This agrees with the prevailing wisdom
that the standard Gaussian measure (which satisfies the LSI)
often exhibits sharper concentration than general bounded
distributions (e.g. Bernoulli measures).

Proposition 1(c) demonstrates that spectral measure concen-
tration arises even when the tail distributions of M i j are much
heavier than standard Gaussian random variables, although it
might not be as sharp as for sub-Gaussian measures. This
remarkable feature comes at a price, namely, the deviation
of the objective metrics is much less controlled than for sub-
Gaussian distributions. However, this degree of concentration
might still suffice for most practical purposes. Note that the
concentration result for heavy-tailed distributions is stated in
terms of the truncated version M̃. The nice feature of the
truncated M̃ is that its entries are all bounded (and hence
sub-Gaussian), which can often be quantified or estimated
in a more convenient fashion. Finally, we remark that the
concentration depends on the choice of the sequence c(n),
which in turn affects the size of τc and σc. We will illustrate
the resulting size of confidence intervals in Section III-C via
several examples.

B. Approximation of Expected Empirical Distribution

Although Proposition 1 ensures sharp measure concen-
tration of various linear spectral statistics, a more precise
characterization requires evaluating the mean value of the
target metric (13) (i.e. E [ f0 (M)]). While limiting laws often
admit simple asymptotic characterization of this mean value
for a general class of metrics, whether the convergence rate
can be quantified often needs to be studied on a case-by-case
basis. In fact, this has become an extensively researched topic
in mathematics (see [65]–[68]). In this subsection, we develop
an approximation result that allows the expected value of a
broader class of metrics to be well approximated by concise
and informative expressions.

Recall that

f0 (M) := 1

n

min(m,n)
∑

i=1

f

(

λi

(
1

n
M R R∗M∗

))

(20)

We consider a large class of situations where the exponential
mean of the target metric (13)

E ( f ) := E
[

exp (n f0 (M))
]

= E

⎡

⎣exp

⎛

⎝

min{m,n}
∑

i=1

f

(

λi

(
1

n
M R R∗M∗

))
⎞

⎠

⎤

⎦ (21)

(instead of E [ f0 (M)]) can be approximated in a reason-
ably accurate manner. This is particularly relevant when
f (·) is a logarithmic function. For example, this applies to
log-determinant functions

f0 (M) = 1

n
log det

(

I + 1

n
M R R∗M∗

)

,

which are of significant interest in various applications such
as wireless communications [69], multivariate hypothesis
testing [70], etc. While E

[

det
(

I + 1
n M M∗)] often admits a
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TABLE II

SUMMARY OF PARAMETERS OF THEOREM 1

simple distribution-free expression, E
[

log det
(

I + 1
n M M∗)]

is highly dependent on precise distributions of the entries of
the matrix.

One might already notice that, by Jensen’s inequality,
log E ( f ) is larger than the mean objective metric E [ f0 (M)].
Nevertheless, in many situations, these two quantities differ by
only a vanishingly small gap, which is formally demonstrated
in the following lemma.

Lemma 1: (a) Sub-Exponential Tail: Suppose that

P

(

| f0 (M) − E [ f0 (M)]| >
y

n

)

≤ c1 exp (−c2 y)

for some values c1 > 0 and c2 > 1, then

1

n
log E ( f ) −

log
(

1 + c1
c2−1

)

n
≤ E [ f0 (M)] ≤ 1

n
log E ( f )

(22)

with E ( f ) defined in (21).
(b) Sub-Gaussian Tail: Suppose that

P

(

| f0 (M) − E [ f0 (M)]| >
y

n

)

≤ c1 exp
(

−c2 y2
)

for some values c1 > 0 and c2 > 0, then

1

n
log E (f) ≥ E [ f0 (M)]

≥ 1

n
log E (f) −

log

(

1 +
√

πc2
1

c2
exp

(
1

4c2

)
)

n
(23)

with E ( f ) defined in (21).
Proof: See Appendix B. �

Remark 5: For measures with sub-exponential tails,
if c2 < 1, the concentration is not decaying sufficiently fast
and is unable to ensure that E ( f ) = E

[

en f0(M)
]

exists.
In short, Lemma 1 asserts that if f0 (M) possesses a

sub-exponential or a sub-Gaussian tail, then E[ f0 (M)] can
be approximated by 1

n log E ( f ) in a reasonably tight manner,
namely, within a gap no worse than O ( 1

n

)

. Since Proposition 1
implies sub-Gaussian tails for various measures, we immedi-
ately arrive at the following concentration results that concern
a large class of sub-Gaussian and heavy-tailed measures.

Theorem 1: Let cρ, f ,D, cρ, f ,cls , and cρ, f ,τc ,σc be numerical
values defined in Table II, and set

μρ,g,A := νρ ‖g‖L A. (24)

(1) Bounded Measure: Under the assumptions of
Proposition 1(a), we have

{

f0 (M) ≤ 1
n log E ( f ) + βμρ,g,D

n ,

f0 (M) ≥ 1
n log E ( f ) − βμρ,g,D

n − cρ, f ,D
n ,

(25)

with probability exceeding 1 − 4 exp
(

−β2

8κ

)

.

(2) Logarithmic Sobolev Measure: Under the assumptions
of Proposition 1(b), we have

{

f0 (M) ≤ 1
n log E ( f ) + βμρ,g,

√
cls

n ,

f0 (M) ≥ 1
n log E ( f ) − βμρ,g,

√
cls

n − cρ, f ,cls
n ,

(26)

with probability at least 1 − 2 exp
(

−β2

κ

)

.
(3) Heavy-Tailed Distribution: Under the assumptions of

Proposition 1(c), we have
{

f0 (M) ≤ 1
n log EM̃ ( f ) + μρ,g,ζ

n ,

f0 (M) ≥ 1
n log EM̃ ( f ) − μρ,g,ζ

n − cρ, f ,τc ,σc
n ,

(27)

with probability exceeding 1 − 5n−c(n), where
{

ζ := τcσc
√

8κc(n) log n;

EM̃ ( f ) := E

[

exp
(

n f0

(

M̃
))]

.
Proof: See Appendix C. �

While Lemma 1 focuses on sub-exponential and sub-
Gaussian measures, we are able to extend the concentration
phenomenon around 1

n log E ( f ) to a much larger class of
distributions including heavy-tailed measures through certain
truncation arguments.

To get a more informative understanding of Theorem 1,
consider the case where ‖g‖L, τc, D, cls, ρ are all constants.
One can see that with probability exceeding 1 − ε for any
small constant ε > 0,

f0 (M) = 1

n
log E ( f ) + O

(
1

n

)

holds for measures of bounded support and measures satisfy-
ing the LSI. In comparison, for symmetric power-law measures
satisfying P

(∣
∣M i j

∣
∣ ≥ x

) ≤ x−λ for some λ > 0, the function
τc is typically a function of the form nδ for some constant
δ > 0. In this case, with probability at least 1 − ε, one has

f0 (M) = 1

n
log EM̃ ( f ) + O

(
1

n1−δ

)

for heavy-tailed measures, where the uncertainty cannot be
controlled as well as for bounded measures or measures
obeying the LSI.

In the scenario where E ( f ) can be computed, Theorem
1 presents a full characterization of the confidence interval
of the objective metrics taking the form of linear spectral
statistics. In fact, in many applications, E ( f ) (rather than
E [ f0]) can be precisely computed for a general class of
probability distributions beyond the Gaussian measure, which
allows for accurate characterization of the concentration of the
objective metrics via Theorem 1, as illustrated in Section IV.

C. Confidence Interval

In this subsection, we demonstrate that the sharp spectral
measure concentration phenomenon allows us to estimate the
mean of the target metric in terms of narrow confidence
intervals.

Specifically, suppose that we have obtained the value of
the objective metric f0 (M) = 1

n

∑

i f
(

λi
( 1

n M R R∗M∗)) for



372 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015

a given realization M. The goal is find an interval (called
(1 − α0) confidence interval)

[

l (M), u (M)
]

such that

P
(

E [ f0] ∈ [l (M), u (M)
]) ≥ 1 − α0 (28)

for some constant α0 ∈ (0, 1).
Consider the assumptions of Proposition 1, i.e. M i j ’s

are independently generated satisfying E[M i j ] = 0 and
E[|M i j |2] = ν2

i j ≤ ν2. An immediate consequence of Propo-
sition 1 is stated as follows.

• (Bounded Measure) If M i j ’s are bounded by D and g(·)
is convex, then

⎡

⎣ f0 (M) ±
√

8κ Dρν ‖g‖L
√

log 4
α0

n

⎤

⎦ (29)

is an (1 − α0) confidence interval for E [ f0 (M)].

• (Logarithmic Sobolev Measure) If the measure of M i j

satisfies the LSI with a uniform constant cls, then
⎡

⎣ f0 (M) ±
√

κclsρν ‖g‖L
√

log 2
α0

n

⎤

⎦ (30)

is an (1 − α0) confidence interval for E [ f0 (M)].

• (Sub-Exponential Measure) If the measure of M i j

is symmetric about 0 and P
(∣
∣M i j

∣
∣ > x

) ≤ e−λx for

some constant λ > 0, then c(n) = log
(

5
α0

)

log n and τc =
1
λ log

(
5mn
α0

)

, indicating that

⎡

⎢
⎢
⎣

f0 (M) ±

√

4κ log
(

5
α0

)

ρν ‖g‖L
λ

log
(

5mn
α0

)

n

⎤

⎥
⎥
⎦

(31)

is an (1 − α0) confidence interval for E[ f0(M̃)].
• (Power-Law Measure) If the measure of M i j is symmet-

ric about 0 and P
(∣
∣M i j

∣
∣ > x

) ≤ x−λ for some constant

λ > 0, then c(n) = log
(

5
α0

)

log n and τc =
(

5mn
α0

) 1
λ

, indicating
that
⎡

⎢
⎢
⎢
⎣

f0 (M) ±

(√

4κ log
(

5
α0

) (
5
α0

) 1
λ

ρν ‖g‖L
)

(mn)
1
λ

n

⎤

⎥
⎥
⎥
⎦

is an (1 − α0) confidence interval for E[ f0(M̃)].
One can see from the above examples that the spans of
the confidence intervals under power-law distributions are
much less controlled than that under sub-Gaussian measure.
Depending on the power-law decay exponent λ, the typical

deviation can be as large as O
(

n−1+ 2
λ

)

as compared to O ( 1
n

)

under various sub-Gaussian measures.

When D, cls, ρ, ‖g‖L, and α0 are all constants, the widths
of the above confidence intervals decay with n, which is
negligible for many metrics of interest.

D. A General Recipe for Applying
Proposition 1 and Theorem 1

For pedagogical reasons, we provide here a general recipe
regarding how to apply Proposition 1 and Theorem 1 to
evaluate the fluctuation of system performance metrics in
random MIMO channels with channel matrix H .

1) Transform the performance metric into a linear spectral
statistic, i.e. write the metric in the form f0 (M) =
1
n

∑n
i=1 f

(

λi
( 1

n H R R∗ H∗)) for some function f (·)
and some deterministic matrix R.

2) For measures satisfying the LSI, it suffices to calcu-
late the Lipschitz constant of g(x) := f (x2). For
both measures of bounded support and heavy-tailed
distributions, since the function g(x) := f (x2) is non-
convex in general, one typically needs to convexify
g(x) first. In particular, one might want to identify
two reasonably tight approximation g1(x) and g2(x) of
g(x) such that: 1) g1(x) and g2(x) are both convex
(or concave); 2) g1(x) ≤ g(x) ≤ g2(x).

3) Apply Proposition 1 and / or Theorem 1 on either
g(x) (for measures satisfying the LSI) or on g1(x) and
g2(x) (for bounded measures or heavy-tailed measures)
to obtain concentration bounds.

This recipe will be used to establish the canonical examples
provided in Section IV.

IV. SOME CANONICAL EXAMPLES

In this section, we apply our general analysis framework
developed in Section III to a few canonical examples that
arise in wireless communications and signal processing. Rather
than making each example as general as possible, we present
only simple settings that admit concise expressions from
measure concentration. We emphasize these simple illustrative
examples in order to demonstrate the effectiveness of our
general treatment.

A. Mutual Information and Power Offset
of Random MIMO Channels

Consider the following MIMO channel

y = H x + z, (32)

where H ∈ Rnr×nt denotes the channel matrix, x ∈ Rnt

represents the transmit signal, and y ∈ Rnr is the received
signal. We denote by z ∼ N (

0, σ 2 In
)

the additive Gaussian
noise. Note that (32) allows modeling of a large class of
random vector channels (e.g. MIMO-OFDM channels [71],
CDMA systems [18], undersampled channels [72]) beyond
multiple antenna channels. For instance, in unfaded direct-
sequence CDMA systems, the columns of H can repre-
sent random spreading sequences; see [73, Sec. 3.1.1] for
details.
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The total power is assumed to be P , independent
of nt and nr, and the signal-to-noise ratio (SNR) is
denoted by

SNR := P

σ 2 . (33)

In addition, we denote the degrees of freedom as

n := min (nt, nr) , (34)

and use α > 0 to represent the ratio

α := nt

nr
. (35)

We suppose throughout that α is a universal constant that does
not scale with nt and nr.

Consider the simple channel model where {H i j : 1 ≤
i ≤ nr, 1 ≤ j ≤ nt} are independently distributed.
Suppose that channel state information (CSI) is avail-
able to both the transmitter and the receiver. When equal
power allocation is adopted at all transmit antennas, it
is well known that the mutual information C (H , SNR)
of the MIMO channel (32) under equal power allocation
is [2]

C (H , SNR) = log det

(

I + SNR · 1

nt
H H∗

)

, (36)

which depends only on the eigenvalue distribution of H H∗.
In the presence of asymptotically high SNR and chan-
nel dimensions, it is well known that if H i j ’s are inde-
pendent with zero mean and unit variance, then, almost
surely,

lim
SNR→∞ lim

nr→∞

(
C (H , SNR)

nr
− min {α, 1} · log SNR

)

=
⎧

⎨

⎩

−1 + (α − 1) log
(

α
α−1

)

, if α ≥ 1,

−α log (αe) + (1 − α) log
(

1
1−α

)

, if α < 1,
(37)

which is independent of the precise entry distribution
of H (see [11]). The method of deterministic equiva-
lents has also been used to obtain good approximations
under finite channel dimensions [47, Ch. 6]. In contrast,
our framework characterizes the concentration of mutual
information in the presence of finite SNR and finite nr
with reasonably tight confidence intervals. Interestingly,
the MIMO mutual information is well-controlled within
a narrow interval, as formally stated in the following
theorem.

Theorem 2: Assume perfect CSI at both the transmitter and
the receiver, and equal power allocation at all transmit anten-
nas. Suppose that H ∈ Rnr×nt where H i j ’s are independent
random variables satisfying E

[

H i j
] = 0 and E[|H i j |2] = 1.

Set n := min {nr, nt}.

(a) If H i j ’s are bounded by D, then for any β > 8
√

π ,

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR+
[

1
nr

logR ( 2
eSNR , nr, nt

)+ βr lb,+
bd
nr

,

1
nr

logR ( e
2SNR , nr, nt

)+ βrub,+
bd
nr

]

, if α ≥ 1

α log SNR
α +

[

1
nr

logR ( 2α
eSNR , nt , nr

)+ βr lb,−
bd
nr

,

1
nr

logR ( eα
2SNR , nt , nr

)+ βrub,−
bd
nr

]

, if α < 1

(38)

with probability exceeding 1 − 8 exp
(

−β2

8

)

.
(b) If H i j ’s satisfy the LSI with respect to a uniform

constant cls, then for any β > 0,

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

log SNR + 1
nr

logR ( 1
SNR , nr, nt

)

+ β
nr

[

r lb,+
ls , rub,+

ls

]

, if α ≥ 1

α log SNR
α + 1

nr
logR ( α

SNR , nt, nr
)

+ β
nr

[

r lb,−
ls , rub,−

ls

]

, if α < 1

(39)

with probability exceeding 1 − 4 exp
(−β2

)

.
(c) Suppose that H i j ’s are independently drawn from either

sub-exponential distributions or heavy-tailed distributions and
that the distributions are symmetric about 0. Let τc(n) be
defined as in (7) with respect to H i j ’s for some sequence
c(n). Then,

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR +
[

1
nr

logR
(

2
eσ 2

c SNR , nr, nt

)

+ r lb,+
ht
nr

,

1
nr

logR
(

e
2σ 2

c SNR , nr, nt

)

+ rub,+
ht
nr

]

+ 2 log σc, if α ≥ 1

α log SNR
α +

[

1
nr

logR
(

2α
eσ 2

c SNR
, nr, nt

)

+ r lb,−
ht
nr

,

1
nr

logR
(

eα
2σ 2

c SNR , nt , nr

)

+ rub,−
ht
nr

,

]

+ 2 log σc, if α < 1

(40)

with probability exceeding 1 − 10
nc(n) .

Here,

R (ε, n, m) :=
n
∑

i=0

(
n

i

)
εn−i m−i m!

(m − i)!
, (41)

and the residual terms are provided in Table III.
Proof: See Appendix E. �

Remark 6: In the regime where β = � (1), one can easily
see that the magnitudes of all the residual terms rub,+

bd , r lb,+
bd ,

rub,−
bd , r lb,−

bd , rub,+
ls , r lb,+

ls , rub,−
ls , r lb,−

ls do not scale with n.
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TABLE III

SUMMARY OF PARAMETERS OF THEOREM 2 AND COROLLARY 1

The above theorem relies on the expression R (ε, m, n).
In fact, this function is exactly equal to E

[

det
(

ε I + 1
m M M∗)]

in a distribution-free manner, as revealed by the following
lemma.

Lemma 2: Consider any random matrix M ∈ Cn×m such
that M i j ’s are independently generated satisfying

E
[

M i j
] = 0, and E

[∣
∣M i j

∣
∣2
]

= 1. (42)

Then one has

E

[

det

(

ε I + 1

m
M M∗

)]

=
n∑

i=0

(
n

i

)
εn−i m−i m!

(m − i)!
(43)

Proof: This lemma improves upon known results under
Gaussian random ensembles by generalizing them to a very
general class of random ensembles. See Appendix D for the
detailed proof. �

To get a more quantitative assessment of the concentration
intervals, we plot the 95% confidence interval of the MIMO
mutual information for a few cases in Fig. 1 when the
channel matrix H is an i.i.d. Gaussian random matrix. The
expected value of the capacity is adopted from the mean of
3000 Monte Carlo trials. Our theoretical predictions of the
deviation bounds are compared against the simulation results
consisting of Monte Carlo trials. One can see from the plots
that our theoretical predictions are fairly accurate even for
small channel dimensions, which corroborates the power of
concentration of measure techniques.

At moderate-to-high SNR, the function R(ε, n, m) admits a
simple approximation. This observation leads to a concise and
informative characterization of the mutual information of the
MIMO channel, as stated in the following corollary.

Corollary 1: Suppose that SNR > 2
e max {α, 1} · max{e2

α3, 4α}, and set n := min{nt , nr}.
(a) Consider the assumptions of Theorem 2(a). For any

β > 8
√

π ,

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR
e + (α − 1) log

(
α

α−1

)

+
[

γ lb,+
bd + βr lb,+

bd
nr

, γ ub,+
bd + βrub,+

bd
nr

]

, if α ≥ 1,

α log SNR
αe + (1 − α) log

(
1

1−α

)

+
[

γ lb,−
bd + βr lb,−

bd
nr

, γ ub,−
bd + βrub,−

bd
nr

]

, if α < 1,

(44)

with probability exceeding 1 − 8 exp
(

−β2

8

)

.

(b) Consider the assumptions of Theorem 2(b). For any
β > 0,

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR
e + (α − 1) log

(
α

α−1

)

+
[

γ lb,+
ls + βr lb,+

ls
nr

, γ ub,+
ls + βrub,+

ls
nr

]

, if α ≥ 1,

α log SNR
αe + (1 − α) log

(
1

1−α

)

+
[

γ lb,−
ls + βr lb,−

ls
nr

, γ ub,−
ls + βrub,−

ls
nr

]

, if α < 1,

(45)

with probability exceeding 1 − 4 exp
(−β2

)

.
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Fig. 1. 95%-confidence interval for MIMO mutual information C(H ,SNR)
nr

when H is drawn from i.i.d. standard Gaussian ensemble. From Table III, the

sizes of the upper and lower confidence spans are given by β
√

SNR√
αnr

(α > 1) and β
√

SNR
nr

(α < 1), respectively, where β =
√

log 8
(1−5%) . The expected value

of C(H ,SNR)
nr

is adopted from the mean of 3000 Monte Carlo trials. The theoretical confidence bounds are compared against the simulation results (with 3000
Monte Carlo trials). The results are shown for (a) α = 2, SNR = 5; (b) α = 2, SNR = 2; (c) α = 1/2, SNR = 5; and (d) α = 1/2, SNR = 2.

(c) Consider the assumptions of Theorem 2(c). Then, one
has

C (H , SNR)

nr

∈

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR
e + (α − 1) log

(
α

α−1

)

+ log σc+
[

γ lb,+
ht + r lb,+

ht
nr

, γ ub,+
ht + rub,+

ht
nr

]

, if α ≥ 1,

α log SNR
αe + (1 − α) log

(
1

1−α

)

+ log σc+
[

γ lb,−
ht + r lb,−

ht
nr

, γ ub,−
ht + rub,−

ht
nr

]

, if α < 1,

(46)

with probability at least 1 − 10n−c(n).
Here, the residual terms are formally provided in Table III.

Proof: See Appendix F. �
Remark 7: One can see that the magnitudes of all these

extra residual terms γ ub,−
bd , γ lb,−

bd , γ ub,+
bd , γ lb,+

bd , γ ub,−
ls , γ lb,−

ls ,

γ ub,+
ls , and γ lb,+

ls are no worse than the order

O
(

log n

n
+ log SNR√

SNR

)

, (47)

which vanish as SNR and channel dimensions grow.
In fact, Corollary 1 is established based on the sim-

ple approximation of R (ε, n, m) := E
[

det
(

ε I + 1
m M M∗)].

At moderate-to-high SNR, this function can be approximated
reasonably well through much simpler expressions, as stated
in the following lemma.

Lemma 3: Consider a random matrix M =
(

M i j
)

1≤i≤n,1≤ j≤m such that α := m/n ≥ 1. Suppose

that M i j ’s are independent satisfying E
[

M i j
] = 0 and

E

[∣
∣M i j

∣
∣2
]

= 1. If 4
n < ε < min

{
1

e2α3 , 1
4α

}

, then one has

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

= (α − 1) log

(
α

α − 1

)

− 1 + rE, (48)
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where the residual term rE satisfies

rE ∈
[

1
2 log n−log 1

2π (m + 1)

n
,

1.5 log (en)

n
+2

√
αε log

1

αε

]

.

Proof: Appendix F. �
Combining Theorem 2 and Lemma 3 immediately

establishes Corollary 1.
1) Implications of Theorem 2 and Corollary 1: Some impli-

cations of Corollary 1 are listed as follows.

1) When we set β = �
(√

log n
)

, Corollary 1 implies that
in the presence of moderate-to-high SNR and moderate-
to-large channel dimensionality n = min {nt, nr}, the
information rate per receive antenna behaves like

C (H , SNR)

nr

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

log SNR
e + (α − 1) log

(
α

α−1

)

+O
(

SNR+√
log n

n + log SNR√
SNR

)

, if α ≥ 1

α log SNR
αe + (1 − α) log

(
1

1−α

)

+O
(

SNR+√
log n

n + log SNR√
SNR

)

, if α < 1

(49)

with high probability. That said, for a fairly large regime,
the mutual information falls within a narrow range.
In fact, the mutual information depends almost only
on SNR and the ratio α = nt

nr
, and is independent

of the precise number of antennas nr and nt, except
for some vanishingly small residual terms. The first-
order term of the expression (49) coincides with existing
asymptotic results (see [11]). This in turns validates our
concentration of measure approach.

2) Theorem 2 indicates that the size of the typical
confidence interval for C(H ,SNR)

nr
decays with n at

a rate not exceeding O ( 1
n

)

(by picking β = � (1))
under measures of bounded support or measures
satisfying the LSI. Note that it has been established
(see [35, Th. 2 and Proposition 2]) that the
asymptotic standard deviation of C(H ,SNR)

nr
scales

as �
( 1

n

)

. This reveals that the concentration of
measure approach we adopt is able to obtain
the confidence interval with optimal size. Recent
works by Li, Mckay and Chen [74], [75]
derive polynomial expansion for each of the moments
(e.g. mean, standard deviation, and skewness) of
MIMO mutual information, which can also be used to
approximate the distributions. In contrast, our results
are able to characterize any concentration interval in a
simpler and more informative manner.

3) Define the power offset for any channel dimension as
follows

L (H , SNR) := log SNR − C (H , SNR)

min {nr, nt} . (50)

One can see that this converges to the notion of high-
SNR power offset investigated by Lozano et. al. [5], [12]
in the limiting regime (i.e. when SNR → ∞). Our

results reveal the fluctuation of L (H , SNR) such that

L (H , SNR)

=

⎧

⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(α − 1) log
(

α−1
α

)+ 1

+O
(

SNR+√
log n

n + log SNR√
SNR

)

, if α ≥ 1

1−α
α log (1 − α) + log (eα)

+O
(

SNR+√
log n

n + log SNR√
SNR

)

, if α < 1

(51)

with high probability. The first-order term of
L (H , SNR) agrees with the known results
on asymptotic power offset (see [5, Proposition 2]
[12, Equation (84)]) when n → ∞ and SNR → ∞.
Our results distinguish from existing results in the sense
that we can accurately accommodate a much larger
regime beyond the one with asymptotically large SNR
and channel dimensions.

4) The same mutual information and power offset values
are shared among a fairly general class of distributions
even in the non-asymptotic regime. Moreover, heavy-
tailed distributions lead to well-controlled information
rate and power-offset as well, although the spectral
measure concentration is often less sharp than for
sub-Gaussian distributions (which ensure exponentially
sharp concentration).

5) Finally, we note that Corollary 1 not only characterizes
the order of the residual term, but also provides reason-
ably accurate characterization of a narrow confidence
interval such that the mutual information and the power
offset lies within it, with high probability. All pre-
constants are explicitly provided, resulting in a full
assessment of the mutual information and the power
offset. Our results do not rely on careful choice of
growing matrix sequences, which are typically required
in those works based on asymptotic laws.

2) Connection to the General Framework: We now illus-
trate how the proof of Theorem 2 follows from the general
framework presented in Section III.

1) Note that the mutual information can be alternatively
expressed as

1

nr
C (H , SNR)

= 1

nr

min{nr ,nt}∑

i=1

log

(

1 + SNR · λi

(
1

nt
H H∗

))

:= 1

nr

min{nr ,nt}∑

i=1

{

log SNR + f

(

λi

(
1

nt
H H∗

))}

,

where f (x) := log
( 1

SNR + x
)

on the domain x ≥ 0.
As a result, the function g(x) := f (x2) =
log
( 1

SNR + x2
)

has Lipschitz norm ‖g‖L ≤ SNR1/2.
2) For measures satisfying the LSI, Theorem 2(b) imme-

diately follows from Theorem 1(b). For measures of
bounded support or heavy-tailed measures, one can
introduce the following auxiliary function with respect
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to some small ε:

gε(x) :=
{

log
(

ε + x2
)

, if x ≥ √
ε,

1√
ε

(

x − √
ε
)+ log (2ε) , if 0 ≤ x <

√
ε,

which is obtained by convexifying g(x). If we set
fε(x) := gε(

√
x), then one can easily check that

fSNR−1 (x) ≤ f (x) ≤ f e
2 SNR−1 (x) .

Applying Theorem 1(a) allows us to derive the
concentration on

1

nr

min{nr ,nt}∑

i=1

fSNR−1

(

λi

(
1

nt
H H∗

))

and

1

nr

min{nr ,nt}∑

i=1

f e
2 SNR−1

(

λi

(
1

nt
H H∗

))

,

which in turn provide tight lower and upper bounds for
1
nr

∑min{nr ,nt}
i=1 f

(

λi

(
1
nt

H H∗
))

.

3) Finally, the mean value E

[

det
(

I + SNR · 1
nt

H H∗
)]

admits a closed-form expression independent of precise
entry distributions, as derived in Lemma 2.

B. MMSE Estimation in Random Vector Channels

Next, we show that our analysis framework can be applied
in Bayesian inference problems that involve estimation of
uncorrelated signals components. Consider a simple linear
vector channel model

y = H x + z,

where H ∈ Cn×p is a known matrix, x ∈ Cp denotes an
input signal with zero mean and covariance matrix P I p, and
z represents a zero-mean noise uncorrelated with x, which
has covariance σ 2 In . Here, we denote by p and n the input
dimension and the sample size, respectively, which agrees with
the conventional notation adopted in the statistics community.
In this subsection, we assume that

α := p

n
≤ 1, (52)

i.e. the sample size exceeds the dimension of the input signal.
The goal is to estimate the channel input x from the channel
output y with minimum �2 distortion.

The MMSE estimate of x given y can be written as [4]

x̂ = E
[

x | y
] = E

[

x y∗] (
E
[

y y∗])−1 y

= P H∗ (σ 2 In + P H H∗)−1
y, (53)

and the resulting MMSE is given by

MMSE (H , SNR)

= tr

(

P I p − P2 H∗ (σ 2 In + P H H∗)−1
H
)

. (54)

The normalized MMSE (NMMSE) can then be written as

NMMSE (H , SNR) := MMSE (H , SNR)

E
[‖x‖2]

= tr

(

I p− H∗
(

1

SNR
In + H H∗

)−1

H

)

,

(55)

where

SNR := P

σ 2 .

Using the concentration of measure technique, we can
evaluate NMMSE (H) to within a narrow interval with high
probability, as stated in the following theorem.

Theorem 3: Suppose that H = AM, where A ∈ C
m×n is a

deterministic matrix for some integer m ≥ p, and M ∈ Cn×p

is a random matrix such that M i j ’s are independent random
variables satisfying E

[

M i j
] = 0 and E[∣∣M i j

∣
∣2] = 1

p .
(a) If

√
pM i j ’s are bounded by D, then for any β > 8

√
π ,

NMMSE (H , SNR)

p
∈
[

M
(

8

9SNR
, H
)

+ βτ lb
bd

p
,

M
(

9

8SNR
, H
)

+ βτ ub
bd

p

]

(56)

with probability exceeding 1 − 8 exp
(

−β2

16

)

.

(b) If
√

pM i j ’s satisfy the LSI with respect to a uniform
constant cls, then for any β > 0,

NMMSE (H , SNR)

p
∈ M

(
1

SNR
, H
)

+ β

p

[

τ lb
ls , τ ub

ls

]

(57)

with probability exceeding 1 − 4 exp
(

−β2

2

)

.

(c) Suppose that
√

pM i j ’s are independently drawn from
either sub-exponential distributions or heavy-tailed distribu-
tions and that the distributions are symmetric about 0. Let
τc be defined as in (7) with respect to

√
pM i j ’s for some

sequence c(n). Then

NMMSE (H , SNR)

p
∈
[

M
(

8

9SNR
, AM̃

)

+ τ lb
ht

p
,

M
(

9

8SNR
, AM̃

)

+ τ ub
ht

p

]

(58)

with probability exceeding 1 − 10
pc(n) , where M̃ is defined such

that M̃ i j := M i j 1{√p|M i j |<τc}.
Here, the function M (ε, H) is defined as

M (δ, H) := 1

p
E

[

tr
((

δ I + H∗ H
)−1
)]

, (59)

and the residual terms are formally defined in Table IV.
Proof: See Appendix G. �

Theorem 3 ensures that the MMSE per signal compo-
nent falls within a small interval with high probability.
This concentration phenomenon again arises for a very large
class of probability measures including bounded distributions,
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TABLE IV

SUMMARY OF PARAMETERS OF THEOREM 3 AND COROLLARY 2

sub-Gaussian distributions, and heavy-tailed distributions.
Note that M ( 9

8SNR , H
)

, M ( 8
9SNR , H

)

, and M ( 1
SNR , H

)

are often very close to each other at moderate-to-high SNR
(see the analysis of Corollary 2). The spans of the residual
intervals for both bounded and logarithmic Sobolev measures
do not exceed the order

O
(

β ‖A‖ SNR1.5

p

)

, (60)

which is often negligible compared with the MMSE value per
signal component.

In general, we are not aware of a closed-form expres-
sion for M (δ, H) under various random matrix ensembles.
If H is drawn from a Gaussian ensemble, however, we are
able to derive a simple expression and bound this value to
within a narrow confidence interval with high probability, as
follows.

Corollary 2: Suppose that H i j ∼ N
(

0, 1
p

)

are indepen-
dent complex-valued Gaussian random variables, and assume
that α < 1. Then

NMMSE (H , SNR)

p
∈ α

1 − α
+
[

τ lb
g + βτ lb

ls

p
, τ ub

g + βτ ub
ls

p

]

(61)

with probability exceeding 1−4 exp
(

−β2

2

)

. Here, τ lb
g and τ ub

g

are presented in Theorem 3, while τ lb
g and τ ub

g are formally
defined in Table IV.

Proof: See Appendix G. �
Corollary 2 implies that the MMSE per signal component

behaves like

NMMSE (H , SNR)

p
= α

1 − α
+ O

(

SNR1.5

n
+ 1

n
+ 1

SNR

)

with high probability (by setting β = � (1)). Except for
the residual term that vanishes in the presence of high
SNR and large signal dimensionality n, the first order
term depends only on the SNR and the oversampling
ratio 1

α . Therefore, the normalized MMSE converges to an
almost deterministic value even in the non-asymptotic regime.
This illustrates the effectiveness of the proposed analysis
approach.

1) Connection to the General Framework: We now demon-
strate how the proof of Theorem 3 follows from the general
template presented in Section III.

1) Observe that the MMSE can be alternatively
expressed as

NMMSE (H , SNR)

p
= 1

p

min{n,p}
∑

i=1

1

SNR−1 + λi
(

H H∗)

:= 1

p

min{n,p}
∑

i=1

f
(

λi
(

H H∗)) ,

where f (x) := 1
SNR−1+x

(x ≥ 0). Consequently, the

function g(x) := f (x2) = 1
SNR−1+x2 has Lipschitz norm

‖g‖L ≤ 3
√

3
8 SNR3/2.

2) For measures satisfying the LSI, Theorem 3(b) can be
immediately obtained by Proposition 1(b). For measures
of bounded support or heavy-tailed measures, one can
introduce the following auxiliary function with respect
to some small ε:

g̃ε(x) :=
⎧

⎨

⎩

1
ε2+x2 , if x > 1√

3
ε,

− 3
√

3
8

(

x − ε√
3

)

+ 3
4ε2 , if x ≤ 1√

3
ε,

which is obtained by convexifying g(x). By setting
f̃ε(x) := g̃ε(

√
x), one has

f̃ 3
2
√

2
SNR−1/2 (x) ≤ f (x) ≤ f̃SNR−1/2 (x) .

Applying Proposition 1(a) gives the concentration
bounds on

1

p

min{p,n}
∑

i=1

f̃ 3
2
√

2
SNR−1/2

(

λi
(

H H∗))

and

1

p

min{p,n}
∑

i=1

f̃SNR−1/2
(

λi
(

H H∗)) ,

which in turn provide tight sandwich bounds for
1
p

∑min{p,n}
i=1 f

(

λi
(

H H∗)).

V. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a general analysis framework that allows
many canonical MIMO system performance metrics taking
the form of linear spectral statistics to be assessed within a
narrow concentration interval. Moreover, we can guarantee
that the metric value falls within the derived interval with
high probability, even under moderate channel dimensionality.
We demonstrate the effectiveness of the proposed framework
through two canonical metrics in wireless communications



CHEN et al.: BACKING OFF FROM INFINITY: PERFORMANCE BOUNDS VIA CONCENTRATION 379

and signal processing: mutual information and power offset of
MIMO channels, and MMSE for Gaussian processes. For each
of these examples, our approach allows a more refined and
accurate characterization than those derived in previous work
in the asymptotic dimensionality limit. While our examples
here are presented for i.i.d. channel matrices, they can all
be immediately extended to accommodate dependent random
matrices using the same techniques. In other words, our
analysis can be applied to characterize various performance
metrics of wireless systems under correlated fading, as studied
in [8].

Our work suggests a few future research directions for
different matrix ensembles. Specifically, if the channel matrix
H cannot be expressed as a linear correlation model M A for
some known matrix A and a random i.i.d. matrix M , then it
will be of great interest to see whether there is a systematic
approach to analyze the concentration of spectral measure
phenomenon. For instance, if H consists of independent sub-
Gaussian columns but the elements within each column are
correlated (i.e. cannot be expressed as a weighted sum of i.i.d.
random variables), then it remains to be seen whether gener-
alized concentration of measure techniques (see [52]) can be
applied to find confidence intervals for the system performance
metrics. The spiked random matrix model [76], which also
admits simple asymptotic characterization, is another popular
candidate in modeling various system metrics. Another more
challenging case is when the rows of H are randomly drawn
from a known set of structured candidates. An example is
a random DFT ensemble where each row is independently
drawn from a DFT matrix, which is frequently encountered
in the compressed sensing literature (see [77]). Understanding
the spectral concentration of such random matrices could be
of great interest in investigating OFDM systems under random
subsampling.

APPENDIX A
PROOF OF PROPOSITION 1

Part (a) and (b) of Proposition 1 are immediate conse-
quences of [51, Corollary 1.8] via simple algebraic manip-
ulation. Here, we only provide the proof for heavy-tailed
distributions.

Define a new matrix M̃ as a truncated version of M such
that

M̃ i j =
{

M i j , if
∣
∣M i j

∣
∣ < τc,

0, otherwise.

Note that the entries of M̃ have zero mean and variance not
exceeding σ 2

c , and are uniformly bounded in magnitude by τc.
Consequently, Theorem 1(a) asserts that for any β > 8

√
π ,

we have

∣
∣
∣ f0

(

M̃
)

− E

[

f0

(

M̃
)]∣
∣
∣ ≤ βτcσcρ ‖g‖L

n
(62)

with probability exceeding 1 − 4 exp
(

−β2

16

)

.

In addition, a simple union bound taken collectively with (7)
yields

P

(

M �= M̃
)

≤
∑

1≤i≤n,1≤ j≤m

P

(
1

νi j

∣
∣M i j

∣
∣ > τc

)

≤ mnP

(
1

νi j

∣
∣M i j

∣
∣ > τc

)

= 1

nc(n)
. (63)

By setting β = 4
√

c(n) log n, one has

4 exp

(

−β2

16

)

= 4

nc(n)
.

This combined with (62) and the union bound implies that
∣
∣
∣ f0 (M) − E

[

f0

(

M̃
)]∣
∣
∣ ≤ 4

√

c(n) log nτcσcρ ‖g‖L
n

(64)

holds with probability at least 1 − 5n−c(n), as claimed.

APPENDIX B
PROOF OF LEMMA 1

For notational simplicity, define

Y := n { f0 (M) − E [ f0 (M)]}

=
min{m,n}
∑

i=1

{

f

(

λi

(
1

n
M RR∗M∗

))

− E

[

f

(

λi

(
1

n
M R R∗M∗

))]}

and

Z := n f0 (M) =
min{m,n}
∑

i=1

f

(

λi

(
1

n
M R R∗M∗

))

,

and denote by μ|Y |(y) the probability measure of |Y |.
(1) Suppose that P (|Y | > y) ≤ c1 exp (−c2y) holds for

some universal constants c1 > 0 and c2 > 1. Applying
integration by parts yields the following inequality

E

[

eY
]

≤ E

[

e|Y |] =
ˆ ∞

0
e|Y |dμ|Y |(y)

= − ey
P (|Y | > y)

∣
∣∞
0 +

ˆ ∞

0
ey

P (|Y | > y) dy

≤ 1 + c1

ˆ ∞

0
exp (− (c2 − 1) y) dy

= 1 + c1

c2 − 1
. (65)

This gives rise to the following bound

log E

[

eZ
]

− log eE[Z ] = log E

[

eY
]

≤ log

(

1 + c1

c2 − 1

)

.

Therefore, we can conclude

1

n
log E

[

eZ
]

−
log
(

1 + c1
c2−1

)

n
≤ 1

n
E [Z ] ≤ 1

n
log E

[

eZ
]

,

(66)

where the last inequality follows from Jensen’s
inequality

1

n
E [Z ] = 1

n
log eE[Z ] ≤ 1

n
log Ee[Z ].
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(2) Similarly, if P (|Y | > y) ≤ c1 exp
(−c2 y2

)

holds for
some universal constants c1 > 0 and c2 > 0, then one
can bound

E

[

eY
]

≤ − ey
P (|Y | > y)

∣
∣∞
0 +

ˆ ∞

0
ey

P (|Y | > y) dy

≤ 1 + c1

ˆ ∞

0
exp

(

−c2y2 + y
)

dy

≤ 1 + c1

√
π

c2
exp

(
1

4c2

)

·
ˆ ∞

−∞

√

c2

π
exp

(

−c2y2 + y − 1

4c2

)

dy

≤ 1 + c1

√
π

c2
exp

(
1

4c2

)

, (67)

where the last inequality follows since√
c2
π exp

(

−c2y2 + y − 1
4c2

)

is the pdf of N
(

1
2c2

, 2
c2

)

and hence integrates to 1.
Applying the same argument as for the measure with
sub-exponential tails then leads to

1

n
log E

[

eZ
]

≥ 1

n
E [Z ]

≥ 1

n
log E

[

eZ
]

−
log

(

1 +
√

c2
1π
c2

exp
(

1
4c2

)
)

n
.

APPENDIX C
PROOF OF THEOREM 1

For notational convenience, define

Z :=
min{m,n}
∑

i=1

f

(

λi

(
1

n
M RR∗M∗

))

,

Y := Z − E [Z ].

(1) Under the assumptions of Proposition 1(a), the con-
centration result (15) implies that for any y >
8
√

πρD ‖g‖L, one has

P (|Y | > y) ≤ 4 exp

(

− y2

8κ D2ρ2ν2 ‖g‖2
L

)

.

For y ≤ 8
√

π Dρν ‖g‖L, we can employ the trivial
bound P (|Y | > y) ≤ 1. These two bounds taken col-
lectively lead to a universal bound such that for any
y ≥ 0, one has

P (|Y | > y) ≤ exp

(
8π

κ

)

exp

(

− y2

8κ D2ρ2ν2 ‖g‖2
L

)

.

Lemma 1 then suggests

1

n
log E ( f ) ≥ 1

n
E [Z ] ≥ log E ( f )

n

−
log
(

1 + √
8κπ Dρν ‖g‖L e

8π
κ +2κ D2ρ2ν2‖g‖2

L
)

n
.

This together with (15) establishes (25).

(2) Under the assumptions of Proposition 1(b), the concen-
tration inequality (15) asserts that for any y > 0, we
have

P (|Y | > y) ≤ 2 exp

(

− y2

κclsρ2ν2 ‖g‖2
L

)

.

Applying Lemma 1 then yields

1

n
log E ( f ) ≥ 1

n
E [Z ] ≥ log E ( f )

n

−
log

(

1 +
√

4κπclsρ2ν2 ‖g‖2
Le

κ
4 clsρ

2ν2‖g‖2
L
)

n
.

This combined with (16) establishes (26).
(3) Under the assumptions of Proposition 1(c), define

Z̃ :=
n
∑

i=1

f

(

λi

(
1

n
M̃ R R∗M̃

∗
))

,

Ỹ := Z̃ − E

[

Z̃
]

.

Combining the concentration result (62) with (25) gives
rise to
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1 f

(

λi

(
1
n M̃ RR∗M̃

∗))

≤ 1
n log EM̃ ( f ) + βτcσcρ‖g‖L

n ,
1
n

∑n
i=1 f

(

λi

(
1
n M̃ RR∗M̃

∗))

≥ 1
n log EM̃ ( f ) − βτcσcρ‖g‖L

n − cρ, f ,τc ,σc
n ,

(68)

with probability exceeding 1 − 4 exp
(

−β2

8κ

)

. We have
shown in (63) that

P

(

M �= M̃
)

≤ 1

nc(n)

and 4 exp
(

−β2

8κ

)

= 4
nc(n) when β = √

8κc(n) log n,
concluding the proof via the union bound.

APPENDIX D
PROOF OF LEMMA 2

For any n × n matrix A with eigenvalues λ1, . . . , λn , define
the characteristic polynomial of A as

pA(t) = det (t I − A) = tn − S1(λ1, . . . , λn)tn−1

+ · · · + (−1)n Sn(λ1, . . . , λn), (69)

where Sl (λ1, . . . , λn) is the lth elementary symmetric polyno-
mial defined as follows

Sl(λ1, . . . , λn) :=
∑

1≤i1<···<il ≤n

l
∏

j=1

λi j . (70)

Let El(A) represent the sum of determinants of all l-by-l
principal minors of A. It has been shown in [78, Th. 1.2.12]
that

Sl(λ1, . . . , λn) = El(A), 1 ≤ l ≤ n, (71)

which follows that

det (t I + A) = tn + E1(A)tn−1 + · · · + En(A). (72)
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On the other hand, for any principal minor
(

M M∗)
s,s of M M∗

coming from the rows and columns at indices from s (where
s ⊆ [n] is an index set), then one can show that

E

[

det
((

M M∗)
s,s

)]

= E
[

det
(

Ms,[m]M∗
s,[m]

)]

=
∑

t:card(t)=card(s)

E
[

det
(

Ms,t M∗
s,t
)]

=
(

m

card(s)

)

· E
[

det
(

Ms,s M∗
s,s
)]

.

(73)

Consider now any i.i.d. random matrix G ∈ Cl×l such that
E
[

Gi j
] = 0 and E[∣∣Gi j

∣
∣
2] = 1. If we denote by

∏

l the
permutation group of l elements, then the Leibniz formula for
the determinant gives

det (G) =
∑

σ∈∏l

sgn(σ )

l
∏

i=1

Gi,σ(i) .

Since Gi j are jointly independent, we have

E
[

det
(

GG∗)] = E

[

|det (G)|2
]

=
∑

σ∈∏l

E

[
l
∏

i=1

∣
∣Gi,σ(i)

∣
∣2

]

=
∑

σ∈∏l

l
∏

i=1

E

[∣
∣Gi,σ(i)

∣
∣2
]

= l!, (74)

which is distribution-free.
So far, we are already able to derive the closed-form

expression for E
[

det
(

ε I + 1
m M M∗)] by combining (72), (73)

and (74) via straightforward algebraic manipulation.
Alternatively, (72), (73) and (74) taken collectively indicate

that E
[

det
(

ε I + 1
m M M∗)] is independent of precise distri-

bution of the entries M i j ’s. As a result, we only need to
evaluate E

[

det
(

ε I + 1
m M M∗)] under i.i.d. Gaussian random

matrices. To this end, one can simply cite the closed-form
expression derived for Gaussian random matrices, which has
been reported in [73, Th. 2.13]. This concludes the proof.

APPENDIX E
PROOF OF THEOREM 2

When equal power allocation is adopted, the MIMO mutual
information per receive antenna is given by

C (H , SNR)

nr
= 1

nr
log det

(

Inr + SNR
nt

H H∗
)

= 1

nr

min{nr ,nt}∑

i=1

log

(
1

SNR
+ 1

nt
λi
(

H H∗)
)

+ min{1, α} log SNR,

=
⎧

⎨

⎩

1
nr

log det
(

1
SNR Inr + 1

nt
H H∗

)

+ log SNR, if α ≥ 1

α
nt

log det
(

α
SNR Int + 1

nr
H∗ H

)

+ α log SNR
α , if α < 1

(75)

where α = nt/nr is assumed to be an absolute constant.

The first term of the capacity expression (75) in both cases
exhibits sharp measure concentration, as stated in the follow-
ing lemma. This in turn completes the proof of Theorem 2.

Lemma 4: Suppose that α := m
n ≥ 1 is an absolute

constant. Consider a real-valued random matrix M =
[ζi j ]1≤i≤n,1≤ j≤m, where ζi j ’s are jointly independent with zero
mean and unit variance.

(a) If ζi j ’s are bounded by D, then for any β > 8
√

π , one
has
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n log det

(

ε I + 1
m M M∗)≤ 1

n logR ( e
2ε, n, m

)+ D√
e
2 εα

β
n ,

1
n log det

(

ε I + 1
m M M∗)≥ 1

n logR ( 2
e ε, n, m

)− D√
εα

β
n

−
log
{

1+
√

8π D2
εα e8π+2D2

εα

}

n ,
(76)

with probability exceeding 1 − 4 exp
(

−β2

8

)

.
(b) If ζi j satisfies the LSI with respect to a uniform constant

cls, then for any β > 0, one has
⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
n log det

(

ε I + 1
m M M∗) ≤ 1

n logR (ε, n, m) +
√

cls√
εα

β
n ,

1
n log det

(

ε I + 1
m M M∗) ≥ 1

n logR (ε, n, m) −
√

cls√
εα

β
n

−
log
(

1+
√

4πcls
εα e

cls
4εα

)

n ,

(77)

with probability at least 1 − 2 exp
(−β2

)

.
(c) If ζi j ’s are heavy-tailed distributed, then one has

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n log det

(

ε I + 1
m M M∗) ≤ 1

n logR
(

eε
2σ 2

c
, n, m

)

+2 log σc + τcσc
√

8c(n) log n√
εαn

,
1
n log det

(

ε I + 1
m M M∗) ≥ 1

n logR
(

2ε
eσ 2

c
, n, m

)

+2 log σc − τcσc
√

8c(n) log n√
εαn

−
log

(

1+
√

8πτ2
c σ2

c
εα e8π+ 2τ2

c σ2
c

εα

)

n ,

(78)

with probability exceeding 1 − 5
nc(n) .

Here, the function R (ε) is defined as

R (ε, n, m) :=
n
∑

i=0

(
n

i

)
εn−i m−i m!

(m − i)!
.

Proof of Lemma 4: Observe that the derivative of g(x) :=
log
(

ε + x2
)

is

g′(x) = 2x
(

ε + x2
) , x ≥ 0,

which is bounded within the interval
[

0, 1√
ε

]

when x ≥ 0.
Therefore, the Lipschitz norm of g(x) satisfies

‖g‖L ≤ 1√
ε

.

The three class of probability measures are discussed sepa-
rately as follows.

(a) Consider first the measure uniformly bounded by D.
In order to apply Theorem 1, we need to first convexify the
objective metric. Define a function gε(x) such that

gε(x) :=
{

log
(

ε + x2
)

, if x ≥ √
ε,

1√
ε

(

x − √
ε
)+ log (2ε) , if 0 ≤ x <

√
ε.
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Apparently, gε(x) is a concave function at x ≥ 0, and its
Lipschitz constant can be bounded above by

‖gε‖L ≤ 1√
ε

.

By setting fε (x) := gε

(√
x
)

, one can easily verify that

log

(
2

e
ε + x

)

≤ fε(x) ≤ log (ε + x) ,

and hence

1

n
log det

(
2

e
ε I + 1

m
M M∗

)

≤ 1

n

n
∑

i=1

[

fε

(

λi

(
1

m
M M∗

))]

≤ 1

n
log det

(

ε I + 1

m
M M∗

)

.

(79)

One desired feature of fε(x) is that gε(x) = fε
(

x2
)

is concave
with finite Lipschitz norm bounded above by 1√

ε
, and is

sandwiched between two functions whose exponential means
are computable.

By assumption, each entry of M is bounded by D, and ρ =√
n
m = 1√

α
. Theorem 1 taken collectively with (79) suggests

that

1

n

n
∑

i=1

fε

(

λi

(
1

m
M M∗

))

≤ 1

n
log E

[
n
∏

i=1

exp

{

fε

(

λi

(
1

m
M M∗

))}]

+ D√
εα

β

n

≤ 1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

+ D√
εα

β

n
(80)

and

1

n

n
∑

i=1

fε

(

λi

(
1

m
M M∗

))

≥ 1

n
log E

[
n
∏

i=1

exp

{

fε

(

λi

(
1

m
M M∗

))}]

− D√
εα

β

n

−
log

{

1 +
√

8π D2

εα e8π+ 2D2
εα

}

n

≥ 1

n
log E

[

det

(
2

e
ε I + 1

m
M M∗

)]

− D√
εα

β

n

−
log

{

1 +
√

8π D2

εα e8π+ 2D2
εα

}

n
(81)

with probability exceeding 1 − 4 exp
(

−β2

8

)

.
To complete the argument for Part (a), we observe that (79)

also implies

n
∑

i=1

fε

(

λi

(
1

m
M M∗

))

≤ log det

(

ε I + 1

m
M M∗

)

≤
n∑

i=1

f e
2 ε

(

λi

(
1

m
M M∗

))

.

Substituting this into (80) and (81) and making use of the
identity given in Lemma 2 complete the proof for Part (a).

(b) If the measure of M i j satisfies LSI with uniformly
bounded constant cls, then g(x) := log

(

ε + x2
)

is Lipschitz
with Lipschitz bound 1√

ε
. Applying Theorem 1 yields

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1 f

(

λi
( 1

m M M∗))≤ 1
n log E

[

det
(

ε I + 1
m M M∗)]

+
√

cls√
εα

β
n ,

1
n

∑n
i=1 f

(

λi
( 1

m M M∗))≥ 1
n log E

[

det
(

ε I + 1
m M M∗)]

−
√

cls√
εα

β
n −

log

(

1+
√

4πcls
εα e

cls
4εα

)

n ,

(82)

with probability exceeding 1 − 2 exp
(−β2

)

.
(c) If the measure of M i j is heavy-tailed, then we again

need to use the sandwich bound between fε(x) and f (x).
Theorem 1 indicates that
⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
n

∑n
i=1 fε

(

λi
( 1

m M M∗))≤ 1
n log E

[

det
(

ε I+ 1
m M̃ M̃

∗)]

+ τcσc
√

8c(n) log n√
εαn

,

1
n

∑n
i=1 fε

(

λi
( 1

m M M∗))≥ 1
n log E

[

det
(

2
e ε I + 1

m M̃ M̃
∗)]

− τcσc
√

8c(n) log n√
εαn

−
log

(

1+
√

8πτ2
c σ2

c
εα e8π+ 2τ2

c σ2
c

εα

)

n ,

(83)

with probability exceeding 1− 5
nc(n) . The only other difference

with the proof of Part (a) is that the entries of M̃ has variance
σ 2

c , and hence

1

n
log E

[

det

(

ε I + 1

m
M̃ M̃

∗
)]

= 2 log σc + 1

n
log E

[

det

(
ε

σ 2
c

I + 1

m
M M∗

)]

.

Finally, the proof is complete by applying Lemma 2 on
E
[

det
(

ε I + 1
m M M∗)].

APPENDIX F
PROOF OF LEMMA 3

Using the results derived in Lemma 2, one can bound

E

[

det

(

ε I + 1

m
M M∗

)]

= m−n
n
∑

i=0

(
n

i

)
m!

(m − i)!
εn−i mn−i

= m!m−n
n
∑

i=0

(
n

i

)
εi mi

(m − n + i)!

≤ m!m−n (n + 1) max
i:0≤i≤n

(
n

i

)
εi mi

(m − n + i)!
.

Denote by imax the index of the largest term as follows

imax := arg max
i:0≤i≤n

(
n

i

)
εi mi

(m − n + i)!
.
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Suppose for now that imax = δn for some numerical
value δ, then we can bound

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

≤ log m!

n
+ log (n + 1)

n
+ log

( n
δn

)

n
+ δ log ε

− (1 − δ) log m − log (m − n + δn)!

n

= log m!
(m−n+δn)!(n−δn)!

n
+ log (n + 1)

n
+ log

( n
δn

)

n

+ log (n − δn)!

n
− (1 − δ) log m + δ log ε

= α log
( m

n−δn

)

m
+ log (n + 1)

n
+ log

( n
δn

)

n
+ log (n − δn)!

n
− (1 − δ) log m + δ log ε. (84)

It follows immediately from the well-known entropy formula
(see [79, Example 11.1.3]) that

H
(

k

n

)

− log (n + 1)

n
≤ 1

n
log

(
n

k

)

≤ H
(

k

n

)

, (85)

where H(x) := x log 1
x + (1 − x) log 1

1−x denotes the binary
entropy function. Also, the famous Stirling approximation
bounds asserts that

√
2πnn+ 1

2 e−n ≤ n! ≤ enn+ 1
2 e−n ,

⇐⇒ 2 + log n

2n
+ log n − 1 ≥ 1

n
log n!

≥ log (2π) + log n

2n
+ log n − 1.

(86)

Substituting (85) and (86) into (84) leads to

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

≤ αH
(

(1 − δ)n

m

)

+ log (n + 1)

n
+ H (δ)

+ log e + 1
2 log [(1 − δ) n]

n
+ (1 − δ) log [(1 − δ) n]

− (1 − δ) log e − (1 − δ) log m + δ log ε

= αH
(

1 − δ

α

)

+ log (n + 1) + 1 + 1
2 log [(1 − δ) n]

n

+H (δ) + (1 − δ) log
1

α
+ (1 − δ) log(1 − δ)

− (1 − δ) + δ log ε.

Making use of the inequality

log (n + 1) + 1 + 1

2
log n ≤ 1.5 log (en) ,

one obtains

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

≤ αH
(

1 − δ

α

)

+ 1.5 log (en)

n
+ δ log

1

δ
− (1 − δ) log (eα) + δ log ε

= αH
(

1

α

)

− log (αe) + 1.5 log (en)

n
+ δ log

1

δ

+δ log (eα) + δ log ε + α

[

H
(

1 − δ

α

)

− H
(

1

α

)]

≤ (α − 1) log

(
α

α − 1

)

− 1 + 1.5 log (en)

n
+ δ log

1

δ
+δ log (eα) + δ log ε + H (δ) , (87)

where the last inequality follows from the following identity
on binary entropy function [80]: for any p, q obeying 0 ≤
p, q ≤ 1 and 0 < pq < 1, one has

H (p) − H (pq) = (1 − pq)H
(

p − pq

1 − pq

)

− pH(q),

⇒ H
(

1 − δ

α

)

− H
(

1

α

)

≤ 1

α
H(1 − δ) = 1

α
H(δ).

It remains to estimate the index imax or, equivalently, the
value δ. If we define

sε (i) :=
(

n

i

)
εi mi

(m − n + i)!
and rε (i) := sε (i + 1)

sε (i)
,

then one can compute

rε (i)=
n!

(i+1)!(n−i−1)!
εi+1mi+1

(m−n+i+1)!

n!
i!(n−i)!

εi mi

(m−n+i)!

= εm (n − i)

(i +1) (m − n + i + 1)
,

which is a decreasing function in i . Suppose that nε >
max

{

4, 2
(

1 − 1
α + 1

αn

)}

. By setting rε (x) = 1, we can derive
a valid positive solution x0 as follows

x0 = − (m + n + 2 + εm)

2

+
√

(m + n + 2 + εm)2 − 4 (m − n + 1) + 4εmn

2
.

Simple algebraic manipulation yields

x0 <
− (m + n + 2 + εm) + (m + n + 2 + εm) + 2

√
εmn

2
≤ √

εαn,

and

x0 >
− (m + n + 2 + εm) +

√

(m + n + 2 + εm)2 + 2εmn

2

= εmn

(m + n + 2 + εm) +
√

(m + n + 2 + εm)2 + 2εmn

= αεn

α + 1 + 2
n + αε +

√
(

α + 1 + 2
n + αε

)2 + 2εα

≥ α

2
(

α + 1 + 2
n + α

)+ √
2α

εn >
α

5 (α + 1)
εn.
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Therefore, we can conclude that δ ∈
[

α
5(1+α)ε,

√
αε
]

. Assume

that ε < 1
e2α

. Substituting this into (87) then leads to

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

≤ (α − 1) log

(
α

α − 1

)

− 1 + Rn,ε ,

where Rn,ε denotes the residual term

Rn,ε := 1.5 log (en)

n
+√

αε

(

log
1√
αε

+log (eα)

)

+H (√αε
)

.

In particular, if we further have ε < min
{

1
e2α3 , 1

4α

}

, then one

has log αe < log 1√
αε

and

H (√αε
) ≤ 2

√
αε log

1√
αε

,

which in turn leads to

Rn,ε ≤ 1.5 log (en)

n
+ 4

√
αε log

1√
αε

.

On the other hand, the lower bound on
1
n log E

[

det
(

ε I + 1
m M M∗)] can be easily obtained through

the following argument

E

[

det

(

ε I + 1

m
M M∗

)]

≥ E
[

det
( 1

m M M∗)] = m!
(m−n)!mn ,

and hence

1

n
log E

[

det

(

ε I + 1

m
M M∗

)]

≥ 1

n
log

(
m

n

)

+ log n!

n
− log m

≥ αH
(

1

α

)

− log (m + 1)

n
+ log (2π) + 1

2 log n

n

+log
( n

m

)

−1 (88)

≥ (α − 1) log

(
α

α − 1

)

−1− log 1
2π (m + 1)− 1

2 log n

n
,

(89)

where (88) makes use of the bounds (85) and (86). This
concludes the proof.

APPENDIX G
PROOF OF THEOREM 3 AND COROLLARY 2

Proof of Theorem 3: Suppose that the singular value decom-
position of H can be expressed by H = U�V ∗ where � is a
diagonal matrix consist of all singular values of H . Then the

MMSE per input component can be expressed as

NMMSE (H , SNR)

p

= 1 − 1

p
tr

(

V�U∗
(

1

SNR
I + U�2U∗

)−1

U�V ∗
)

= 1 − 1

p
tr

(

�

(
1

SNR
I + �2

)−1

�

)

= 1

p

p
∑

i=1

1

SNR−1 + λi
(

H∗ H
) .

(i) Note that gε(x) := 1
ε2+x2 is not a convex function.

In order to apply Proposition 1, we define a convexified variant
g̃ε(x) of gε(x). Specifically, we set

g̃ε(x) :=
⎧

⎨

⎩

1
ε2+x2 , if x > 1√

3
ε,

− 3
√

3
8ε3

(

x − ε√
3

)

+ 3
4ε2 , if x ≤ 1√

3
ε,

which satisfies

‖g̃ε(x)‖L ≤ 3
√

3

8ε3 .

One can easily check that

g 3
2
√

2
ε(x) ≤ g̃ 3

2
√

2
ε(x) ≤ gε(x) ≤ g̃ε(x) ≤ g 2

√
2

3 ε
(x).

This implies that we can sandwich the target function as
follows

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
)

≤ 1

p

p
∑

i=1

(

g̃ε

(√

λi
(

H∗ H
)
)

− E

[

g̃ε

(√

λi
(

H∗ H
)
)])

+E

[

g 2
√

2
3 ε

(√

λi
(

H∗ H
)
)]

, (90)

and

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
) (91)

≥ 1

p

p
∑

i=1

(

g̃ 3
2
√

2
ε

(√

λi
(

H∗ H
)
)

−E

[

g̃ 3
2
√

2
ε

(√

λi
(

H∗ H
)
)])

+ Eg 3
2
√

2
ε

(√

λi
(

H∗ H
)
)

.

Recall that

H∗ H = M∗ A∗ AM, (92)

where the entries of M are independently generated with
variance 1

n . Since g̃ε(x) is a convex function in x , applying
Proposition 1 yields the following results.
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1) If
√

pM i j ’s are bounded by D, then for any β > 8
√

π ,
we have

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
)

≤ 3
√

3D ‖A‖
8ε3

β

p
+ 1

p

p
∑

i=1

E

[

g 2
√

2
3 ε

(√

λi
(

H∗ H
)
)]

,

and

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
)

≥
(

2
√

2D ‖A‖
3
√

3ε3

)

β

p
− 1

p

p
∑

i=1

E

[

g 3
2
√

2
ε

(√

λi
(

H∗ H
)
)]

with probability exceeding 1 − 8 exp
(

−β2

16

)

.
2) If the measure of

√
pM i j satisfies the LSI with a

uniformly bounded constant cls, then for any β > 0,
one has
∣
∣
∣
∣
∣

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
) − E

[

gε

(√

λi
(

H∗ H
)
)]
∣
∣
∣
∣
∣

≤
(

3
√

3
√

cls ‖A‖
8ε3

)

β

p
(93)

with probability exceeding 1 − 4 exp
(

−β2

2

)

. Here, we

have made use of the fact that ‖gε‖L ≤ 3
√

3
8ε3 .

3) Suppose that
√

pM i j ’s are independently drawn from
symmetric heavy-tailed distributions. Proposition 1
suggests that

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
)

≤ 3
√

3τcσc ‖A‖√c(n) log n

2ε3 p

+ 1

p

p
∑

i=1

E

[

g 2
√

2
3 ε

(√

λi

(

M̃
∗

A∗ AM̃
)
)]

,

and

1

p

p
∑

i=1

1

ε2 + λi
(

H∗ H
)

≥ 8
√

2τcσc ‖A‖√c(n) log n

3
√

3ε3 p

− 1

p

p
∑

i=1

E

[

g 3
2
√

2
ε

(√

λi

(

M̃
∗

A∗ AM̃
)
)]

with probability exceeding 1 − 10
nc(n) . Here, M̃ is a

truncated copy of M such that M̃ i j = M i j 1{|H i j |≤τc}.

This completes the proof.
Proof of Corollary 2: In the moderate-to-high SNR regime

(i.e. when all of λi
(

H∗ H
)

are large), one can apply the

following simple bound

1

p

p
∑

i=1

(

1

λi
(

H∗ H
) − ε2

λ2
i

(

H∗ H
)

)

≤ 1

p

p
∑

i=1

E

[

gε

(√

λi
(

H∗ H
)
)]

≤ 1

p

p
∑

i=1

1

λi
(

H∗ H
) .

This immediately leads to

1

p
tr
((

H∗ H
)−1
)

− ε2

p
tr
((

H∗ H
)−2
)

≤ 1

p
tr

((

ε2 I p + H∗ H
)−1
)

≤ 1

p
tr
((

H∗ H
)−1
)

. (94)

When H i j ∼ N
(

0, 1
p

)

, applying [70, Th. 2.2.8] gives

tr
((

H∗ H
)−1
)

= p2

(n−p−1) = αp
(

1−α− 1
n

) . (95)

Similarly, making use of [70, Th. 2.2.8] leads to

tr
((

M∗M
)−2
)

= p2 p (n − p − 2) + p + p2

(n − p) (n − p − 1) (n − p − 3)

=
(

1 − 1
n

)

α2 p

(1 − α)
(

1 − α − 1
n

) (

1 − α − 3
n

) . (96)

Substituting (95) and (96) into (94) yields

α

1 − α
− 1

SNR

α2

(

1 − α − 3
n

)3 ≤ 1

p
tr

((

ε2 I p + H∗ H
)−1
)

≤ α

1 − α − 1
n

, (97)

thus concluding the proof. �
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