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The Viterbi Algorithm for Subset Selection

Shay Maymon and Yonina C. Eldar, Fellow, [EEE

Abstract—We study the problem of sparse recovery in an
overcomplete dictionary. This problem has attracted considerable
attention in signal processing, statistics, and computer science, and
a variety of algorithms have been developed to recover the sparse
vector. We propose a new method based on the computationally
efficient Viterbi algorithm which is shown to achieve better perfor-
mance than competing algorithms such as Orthogonal Matching
Pursuit (OMP), Orthogonal Least-Squares (OLS), Multi-Branch
Matching Pursuit (MBMP), Iterative Hard Thresholding (IHT),
and /; minimization. We also explore the relationship of the
Viterbi-based approach with OLS.

I. INTRODUCTION

N THE mathematics and signal processing communities,

subset selection has been studied extensively in the context
of sparse approximation. In this context, the problem consists
of selecting a sparse subset of atoms from a large dictionary,
whose linear combination best approximates a given signal, in
the least-squares sense. Approaches for sparse approximation in
linear models can be broadly grouped into two categories: those
relying on greedy approximation schemes and those minimizing
the /1 norm of the sparse vector.

Greedy algorithms for sparse signal recovery are iterative
in nature and select a sparse subset according to their correla-
tion with the measurements. These methods are rooted in the
matching pursuit (MP) algorithm for signal approximation [1].
The Orthogonal Matching Pursuit (OMP) algorithm [2], which
draws its popularity from its computational simplicity and
guaranteed performance, was developed as an improvement
to MP. Both algorithms iteratively update the support of the
sparse subset by finding the column most correlated to the
signal residual. The difference between MP and OMP is in
updating the coefficients over the support set after the support
is determined.

Multi-Branch Multi Pursuit (MBMP) [3] belongs to the
matching pursuit family and possesses a multibranch structure
which allows it to trade-off performance for computational
complexity. The MBMP algorithm may be visualized as a tree
of nodes where the tree depends on the number of levels and on
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the number of branches at each level. Other greedy techniques
with a similar flavor include Compressive Sampling Matching
Pursuit (CoSaMP) [4] and Subspace Pursuit (SP) [5]. Both
CoSaMP and SP add as well as remove elements to the active
set in each iteration. Orthogonal Least Squares (OLS) methods
were developed in [6] to combine structure determination and
parameter estimation for a class of multivariable discrete-time
non-linear stochastic systems which are linear in the param-
eters. The atom selection rule in OLS can be viewed as an
extension of the OMP rule: the measurement vector and the
dictionary atoms are projected onto the subspace orthogonal
to the span of the active atoms, and the normalized projected
atom that best correlates with the residual is selected. However,
OLS is computationally more expensive than OMP. A simpler
iterative technique that is based only on thresholding steps is
known as Iterative Hard Thresholding (IHT) [7].

In the second category of approaches are optimization-based
methods, in which a convex relaxation replaces the intractable
lg-norm with an [ -norm. This translation is referred to in the
literature as Basis Pursuit (BP) [8]. There are many results
showing that under appropriate conditions on the measure-
ments, the computationally efficient approaches discussed
above yield exact recovery of the sparse vector [9]. Further-
more, these methods are known to be robust in the presense of
noise.

In this paper we develop a new approach for subset selection,
based on the Viterbi algorithm. The Viterbi algorithm was ini-
tially proposed in [10] as an efficient method of decoding con-
volutional codes, and has since been applied to a number of di-
verse problems, including intersymbol interference [11], contin-
uous-phase frequency-shift keying (FSK) [12], and text recog-
nition [13]. The relationship of the Viterbi-based approach with
OLS is also explored. While OLS is a forward selection algo-
rithm, a backward step is needed in the Viterbi approach to de-
termine the optimal subset. It is demonstrated by simulations
that the performance of the Viterbi approach is better than com-
peting methods. It should be noted however that it is computa-
tionally more expensive than OLS.

The remainder of the paper uses the following notations:
upper (lower) boldface letters will be used for matrices (column
vectors), (-)¥ denotes conjugate-transposition, I is the identity
matrix, P 4 is an orthogonal projection onto the subspace R(A4),
and P 4. is an orthogonal projection onto the space orthogonal
to R(A).

The paper is organized as follows: Section II formulates the
subset selection problem and develops the associated optimiza-
tion using orthogonal decompositions. Section Il reviewes OLS
and its connection with OMP. In Section IV we develop the
Viterbi subset selection and discuss its connection with OLS.
Simulation results are shown in Section V.
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II. SUBSET SELECTION

A. Problem Formulation

We consider the following sparse linear model

y=As+y 1)

where y is the measurement vector of length M x 1, s is a sparse
vector of length NV x 1 whose support A has cardinality |A| =
with K < M <« N. The random vector 77 is assumed to be
Gaussian distributed with zero mean and covariance matrix U,ZII.
Given the measurement vector y, we aim to recover the

sparse vector s. Denote by s5 the nonzero components of s
and by A, a submatrix of A whose columns correspond to
the nonzero entries in s. We can then formulate the following
least-squares optimization for finding A and the nonzero ele-
ments of s:

min ||y — AASA,\||2. )

Asp
Assuming that A 4 has full-column rank, minimizing (2) with
respect to s, yields:

-1

sa = (AFA,) "Ally. A3)
Substituting (3) into (2) leads to the following optimization:
m&n yHPAAL y 4)

where Py, 0 =T —Pa, =T—- A (AFA,) 'A% isan or-
thogonal projection onto R-(A ). The optimization problem
in (4) is challenging because of its combinatorial complexity.
In principle to optimize the objective function, we need to con-
sider different possibilities of sparse subsets of size K

X N dictionary A.

o
from the

B. Orthogonal Decomposition

The objective function in (4) depends on the support A
through the projection matrix P4, +. Since the orthogonal
projection is unique, using the columns of A, to form Pa,
is equivalent to using any other set of vectors that spans the
same subspace. We next show that by applying an orthogonal
decomposition on A 4, the objective in (4) is reduced into a sum
of components where each introduces a new additional index
to those previously introduced. This fact will be exploited in
the following sections in developing sequential algorithms for
subset selection.

Let us denote by {a;, }2*; the columns of Ay where {a:}Y,
are the columns of A and {i;} X ;=1 represent the support of s.
Gram-Schmidt (GS) orthogonalization can then be used to ob-
tain an orthogonal set {u;, }’*, from the columns of A 5. The
GS procedure computes I/ one column at a time and orthogono-
lizes A 4 as follows: at the jth stage it makes the jth column or-
thogonal to each of the 7 — 1 previously orthogonalized columns
by subtracting from the current vector al the projections in
the direction of previous vectors {a;,, }fn 1- The computational
procedure is represented as

w, = PG a ®)
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where PO~ = (T —
jection P 5, 1 can be expressed ‘as

=1- Z

Substituting (6) into (4), the optlmlzatlon becomes

Zm 1 Z u ) and P(®) = I. The pro-

K pli-lg, aHp(l—1>
)
THP(J 1)aif

J

. (6)

IaffP(j‘”yIZ
— afPli-Da,

lafly> | [alPWyf? jaf, PE Dy ?
T afar, T af P, afl PE-Ta, [

)

where P7) can also be expressed as

H e ul
Z u;,,u ‘m I—u;uy I—u;u
uuy, ufluy,

m=1 Lm Wi,
P, (8)

=P, . -P;_ .
Due to the combinatorial complexity of the optimization in
(7), it is intractable, in general, to obtain an exact solution.
We next discuss sub-optimal approaches whose computational
complexity are significantly lower. In Section III we treat OLS
and its relation to OMP. Section IV introduces the Viterbi
approach for solving the subset selection problem.

pU) =

III. ORTHOGONAL LEAST-SQUARES

In the first term of the objective function in (7), the index
11 1s the only unknown variable. It can thus be selected based
on optimizing this term only. This selection however is not op-
timal since other terms of the objective function also depend on
11 through the projection operators. The second term of the ob-
jective function depends both on ¢; and on ¢, but since ¢; has
already been selected, its estimate can be substituted in P(* and
the second term may be optimized with respect to 72 alone. Sim-
ilarly, in the jth iteration of the algorithm, an estimate of z; is
obtained by solving

|a5P(1*1)y|2

max —sm———~
ij ain{‘P(Jfl)aij

(€))

where PU—1 can be computed according to (8) using esti-
mates of i1, ..., 4,1 from previous iterations. The algorithm
described above is referred to in the literature as OLS [6]. We
present it here in a way that highlights its relationship with the
Viterbi approach developed in Section IV.

OLS is similar in some ways to OMP [2]. In the jth iteration
of the latter z; is selected to maximize

lafri—1)2 |aHP(»7'*1)y|2

i 25 _ v

max — =max ——g—— (10)
) a‘ta; i ata;.
J 1y J iy

where r'~! = PU-Dy is the residual vector after the (j —

1)th iteration. According to (9), we first project all columns of
A onto the subspace orthogonal to the subspace spanned by
{a;, }fn;ll , normalize the projected columns, and finally select
the one which correlates best with y. In OMP, on the other hand,
the next index is selected by first normalizing the columns of A,
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and then finding the column which has the best correlation with
the residual vector.

To better understand the relation between OLS and OMP, we
write (10) as

|aﬁ/bfP(j71)y|2/afP(j’l)aij
max E i ; _ .
i, 1+al(I-PU-D)a, /afPUDa,

While the numerator coincides with the objective function of
OLS, the denominator depends on the norms of the columns pro-
jected onto the subspace spanned by previously selected vectors,
i.e., {a;, }/ ' . These norms that affect the selection in OMP
are irrelevant in OLS. Numerical experiments show that neither
of the algorithms is uniformly better than the other but for cor-
related dictionaries, guaranteed exact recovery may be obtained
after fewer iterations for OLS than for OMP [14].

(11)

IV. VITERBI SUBSET SELECTION

We now propose a Viterbi-based approach for solving the op-
timization in (7), which can be viewed as an extension of OLS.
While the latter is a forward selection algorithm which opti-
mizes each component of the objective function separately, the
former considers the coupling between the various components
of the objective function. Therefore, the optimal subset is deter-
mined only at the end of the forward path, resulting in a com-
putationally more expensive method. We first review the Viterbi
algorithm [10], [15] and then discuss how to apply it for solving
the subset selection problem. In Section V we demonstrate by
simulations that the Viterbi approach yields better results than
OMP, OLS, MBMP, IHT, and /; minimization in various cases.

The Viterbi algorithm is a recursive optimal solution to the
problem of maximum a-posteriori probability (MAP) estima-
tion of the state sequence of a finite-state discrete-time Markov
process observed in memoryless noise. A trellis diagram is often
used to represent the Markov process, in which each node cor-
responds to a distinct state at a given time, and each branch rep-
resents a transition to some new state at the next time instant. In
general, there are several paths that reach a node in the trellis.
The path segment with the shortest length is called the survivor
for that node. Each node has one survivor and consequently, the
total number of survivors for any time instant is equal to the
number of states. The Viterbi algorithm is based on the obser-
vation that the shortest complete path must begin with one of
these survivors. Therefore, at any given time, we only need to re-
member the survivors and their lengths. To transition to the next
time instant, we extend all survivors by one time unit, compute
the lengths of the extended paths, and select survivors among
the extended paths, one per node.

Let us now introduce a Viterbi approach for solving the opti-
mization in (7). In the first step of the algorithm, we solve

aH 2 aHP(l) 2
max <| Ey| + | 2 yl ,

; Hp(1
i1 #i2 ail a;, aiQP( )aiz

(12)

where the maximization is performed for each choice of 75. In
contrast to OLS, in which only the first term of the objective
function in (7) is considered in the optimization with respect to
11 and the dependence of all other terms on i is ignored, the
Viterbi method considers also the second term. Then, denoting
by '21 the value of 7; selected in the first step, which is a function
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of 7, and substituting it both in PV and P(®) we obtain the
following optimization for ¢o:

Hy |2 Hp(1),|2 Hp ()2
|a%1y‘ |ai2P( )Y| |ai3P( )Y|
max 7] Hp (D) Hp2)
12 721,13 3;1 a;, a,, P A, a, P Ay

Here 45 is selected to maximize the objective function for each
choice of 73. We continue similarly where in each iteration the
component added to the objective function introduces only one
new index. The algorithm terminates when we reach the K'th
stage in which the optimal value of i i is obtained and the com-
plete path segment is backtraced. After estimating the support
A, we finally use it in (3) to recover the sparse vector.

In the objective function of (7), associated with the subset se-
lection problem, the jth component in the sum depends in gen-
eral on all values 41 through 4;. This is in contrast to the state
sequence estimation problem, in which the Markov property
holds. Therefore, the solution to the subset selection problem
obtained via Viterbi is not guaranteed to be optimal unless K <
2. Furthermore, as opposed to the state sequence estimation
problem, in which each sequence is in general valid and permu-
tations are considered as different solutions, column repetition
is not allowed in the subset selection problem and different per-
mutations are considered equivalent. The effect this has on the
algorithm is that it does not consider states which have already
been selected.

The computational complexity of the subset selection
problem is reduced with the Viterbi algorithm and the problem
becomes feasible even for large values of N. In the Viterbi
approach, the first stage considers N x (N — 1) path seg-
ments, the second stage examines N x (N — 2) paths, and the
(K — 1)th stage checks N x (N — K + 1) segments, adding up
to a total of N x (N — K/2) x(K — 1) path segments. This is
in contrast to the optimal solution for which ; paths need to
be treated. Comparing the complexity of the Viterbi approach
to OLS, the former is roughly NV times more expensive. At each
iteration of the Viterbi method, the computations involved in
the transition from one node to all candidate nodes at the next
stage are roughly equivalent to the computation involved in the
corresponding iteration of OLS. The factor N appears since we
have to perform these computations for each of the N nodes.

V. ILLUSTRATIVE EXAMPLES & SIMULATIONS

For illustration, we first consider a dictionary consisting of
rows {1,4,6,8,9,11} from a Fourier matrix of size N = 12.
Giveny = [3, —1,v/3 — 1,v/3 — 1,0,2]” and assuming a spar-
sity level K = 3, we aim to recover the sparse vector s.

Let us begin with the Viterbi approach, which is illustrated in
Fig. 1. The dictionary size N and the sparsity level K are equiv-
alent in the state sequence estimation problem to the number of
states and the length of the sequence. Thus, the trellis diagram
consists of NV nodes, one for each column a; of the sensing ma-
trix A, and K stages. We first consider all appropriate transi-
tions from nodes at the first stage to nodes at the second stage,
where their costs are computed according to the objective func-
tion in (12). Among all transitions reaching the same node at
stage 2, only the path whose cost is maximal, i.e., the survivor
for this node, is depicted in the figure. In the second step, we
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2 Ho 12 Hp(1)y2 Hy2 Hp(1)y|2 Hp(2)y2
afly2 [afly[?  [afPWy] lafly  [aliPWy?  [afiPCly|
max;, :ﬁ‘; + m max;, Z,ﬁ}; + TP, P

AK = i - pE=3"
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. . (11.9171)
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Fig. 1. Illustration of the Viterbi algorithm for a partial Fourier matrix.

consider all appropriate transitions from nodes at the second
stage to nodes at the third stage. When computing the cost of the
extended path, we take the cost of each of the survivors from the
previous stage and add to it the contribution due to the transition
to each node at the third stage. Then, we select as the survivor
for each node the path from stage 2 whose overall cost is max-
imal, and represent it with a line. We finally select the node at
stage 3 whose overall cost is maximal and determine the optimal
complete path, which is highlighted with a dashed line.

Fig. 2. illustrates both OLS and OMP. The first iteration in
both approaches is the same, i.e., finding the column that best
correlates with the given measurement, which results in a;. In
the second iteration we compute the objective functions associ-
ated with OLS and OMP as given in (9) and (10) for all paths
originating in aj to all appropriate nodes at the second stage.
These values are shown in parentheses near the paths where the
left number corresponds to OLS and the right one to OMP. As il-
lustrated, the objective function of both approaches is optimized
for a7, whose path is highlighted with a dashed line. In the third
iteration, we substitute a; and a; in P® and compute (9) and
(10) for all appropriate nodes at the third stage. Columns ag and
ag are equally likely to be selected for OLS whereas ag and a;;
are equally likely to be selected for OMP.

While the Viterbi approach correctly recovers the complete
support A = {6, 7,8} of s and achieves zero MSE, only partial
recovery of the support is obtained in OLS (2/3) and in OMP
(1/3), whose corresponding MSEs are given by ||spzs —s||? =
2.6711 and ||S()]\,[p — 5”2 = 3.3591.

We now compare the performance of the Viterbi method,
OLS, OMP, MBMP, IHT, and /; minimization as a function of
the sparsity level K. With a total number of branches equal
to N = 64, two different settings are considered for MBMP:
one in which all branches are assigned at the first level and an-
other which equally allocates the branches between all levels.
To solve the /; optimization we use CVX [16]. We consider two
different dictionaries: a real-valued random matrix A whose en-
tries are drawn independently from a Gaussian distribution with
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Fig. 2. Illustration of OLS and OMP for a partial Fourier matrix.

Subset Selection
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Fig. 3. Performance comparison of Viterbi, OLS, OMP, MBMP, IHT, and
{, minimization as a function of the sparsity level for two choices of A: iid
Gaussian matrix (top), random partial Fourier matrix (bottom).

zero mean and variance one and a random partial Fourier ma-
trix. For each value of 2 < K < M2, we construct a K -sparse
vector s of size N x 1. The nonzero locations are drawn uni-
formly at random and the nonzero values are drawn from a
Gaussian distribution with zero mean and unit variance. The ex-
periment is repeated 10,000 times for each sparsity value where
we choose M = 16 and N = 64.

Fig. 3 shows the performance of the reconstruction algo-
rithms. The top corresponds to A being a Gaussian matrix while
A is a random partial Fourier matrix in the bottom. The figures
on the left were obtained by averaging the fraction of correct
indices detected at each experiment, whereas the figures on the
right represent the normalized recovery error, namely the norm
of the error between the true vector and the recovered vector
divided by the norm of the true vector. The simulations show
that for both dictionaries the Viterbi algorithm outperforms all
other methods with respect to both criteria: support detection
as well as recovery error.
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