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Abstract— Recovering structured models (e.g., sparse or
group-sparse vectors, low-rank matrices) given a few linear obser-
vations have been well-studied recently. In various applications
in signal processing and machine learning, the model of interest
is structured in several ways, for example, a matrix that is
simultaneously sparse and low rank. Often norms that promote
the individual structures are known, and allow for recovery using
an orderwise optimal number of measurements (e.g., �1 norm for
sparsity, nuclear norm for matrix rank). Hence, it is reasonable
to minimize a combination of such norms. We show that,
surprisingly, using multiobjective optimization with these norms
can do no better, orderwise, than exploiting only one of the
structures, thus revealing a fundamental limitation in sample
complexity. This result suggests that to fully exploit the multiple
structures, we need an entirely new convex relaxation. Further,
specializing our results to the case of sparse and low-rank
matrices, we show that a nonconvex formulation recovers the
model from very few measurements (on the order of the
degrees of freedom), whereas the convex problem combining
the �1 and nuclear norms requires many more measurements,
illustrating a gap between the performance of the convex
and nonconvex recovery problems. Our framework applies to
arbitrary structure-inducing norms as well as to a wide range of
measurement ensembles. This allows us to give sample complexity
bounds for problems such as sparse phase retrieval and low-rank
tensor completion.

Index Terms— Compressed sensing, convex relaxation,
regularization, sample complexity.
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I. INTRODUCTION

RECOVERY of a structured model (signal) given a small
number of linear observations has been the focus of

many studies recently. Examples include recovering sparse
or group-sparse vectors (which gave rise to the area of
compressed sensing) [1]–[4], low-rank matrices [5], [6], and
the sum of sparse and low-rank matrices [7], [8], among
others. More generally, the recovery of a signal that can be
expressed as the sum of a few atoms out of an appropriate
atomic set has been studied in [9]. Canonical questions in this
area include: How many linear measurements are enough to
recover the model by any means? How many measurements
are enough for a tractable approach? In the statistics literature,
these questions are often posed in terms of error rates for
estimators minimizing the sum of a quadratic loss function
and a regularizer that reflects the desired structure [10].

There are many applications where the model of interest
is known to have several structures at the same
time (Section I-B). We then seek a signal that lies in
the intersection of several sets defining the individual
structures (in a sense that we will later make precise).
The most common convex regularizer used to promote all
structures together is a linear combination of well-known
regularizers for each structure. However, there is currently
no general analysis and understanding of how well such
regularization performs in terms of the number of observations
required for successful recovery of the desired model. This
paper addresses this ubiquitous yet unexplored problem;
i.e., the recovery of simultaneously structured models.

An example of a simultaneously structured model is a
matrix that is simultaneously sparse and low-rank. One would
like to come up with algorithms that exploit both types of
structures to minimize the number of measurements required
for recovery. An n × n matrix with rank r � n can
be described by O (rn) parameters, and can be recovered
using O (rn) generic measurements via nuclear norm
minimization [5], [11]. On the other hand, a block-sparse
matrix with a k × k nonzero block where k � n can
be described by k2 parameters and can be recovered given
O (

k2 log n
k

)
generic measurements using �1 minimization.

However, a matrix that is both rank r and block-sparse can
be described by O (rk) parameters. The question is whether
we can exploit this joint structure to efficiently recover such
a matrix with O (rk) measurements.

In this paper we give a negative answer to this question
in the following sense: if we use multi-objective optimization
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TABLE I

SUMMARY OF RESULTS IN RECOVERY OF STRUCTURED SIGNALS. THIS PAPER SHOWS A GAP BETWEEN THE PERFORMANCE OF CONVEX AND

NONCONVEX RECOVERY PROGRAMS FOR SIMULTANEOUSLY STRUCTURED MATRICES (LAST ROW)

with the �1 and nuclear norms (used for sparse signals and low
rank matrices, respectively), then the number of measurements
required is lower bounded by O (

min{k2, rn}). In other
words, we need at least this number of observations for the
desired signal to be recoverable by a combination of the
�1 norm and the nuclear norm. This means we can do no better
than an algorithm that exploits only one of the two structures.

We introduce a framework to express general simultane-
ously structured models, and as our main result, we prove that
the same phenomenon happens for a general set of structures.
We analyze a wide range of measurement ensembles, including
the subsampled standard basis (i.e. matrix completion),
Gaussian and subgaussian measurements, and quadratic
measurements. Table I summarizes known results on recovery
of some common structured models, along with a result
of this paper specialized to the problem of low-rank and
sparse matrix recovery. The first column gives the number
of parameters needed to describe the model (often referred
to as its ‘degrees of freedom’), while the second and third
columns show how many generic measurements are needed
for successful recovery. In ‘nonconvex recovery’, we assume
we are able to find the global minimum of a nonconvex
problem. This is clearly intractable in general, and not a
practical recovery method—we consider it as a benchmark for
theoretical comparison with the (tractable) convex relaxation
in order to determine how powerful the relaxation is.

The first and second rows are the results on k sparse vectors
in R

n and rank r matrices in R
n×n respectively, [11], [12].

The third row considers the recovery of “low-rank plus sparse”
matrices. Consider a matrix X ∈ R

n×n that can be decom-
posed as X = XL + XS where XL is a rank r matrix
and XS is a matrix with only k nonzero entries. The degrees
of freedom in X are O (rn + k). Minimizing the combination
of the �1 norm and nuclear norm, i.e., f(X) = minY ‖Y‖� +
λ‖X−Y‖1 subject to random Gaussian measurements on X,
gives a convex approach for recovering X. It has been shown
that under reasonable incoherence assumptions, X can be
recovered from O (

(rn + k) log2 n
)

measurements which is
suboptimal only by a logarithmic factor [13]. Finally, the
last row in Table I shows one of the results in this paper.
Let X ∈ R

n×n be a rank r matrix whose entries are zero
outside a k1 × k2 submatrix. The degrees of freedom of X
are O ((k1 + k2)r). We consider both convex and non-convex
programs for the recovery of this type of matrix. The
nonconvex method involves minimizing the number of nonzero
rows, columns and rank of the matrix jointly, as discussed
in Section III-B. As shown later, O ((k1 + k2)r log n)
measurements suffice for this program to successfully recover

the original matrix. The convex method minimizes any
convex combination of the individual structure-inducing
norms, namely the nuclear norm and the �1,2 norm of the
matrix, which encourage low-rank and column/row-sparse
solutions respectively. We show that with high probability
this program cannot recover the original matrix with
fewer than Ω(rn) measurements. In summary, while the
nonconvex method is only slightly suboptimal, the convex
method performs poorly as the number of measurements scales
with n rather than k1 + k2.

A. Contributions

This paper presents an analysis for the recovery of
models with more than one structure, by combining penalties
corresponding to each structure. The setting considered is
very broad: any number of structures can be combined,
any (convex) combination of the corresponding norms
can be analyzed, and the results hold for a variety of
popular measurement ensembles. The framework proposed
includes special cases that are of interest in their own right,
e.g., sparse and low-rank matrix recovery, and low-rank
tensor completion [14], [15].

More specifically, our contributions can be summarized
as follows.

1) Poor Performance of Convex Relaxations: We consider
a model with several structures and associated structure-
inducing norms. For recovery, we consider a multi-objective
optimization problem to minimize the individual norms
simultaneously. Given the convexity of the problem, we know
that minimizing a weighted sum of the norms and varying
the weights traces out all points of the Pareto-optimal
front (Section II). We obtain a lower bound on the number of
measurements for any convex function combining the
individual norms. A sketch of our main result is as follows.

Given a model x0 with τ simultaneous structures,
the number of measurements required for recovery
with high probability using any linear combination
of the individual norms satisfies the lower bound

m ≥ c min
i=1,...,τ

mi

where mi is an intrinsic lower bound on the required
number of measurements when minimizing the
ith norm only. The term c depends on the measure-
ment ensemble.

For the norms of interest, mi is proportional to the degrees of
freedom of the ith structure. With mini mi as the bottleneck,
this result indicates that the combination of norms performs
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no better than using only one of the norms, even though the
target model has small degrees of freedom.

2) Different Measurement Ensembles: Our characterization
of recovery failure is easy to interpret and deterministic in
nature. We show that it can be used to obtain probabilistic
failure results for various random measurement ensembles.
In particular, our results hold for measurement matrices with
i.i.d subgaussian rows, quadratic measurements and matrix
completion type measurements.

3) Understanding the Effect of Weighting: We characterize
the sample complexity of the multi-objective function as a
function of the weights associated with the individual norms.
Our upper and lower bounds reveal that the sample complexity
of the multi-objective function is related to a certain convex
combination of the sample complexities associated with the
individual norms. We provide formulas for this combination
as a function of the weights.

4) Incorporating General Cone Constraints: In addition,
we can incorporate side information on x0, expressed as
convex cone constraints. This additional information helps in
recovery; however, quantifying how much the cone constraints
help is not trivial. Our analysis explicitly determines the role
of the cone constraint: Geometric properties of the cone such
as its Gaussian width determines the constant factors in the
bound on the number of measurements.

5) Illustrating a Gap for the Recovery of Sparse and
Low-Rank Matrices: As a special case, we consider the
recovery of simultaneously sparse and low-rank matrices and
prove that there is a significant gap between the performance
of convex and non-convex recovery programs. This gap is
surprising when one considers similar results on
low-dimensional model recovery as shown in Table I.

B. Applications

We survey several applications where simultaneous
structures arise, as well as existing results specific to these
applications.

1) Sparse Signal Recovery From Quadratic Measurements:
Sparsity has long been exploited in signal processing, applied
mathematics, statistics and computer science for tasks such
as compression, denoising, model selection, image processing
and more. Despite the great interest in exploiting sparsity in
various applications, most of the work to date has focused on
recovering sparse or low rank data from linear measurements.
Recently, the basic sparse recovery problem has been gener-
alized to the case in which the measurements are given by
nonlinear transforms of the unknown input, [16]. A special
case of this more general setting is quadratic compressed
sensing [17] in which the goal is to recover a sparse vector x
from quadratic measurements bi = xT Aix. This problem can
be linearized by lifting, where we wish to recover a “low
rank and sparse” matrix X = xxT subject to measurements
bi = 〈Ai,X〉.

Sparse recovery problems from quadratic measurements
arise in a variety of problems in optics. One example is
sub-wavelength optical imaging [17], [18] in which the goal
is to recover a sparse image from its far-field measurements,

where due to the laws of physics the relationship between the
(clean) measurement and the unknown image is quadratic.
In [17] the quadratic relationship is a result of using partially-
incoherent light. The quadratic behavior of the measurements
in [18] arises from coherent diffractive imaging in which
the image is recovered from its intensity pattern. Under an
appropriate experimental setup, this problem amounts to
reconstruction of a sparse signal from the magnitude of its
Fourier transform.

A related and notable problem involving sparse
and low-rank matrices is Sparse Principal Component
Analysis (SPCA), mentioned in Section IX.

2) Sparse Phase Retrieval: Quadratic measurements appear
in phase retrieval problems, in which a signal is to be recov-
ered from the magnitude of its measurements bi = |aT

i x|,
where each measurement is a linear transform of the input
x ∈ R

n and ai’s are arbitrary, possibly complex-valued
measurement vectors. An important case is when aT

i x is the
Fourier transform and b2

i is the power spectral density. Phase
retrieval is of great interest in many applications such as
optical imaging [19], [20], crystallography [21], and
more [22]–[24].

The problem becomes linear when x is lifted and we
consider the recovery of X = xxT where each measurement
takes the form b2

i =
〈
aiaT

i ,X
〉
. In [17], an algorithm was

developed to treat phase retrieval problems with sparse x
based on a semidefinite relaxation, and low-rank matrix
recovery combined with a row-sparsity constraint on the
resulting matrix. More recent works also proposed the use
of semidefinite relaxation together with sparsity constraints
for phase retrieval [25]–[28]. An alternative algorithm
was recently designed in [29] based on a greedy search.
In [27], the authors consider sparse signal recovery based
on combinatorial and probabilistic approaches and provide
uniqueness results under certain conditions. Stable uniqueness
in phase retrieval problems is studied in [30]. The results
of [31] and [32] applies to general (non-sparse) signals where
in some cases masked versions of the signal are required.

3) Fused Lasso: Suppose the signal of interest x0 is sparse
and its entries vary slowly, i.e., the signal can be approximated
by a piecewise constant function. To encourage sparsity,
one can use the �1 norm. To promote the piece-wise constant
structure, discrete total variation can be used, defined as

‖x‖TV =
n−1∑

i=1

|xi+1 − xi| ,

where ‖ · ‖TV is basically the �1 norm of the gradient and
is approximately sparse. The resulting optimization problem
that estimates x0 from its samples Ax0 is known as
fused-lasso [33], and is given as

min
x

‖x‖1 + λ‖x‖TV s.t. Ax = Ax0. (1)

To the best of our knowledge, the sample complexity of fused
lasso has not been analyzed from a compressed sensing point
of view. However, there is a series of recent works [34], [35]
on total variation minimization; which may lead to
analysis of (1).
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We remark that TV regularization is also used together with
nuclear norm to encourage a low-rank and smooth (i.e., slowly
varying entries) solution. This regularization finds applications
in imaging and physics [36], [37].

4) Low-Rank Tensors: Tensors with small Tucker rank can
be seen as a generalization of low-rank matrices [38]. In this
setup, the signal of interest is a tensor X0 ∈ R

n1×···×nτ , where
X0 is low-rank along its unfoldings which are obtained by
reshaping X0 as a matrix with size ni× n

ni
, with n =

∏τ
i=1 ni.

Denoting the ith unfolding by Ui(X0), a standard approach to
estimate X0 from y = A(X0) is minimizing the weighted
nuclear norms of the unfoldings,

min
X

τ∑

i=1

λi‖Ui(X)‖� subject to y = A(X0). (2)

Low-rank tensors have applications in machine learning,
physics, computational finance and high dimensional
PDE’s [15]. The problem (2) has been investigated in
several papers [14], [39]. Closer to us, [40] recently showed
that the convex relaxation (2) performs poorly compared
to information theoretically optimal bounds for Gaussian
measurements. Our results can extend those to the more
applicable tensor completion setup, where we observe the
entries of the tensor.

Other applications of simultaneously structured signals
include Collaborative Hierarchical Sparse Modeling [41]
where sparsity is considered within the non-zero blocks in a
block-sparse vector, and the recovery of hyperspectral images
where we aim to recover a simultaneously block sparse and
low rank matrix from compressed observations [42].

C. Outline of the Paper

The paper is structured as follows. Background and
definitions are given in Section II. An overview of the main
results is provided in Section III. Section IV discusses some
measurement ensembles for which our results apply. Section V
derives upper bounds for the convex relaxations assuming a
Gaussian measurement ensemble. Proofs of the general results
are presented in Section VI. The proofs for the special case
of simultaneously sparse and low-rank matrices are given
in Section VII, where we compare corollaries of the general
results with the results on non-convex recovery approaches,
and illustrate a gap. Numerical simulations in Section VIII
empirically support the results on sparse and low-rank
matrices. Future directions of research and a discussion on
the results are presented in Section IX.

II. PROBLEM SETUP

We begin by reviewing some basic definitions. Our results
will be on structure-inducing norms; examples include the
�1 norm, the �1,2 norm, and the nuclear norm.

A. Definitions and Signal Model

The nuclear norm of a matrix is denoted by ‖ · ‖� and is
the sum of the singular values of the matrix. The �1,2 norm
is the sum of the �2 norms of the columns of a matrix.

Fig. 1. Depiction of the correlation between a vector x and a set S.
s∗ achieves the largest angle with x , hence s∗ has the minimum correlation
with x.

Minimizing the �1 norm encourages sparse solutions, while
the �1,2 norm and nuclear norm encourage column-sparse
and low-rank solutions respectively, [5], [6], [43]–[45];
see Section VI-D for more detailed discussion of these norms
and their subdifferentials. The Euclidean norm is denoted
by ‖ · ‖2, i.e., the �2 norm for vectors and the Frobenius norm
‖ · ‖F for matrices.

Overlines denote normalization, i.e., for a vector x and
a matrix X, x̄ = x

‖x‖2
and X̄ = X

‖X‖F
. The minimum

and maximum singular values of a matrix A are denoted
by σmin(A) and σmax(A). The set of n × n positive
semidefinite (PSD) and symmetric matrices are denoted by
S

n
+ and S

n respectively. cone(S) denotes the conic hull of
a given set S. A(·) : R

n → R
m is a linear measurement

operator if A(x) is equivalent to the matrix multiplication Ax
where A ∈ R

m×n. If x is a matrix, A(x) will be a matrix
multiplication with a suitably vectorized x. In some of our
results, we consider Gaussian measurements, in which case A
has independent N (0, 1) entries.

For a vector x ∈ R
n, ‖x‖ denotes a general norm and

‖x‖∗ = sup‖z‖≤1 〈x, z〉 is the corresponding dual norm.
A subgradient of the norm ‖ · ‖ at x is a vector g for
which ‖z‖ ≥ ‖x‖ + 〈g, z − x〉 holds for any z. The set of
all subgradients is called the subdifferential and is denoted
by ∂‖x‖. The Lipschitz constant of the norm is defined as

L = sup
z1 �=z2∈Rn

‖z1‖ − ‖z2‖
‖z1 − z2‖2

.

Definition 1 (Correlation): Given a nonzero vector x and a
set S, ρ(x, S) is defined as

ρ(x, S) := inf
0�=s∈S

|xT s|
‖x‖2‖s‖2

.

ρ(x, S) corresponds to the minimum absolute-valued
correlation between the vector x and elements of S. Let
x̄ = x

‖x‖2
. The correlation between x and the associated

subdifferential has a simple form:

ρ(x, ∂‖x‖) = inf
g∈∂‖x‖

x̄T g
‖g‖2

=
‖x̄‖

supg∈∂‖x‖ ‖g‖2
.

Here, we used the fact that, for norms, subgradients g ∈ ∂‖x‖
satisfy xT g = ‖x‖, [46]. The denominator of the right hand
side is the local Lipschitz constant of ‖ · ‖ at x and is upper
bounded by L. Consequently, ρ(x, ∂‖x‖) ≥ ‖x̄‖

L . We will
denote ‖x̄‖

L by κ. Recently, this quantity has been studied
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Fig. 2. For a scaled norm ball passing through x0, κ = ‖p‖2
‖x0‖2

, where p is

any of the closest points on the scaled norm ball to the origin.

by Mu et al. to analyze the simultaneously structured signals in
a similar spirit to us for Gaussian measurements [40].1 Similar
calculations as above gives an alternative interpretation for κ
which is illustrated in Figure 2.

κ is a measure of alignment between the vector x and the
subdifferential. For the norms of interest, it is associated with
the model complexity. For instance, for a k-sparse vector x,
‖x̄‖1 lies between 1 and

√
k depending on how spiky nonzero

entries are. Also the Lipschitz constant for the �1 norm in R
n

is L =
√

n. Hence, when the nonzero entries are ±1, we find
κ2 = k

n . Similarly, given a d× d, rank r matrix X, ‖X̄‖� lies
between 1 and

√
r. If the singular values are spread (i.e. ±1),

we find κ2 = r
d = rd

d2 . In these cases, κ2 is proportional to
the model complexity normalized by the ambient dimension.

Simultaneously Structured Models: We consider a signal x0

which has several low-dimensional structures S1, S2, . . . , Sτ

(e.g., sparsity, group sparsity, low-rank). Suppose each
structure i corresponds to a norm denoted by ‖ · ‖(i) which
promotes that structure (e.g., �1, �1,2, nuclear norm). We refer
to such an x0 as a simultaneously structured model.

B. Convex Recovery Program

We investigate the recovery of the simultaneously
structured x0 from its linear measurements A(x0).
To recover x0, we would like to simultaneously minimize the
norms ‖ · ‖(i), i = 1, . . . , τ , which leads to a multi-objective
(vector-valued) optimization problem. For all feasible points
x satisfying A(x) = A(x0) and side information x ∈ C,
consider the set of achievable norms {‖x‖(i)}τ

i=1 denoted
as points in R

τ . The minimal points of this set with respect
to the positive orthant R

τ
+ form the Pareto-optimal front, as

illustrated in Figure 3. Since the problem is convex, one can
alternatively consider the set

{v ∈ R
τ : ∃x ∈ R

n s.t. x ∈ C, A(x) = A(x0),
vi ≥ ‖x‖(i), for i = 1, . . . , τ},

which is convex and has the same Pareto optimal points as the
original set (see [47, Ch. 4]).

1The work [40] was submitted after our initial manuscript; in which we
projected the subdifferential onto a carefully chosen subspace to obtain bounds
on the sample complexity (see Proposition 6). Inspired by [40], projection
onto x0 and the use of κ led to the simplification of the notation and
improvement of the results in the current manuscript, in particular, Section IV.

Fig. 3. Consider a point x0 represented in the figure by the dot. We need
at least m measurements for x0 to be recoverable since for any m < m this
point is not on the Pareto optimal front.

Definition 2 (Recoverability): We call x0 recoverable if it
is a Pareto optimal point; i.e., there does not exist a feasible
x′ �= x satisfying A(x′) = A(x0) and x′ ∈ C, with
‖x′‖(i) ≤ ‖x0‖(i) for i = 1, . . . , τ .

The vector-valued convex recovery program can be turned
into a scalar optimization problem as

minimize
x∈C

f(x) = h(‖x‖(1), . . . , ‖x‖(τ))

subject to A(x) = A(x0), (3)

where h : R
τ
+ → R+ is convex and non-decreasing in each

argument (i.e., non-decreasing and strictly increasing in at
least one coordinate). For convex problems with strong duality,
it is known that we can recover all of the Pareto optimal
points by optimizing weighted sums f(x) =

∑τ
i=1 λi‖x‖(i) ,

with positive weights λi , among all possible functions
f(x) = h(‖x‖(1), . . . , ‖x‖(τ)) . For each x0 on the Pareto,
the coefficients of such a recovering function are given by the
hyperplane supporting the Pareto at x0 [47, Ch. 4].

In Figure 3, consider the smallest m that makes
x0 recoverable. Then one can choose a function h and recover
x0 by (3) using the m measurements. If the number of
measurements is any less, then no function can recover x0.
Our goal is to provide lower bounds on m.

In [9], Chandrasekaran et al. propose a general theory
for constructing a suitable penalty, called an atomic norm,
given a single set of atoms that describes the structure of
the target object. In the case of simultaneous structures,
this construction requires defining new atoms, and then
ensuring the resulting atomic norm can be minimized in a
computationally tractable way, which is nontrivial and often
intractable. We briefly discuss such constructions as a future
research direction in Section IX.

III. MAIN RESULTS

In this section, we state our main theorems that aim to
characterize the number of measurements needed to recover
a simultaneously structured signal by convex or nonconvex
programs. We first present our general results, followed by
results for simultaneously sparse and low-rank matrices as a
specific but important instance of the general case. The proofs
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are given in Sections VI and VII. All of our statements
will implicitly assume x0 �= 0. This will ensure that
x0 is not a trivial minimizer and 0 is not in the
subdifferentials.

A. General Simultaneously Structured Signals

Consider the recovery of a signal x0 that is simultaneously
structured with S1, S2, . . . , Sτ as described in Section II-A.
We provide a lower bound on the required number of
measurements, using the geometric properties of the individual
norms.

Theorem 1 (Deterministic Failure): Suppose C = R
n and,

ρ(x0, ∂f(x0)) := inf
g∈∂f(x0)

|ḡT x̄0| >
‖Ax̄0‖2

σmin(AT )
. (4)

Then, x0 is not a minimizer of (3).
Theorem 1 is deterministic in nature. However, it can be

easily specialized to specific random measurement ensembles.
The left hand side of (4) depends only on the vector x0

and the subdifferential ∂f(x0), hence it is independent of the
measurement matrix A. For simultaneously structured models,
we will argue that, the left hand side cannot be made too
small, as the subgradients are aligned with the signal. On the
other hand, the right hand side depends only on A and x0

and is independent of the subdifferential. In linear inverse
problems, A is often assumed to be random. For large class
of random matrices, we will argue that, the right hand side is
approximately ∼ √

m
n which will yield a lower bound on the

number of required measurements.
Typical measurement ensembles include the following:
• Sampling Entries: In low-rank matrix and tensor

completion problems, we observe the entries of x0

uniformly at random. In this case, rows of A are chosen
from the standard basis in R

n. We should remark that,
instead of the standard basis, one can consider other
orthonormal bases such as the Fourier basis.

• Matrices With i.i.d. Rows: A has independent and
identically distributed rows with certain moment
conditions. This is a widely used setup in compressed
sensing as each measurement we make is associated
with the corresponding row of A [48].

• Quadratic Measurements: Arises in the phase retrieval
problem as discussed in Section I-B.

In Section IV, we find upper bounds on the right hand
side of (4) for these ensembles. As discussed in Section IV,
we can modify the rows of A to get better bounds as long
as this does not affect its null space. For instance, one can
discard the identical rows to improve conditioning. However,
as m increases and A has more linearly independent rows,
σmin(AT ) will naturally decrease and (4) will no longer hold
after a certain point. In particular, (4) cannot hold beyond
m ≥ n as σmin(AT ) = 0. This is indeed natural as the system
becomes overdetermined.

The following proposition lower bounds the left hand side
of (4) in an interpretable manner. In particular, the correlation
ρ(x0, ∂f(x0)) can be lower bounded by the smallest
individual correlation.

Proposition 1: Let Li be the Lipschitz constant of the
ith norm and κi = ‖x̄0‖(i)

Li
for 1 ≤ i ≤ τ . Set κmin = min{κi :

i = 1, . . . , τ}. Then:
• All functions f(·) in (3) satisfy, ρ(x0, ∂f(x0)) ≥ κmin.2

• Suppose f(·) is a weighted linear combination

f(x) =
∑τ

i=1 λi‖x‖(i) for nonnegative {λi}τ
i=1.

Let λ̄i = λiLi�τ
i=1 λiLi

for 1 ≤ i ≤ τ . Then,

ρ(x0, ∂f(x0)) ≥
∑τ

i=1 λ̄iκi.
Proof: From Lemma 3, any subgradient of f(·) can be

written as, g =
∑τ

i=1 wigi for some nonnegative wi’s. On the
other hand, from [46], 〈x̄0,gi〉 = ‖x̄0‖(i). Combining these
results,

gT x̄0 =
τ∑

i=1

wi‖x̄0‖(i).

From the triangle inequality, ‖g‖2 ≤ ∑τ
i=1 wiLi. Therefore,

∑τ
i=1 wi‖x̄0‖(i)∑τ

i=1 wiLi
≥ min

1≤ i≤ τ

wi‖x̄0‖(i)

wiLi
= κmin. (5)

To prove the second part, we use the fact that for the
weighted sums of norms, wi = λi and the subgradients have
the form g =

∑τ
i=1 λigi, [47]. Then, substitute λ̄i for λi in

the left hand side of (5).
Before stating the next result, let us give a relevant definition

regarding the average distance between a set and a random
vector.

Definition 3 (Gaussian Distance): Let M be a closed
convex set in R

n and let h ∈ R
n be a vector with independent

standard normal entries. Then, the Gaussian distance of M is
defined as

D(M) = E[ inf
v∈M

‖h− v‖2]

When M is a cone, we have 0 ≤ D(M) ≤ √
n.

Similar definitions have been used extensively in the literature,
such as Gaussian width [9], statistical dimension [49] and
mean width [50]. For notational simplicity, let the normalized
distance be D̄(M) = D(M)√

n
.

We will now state our result for Gaussian measurements;
which can additionally include cone constraints for the lower
bound. Other ensembles are considered in Section IV.

Theorem 2 (Gaussian Lower Bound): Suppose A has inde-
pendent N (0, 1) entries. Whenever m ≤ mlow, x0 will not be
a minimizer of any of the recovery programs in (3) with prob-
ability at least 1 − 10 exp(− 1

16 min{mlow, (1 − D̄(C))2n}),
where

mlow � (1 − D̄(C))nκ2
min

100
.

Remark: When C = R
n, D̄(C) = 0 hence, the lower bound

simplifies to mlow = nκ2
min

100 .
Note that D̄(C) depends only on C and can be viewed as

a constant. For instance, for the positive semidefinite cone,
we show that D̄(Sn

+) <
√

3
2 . Observe that for a smaller

cone C, it is reasonable to expect a smaller lower bound on the

2The lower bound κmin is directly comparable to [40, Th. 5]. Indeed, our
lower bounds on the sample complexity will have the form O �

κ2
minn

�
.
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TABLE II

SUMMARY OF THE PARAMETERS THAT ARE DISCUSSED IN THIS SECTION. THE LAST THREE LINES ARE FOR A d × d S&L (k, k, r)

MATRIX WHERE n = d2 . IN THE FOURTH COLUMN, THE CORRESPONDING ENTRY FOR S&L IS κmin = min{κ�1 , κ�}

required number of measurements. Indeed, as C gets smaller,
D(C) increases.

As discussed before, there are various options for the scalar-
izing function in (3), with one choice being the weighted sum
of norms. In fact, for a recoverable point x0 there always exists
a weighted sum of norms which recovers it. This function
is also often the choice in applications, where the space of
positive weights is searched for a good combination. Thus,
we can state the following corollary as a general result.

Corollary 1 (Weighted Lower Bound): Suppose A has i.i.d
N (0, 1) entries and f(x) =

∑τ
i=1 λi‖x‖(i) for nonnegative

weights {λi}τ
i=1. Whenever m ≤ m′

low, x0 will not be a
minimizer of the recovery program (3) with probability at least
1 − 10 exp(− 1

16 min{m′
low, (1 − D̄(C))2n}), where

m′
low � n(1 − D̄(C))(

∑τ
i=1 λ̄iκi)2

100
,

and λ̄i = λiLi�τ
i=1 λiLi

.

Observe that Theorem 2 is stronger than stating “a particular
function h(‖x‖(1), . . . , ‖x‖(τ)) will not work”. Instead, our
result states that with high probability none of the programs
in the class (3) can return x0 as optimal unless the number of
measurements is sufficiently large.

To understand the result better, note that the required
number of measurements is proportional to κ2

minn which
is often proportional to the sample complexity of the
best individual norm. As we have argued in Section II-A,
κ2

i n corresponds to how structured the signal is. For sparse
signals it is equal to the sparsity, and for a rank r matrix, it is
equal to the degrees of freedom of the set of rank r matrices.
Consequently, Theorem 2 suggests that even if the signal satis-
fies multiple structures, the required number of measurements
is effectively determined by only one dominant structure.

Intuitively, the degrees of freedom of a simultaneously
structured signal can be much lower, which is provable
for simultaneously sparse and low-rank (S&L) matrices.
Hence, there is a considerable gap between the expected
measurements based on model complexity and the number of
measurements needed for recovery via (3) (κ2

minn).

B. Simultaneously Sparse and Low-Rank Matrices

We now focus on a special case, namely simultaneously
sparse and low-rank (S&L) matrices. We consider matrices
with nonzero entries contained in a small submatrix where
the submatrix itself is low rank. Here, norms of interest are
‖·‖1,2, ‖·‖1 and ‖·‖� and the cone of interest is the PSD cone.
We also consider nonconvex approaches and contrast the

results with convex approaches. For the nonconvex problem,
we replace the norms ‖·‖1, ‖·‖1,2, ‖·‖� with the functions ‖·‖0,
‖ · ‖0,2, rank(·) which give the number of nonzero entries, the
number of nonzero columns and rank of a matrix respectively
and use the same cone constraint as the convex method.
We show that convex methods perform poorly as predicted
by the general result in Theorem 2, while nonconvex methods
require optimal number of measurements (up to a logarithmic
factor). Proofs are given in Section VII.

Definition 4: We say X0 ∈ R
d1×d2 is an S&L matrix

with (k1, k2, r) if the smallest submatrix that contains nonzero
entries of X0 has size k1×k2 and rank (X0) = r. When X0 is
symmetric, let d = d1 = d2 and k = k1 = k2. We consider
the following cases.

(a) General: X0 ∈ R
d1×d2 is S&L with (k1, k2, r).

(b) PSD model: X0 ∈ R
n×n is PSD and S&L with (k, k, r).

We are interested in S&L matrices with k1 � d1, k2 � d2

so that the matrix is sparse, and r � min{k1, k2} so that the
submatrix containing the nonzero entries is low rank. Recall
from Section II-B that our goal is to recover X0 from linear
observations A(X0) via convex or nonconvex optimization
programs. The measurements can be equivalently written as
A vec(X0), where A ∈ R

m×d1d2 and vec(X0) ∈ R
d1d2

denotes the vector obtained by stacking the columns of X0.
Based on the results in Section III-A, we obtain lower

bounds on the number of measurements for convex recovery.
We additionally show that significantly fewer measurements
are sufficient for non-convex programs to uniquely recover X0;
thus proving a performance gap between convex and
nonconvex approaches. The following theorem summarizes the
results.

Theorem 3 (Performance of S&L Matrix Recovery):
Suppose A(·) is an i.i.d Gaussian map and consider recovering
X0 ∈ R

d1×d2 via

minimize
X∈C

f(X) subject to A(X) = A(X0). (6)

For the cases given in Definition 4, the following convex
and nonconvex recovery results hold for some positive
constants c1, c2.

(a) General Model:
(a1) Let f(X) = ‖X‖1,2 + λ1‖XT ‖1,2 + λ2‖X‖�

where λ1, λ2 ≥ 0 and C = R
d1×d2 .

Then, (6) will fail to recover X0 with probability
1 − exp(−c1m0) whenever m ≤ c2m0 where
m0 = min{d1k2, d2k1, (d1 + d2)r}.

(a2) Let f(X) = 1
k2
‖X‖0,2 + 1

k1
‖XT ‖0,2 + 1

r rank(X)
and C = R

d1×d2 . Then, (6) will uniquely
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TABLE III

SUMMARY OF RECOVERY RESULTS FOR MODELS IN DEFINITION 4,

ASSUMING d1 = d2 = d AND k1 = k2 = k. FOR THE PSD

WITH �1 CASE, WE ASSUME
‖X̄0‖1

k
AND

‖X̄0‖�√
r

TO BE

APPROXIMATELY CONSTANT FOR THE SAKE OF

SIMPLICITY. NONCONVEX APPROACHES ARE

OPTIMAL UP TO A LOGARITHMIC FACTOR,

WHILE CONVEX APPROACHES

PERFORM POORLY

recover X0 with probability 1−exp(−c1m) when-
ever m ≥ c2 max{(k1+k2)r, k1 log d1

k1
, k2 log d2

k2
}.

(b) PSD with �1,2:
(b1) Let f(X) = ‖X‖1,2 + λ‖X‖� where λ ≥ 0 and

C = S
d
+. Then, (6) will fail to recover X0 with

probability 1 − exp(−c1rd) whenever m ≤ c2rd.
(b2) Let f(X) = 2

k‖X‖0,2 + 1
r rank(X) and C = S

d.
Then, (6) will uniquely recover X0 with prob-
ability 1 − exp(−c1m) whenever m ≥ c2

max{rk, k log d
k}.

(c) PSD with �1:
(c1) Let f(X) = ‖X‖1 + λ‖X‖� and C = S

d
+.

Then, (6) will fail to recover X0 with probability
1 − exp(−c1m0) for all possible λ ≥ 0 whenever
m ≤ c2m0 where m0 = min{‖X̄0‖2

1, ‖X̄0‖2
�d}.

(c2) Suppose rank(X0) = 1. Let f(X) = 1
k2 ‖X‖0 +

rank(X) and C = S
d. Then, (6) will uniquely

recover X0 with probability 1 − exp(−c1m)
whenever m ≥ c2k log d

k .
Remark on “PSD With �1”: In the special case, X0 = aaT

for a k-sparse vector a, we have m0 = min{‖ā‖4
1, d}. When

nonzero entries of a are ±1, we have m0 = min{k2, d}.
The nonconvex programs require almost the same number

of measurements as the degrees of freedom (or number of
parameters) of the underlying model. For instance, it is known
that the degrees of freedom of a rank r matrix of size k1 ×k2

is simply r(k1 + k2 − r) which is O ((k1 + k2)r). Hence,
the nonconvex results are optimal up to a logarithmic factor.
On the other hand, our results on the convex programs that
follow from Theorem 2 show that the required number of
measurements are significantly larger. Table III provides a
quick comparison of the results on S&L.

For the S&L (k,k,r) model, from standard results one can
easily deduce that [3], [5], [43],

• �1 penalty only: requires at least k2 measurements,
• �1,2 penalty only: requires at least kd measurements,
• Nuclear norm penalty only: requires at least

rd measurements.
These follow from the model complexity of the sparse,
column-sparse and low-rank matrices. Theorem 2 shows that,
combination of norms require at least as much as the best indi-
vidual norm. For instance, combination of �1 and the nuclear

norm penalization yields the lower bound O (
min{k2, rd})

for S&L matrices whose singular values and nonzero entries
are spread. This is indeed what we would expect from the
interpretation that κ2n is often proportional to the sample
complexity of the corresponding norm and, the lower bound
κ2

minn is proportional to that of the best individual norm.
As we saw in Section III-A, adding a cone constraint to

the recovery program does not help in reducing the lower
bound by more than a constant factor. In particular, we discuss
the positive semidefiniteness assumption that is beneficial in
the sparse phase retrieval problem and show that the number
of measurements remain high even when we include this
extra information. On the other hand, the nonconvex recovery
programs performs well even without the PSD constraint.

We remark that, we could have stated Theorem 3 for more
general measurements given in Section IV without the cone
constraint. For instance, the following result holds for the
weighted linear combination of individual norms and for the
subgaussian ensemble.

Corollary 2: Suppose X0 ∈ R
d×d obeys the general model

with k1 = k2 = k and A is a linear subgaussian map
as described in Proposition 2. Choose f(X) = λ�1‖X‖1 +
λ�‖X‖�, where λ�1 = β, λ� = (1 − β)

√
d and 0 ≤ β ≤ 1.

Then, whenever, m ≤ min{mlow, c1n}, where,

mlow =
(β‖X̄0‖1 + (1 − β)‖X̄0‖�

√
d)2

2
,

(6) fails with probability 1−4 exp(−c2mlow). Here c1, c2 > 0
are constants as described in Proposition 2.

Remark: Choosing X0 = aaT where nonzero entries of a
are ±1 yields 1

2 (βk + (1 − β)
√

d)2 on the right hand side.
An explicit construction of an S&L matrix with maximal
‖X̄‖1, ‖X̄‖� is provided in Section VII-C.

This corollary compares well with the upper bound obtained
in Corollary 5 of Section V. In particular, both the bounds
and the penalty parameters match up to logarithmic factors.
Hence, together, they sandwich the sample complexity of the
combined cost f(X).

IV. MEASUREMENT ENSEMBLES

This section will make use of standard results on
sub-gaussian random variables and random matrix theory to
obtain probabilistic statements. We will explain how one can
analyze the right hand side of (4) for,

• Matrices with sub-gaussian rows,
• Subsampled standard basis (in matrix completion),
• Quadratic measurements arising in phase retrieval.

A. Sub-Gaussian Measurements

We first consider the measurement maps with sub-gaussian
entries. The following definitions are borrowed from [51].

Definition 5 (Sub-Gaussian Random Variable): A random
variable x is sub-gaussian if there exists a constant K > 0
such that for all p ≥ 1,

(E |x|p)1/p ≤ K
√

p.

The smallest such K is called the sub-gaussian norm
of x and is denoted by ‖x‖Ψ2 . A sub-exponential random
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variable y is one for which there exists a constant K ′ such that,
P(|y| > t) ≤ exp(1 − t

K′ ). The variable x is sub-gaussian if
and only if x2 is sub-exponential.

Definition 6 (Isotropic Sub-Gaussian Vector): A random
vector x ∈ R

n is sub-gaussian if the one dimensional
marginals xT v are sub-gaussian random variables for
all v ∈ R

n. The sub-gaussian norm of x is defined as,

‖x‖Ψ2 = sup
‖v‖=1

‖xTv‖Ψ2 .

The vector x is also isotropic if its covariance is equal to the
identity, i.e. ExxT = In.

Proposition 2 (Sub-Gaussian Measurements): Suppose A
has i.i.d rows in either of the following forms,

• a copy of a zero-mean isotropic sub-gaussian
vector a ∈ R

n, where ‖a‖2 =
√

n almost surely.
• the rows consist of i.i.d zero-mean and unit-variance

sub-gaussian entries.
Then, there exists constants c1, c2 depending only on the
sub-gaussian norm of the rows, such that, whenever m ≤ c1n,
with probability 1 − 4 exp(−c2m), we have,

‖Ax̄0‖2
2

σ2
min(AT )

≤ 2m

n
.

Proof: Using [51, Th. 5.58], there exists constants c, C
depending only on the sub-gaussian norm of a such that for
any t ≥ 0, with probability 1 − 2 exp(−ct2)

σmin(AT ) ≥ √
n − C

√
m − t.

Choosing t = C
√

m and m ≤ n
100C2 ensures that

σmin(AT ) ≥ 4
√

n
5 .

Next, we shall estimate ‖Ax̄0‖2
2, which is a sum of

i.i.d. sub-exponential random variables identical to |aT x̄0|2.
Note that E[|aT x̄0|2] = 1. Hence, [51, Proposition 5.16] gives,

P(‖Ax̄0‖2
2 ≥ m + t) ≤ 2 exp(−c′ min{ t2

m
, t}).

Choosing t = 7m
25 , we find that P(‖Ax̄0‖2

2 ≥ 32m
25 ) ≤

2 exp(−c′′m). Combining the two, we obtain,

P

( ‖Ax̄0‖2
2

σ2
min(AT )

≤ 2m

n

)
≥ 1 − 4 exp(−c′′′m).

The second statement can be proved in the exact same
manner by using [51, Th. 5.39] instead of Theorem 5.58.

Remark: While Proposition 2 assumes a has fixed �2 norm,
this can be ensured by properly normalizing rows of A
(assuming they stay sub-gaussian). For instance, if the �2 norm
of the rows are larger than c

√
n for a positive constant c,

normalization will not affect sub-gaussianity. Note that, scaling
rows of a matrix does not change its null space.

B. Randomly Sampling Entries

We now consider the scenario where each row of A is
chosen from the standard basis uniformly at random. Note
that, when m is comparable to n, there is a nonnegligible
probability that A will have duplicate rows. Theorem 1
does not take this situation into account which would make
σmin(AT ) = 0. In this case, one can discard the copies as they

don’t affect the recoverability of x0. This would get rid of the
ill-conditioning, since the new matrix is well-conditioned with
the exact same null space as the original. This corresponds to
a “sampling without replacement” scheme where we ensure
each row is different.

Similar to achievability results in matrix completion [6], the
following failure result requires true signal to be incoherent
with the standard basis, where incoherence is characterized
by ‖x̄0‖∞, which lies between 1√

n
and 1.

Proposition 3 (Sampling Entries): Let {ei}n
i=1 be the stan-

dard basis in R
n and suppose each row of A is chosen from

{ei}n
i=1 uniformly at random. Let Â be the matrix obtained

by removing duplicate rows in A. Then, with probability
1 − exp(− m

4n‖x̄0‖2∞
), we have,

‖Âx̄0‖2
2

σ2
min(Â)

≤ 2m

n
.

Proof: Let Â be the matrix obtained by discarding the
rows of A that occur multiple times except one of them.
Clearly Null(Â) = Null(A) hence they are equivalent for
the purpose of recovering x0. Furthermore, σmin(Â) = 1.
Therefore, we are interested in upper bounding ‖Âx̄0‖2.

Clearly ‖Âx̄0‖2 ≤ ‖Ax̄0‖2. Hence, we will bound ‖Ax̄0‖2
2

probabilistically. Let a be the first row of A. |aT x̄0|2 is a
random variable, with mean 1

n and is upper bounded
by ‖x̄0‖2

∞. Applying the Chernoff Bound yields

P(‖Ax̄0‖2
2 ≥ m

n
(1 + δ)) ≤ exp(− mδ2

2(1 + δ)n‖x̄0‖2∞
).

Setting δ = 1, we find that, with probability
1 − exp(− m

4n‖x̄0‖2∞
), we have,

‖Âx̄0‖2
2

σmin(Â)2
≤ ‖Ax̄0‖2

2

σmin(Â)2
≤ 2m

n
,

completing the proof.
A significant application of this result would be for the

low-rank tensor completion problem, where we randomly
observe some entries of a low-rank tensor and try to
reconstruct it. A promising approach for this problem is
using the weighted linear combinations of nuclear norms of
the unfoldings of the tensor to induce the low-rank tensor
structure described in (2), [14], [15]. Related work [40] shows
the poor performance of (2) for the special case of Gaussian
measurements. Combination of Theorem 1 and Proposition 3
will immediately extend the results of [40] to the more
applicable tensor completion setup (under proper incoherence
conditions that bound ‖x̄0‖∞).

Remark: In Propositions 2 and 3, we can make the upper
bound for the ratio ‖Ax̄0‖2

2
σ min(A)2 arbitrarily close to m

n by changing

the proof parameters. Combined with Proposition 1, this would
suggest that, failure happens, when m < nκmin.

C. Quadratic Measurements

As mentioned in the phase retrieval problem, quadratic mea-
surements |vT a|2 of the vector a ∈ R

d can be linearized by
the change of variable a → X0 = aaT and using V = vvT .
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The following proposition can be used to obtain a lower bound
for such ensembles when combined with Theorem 1.

Proposition 4: Suppose we observe quadratic measure-
ments A(X0) ∈ R

m of a matrix X0 = aaT ∈ R
d×d. Here,

assume that ith entry of A(X0) is equal to |vT
i a|2 where

{vi}m
i=1 are independent vectors, either with N (0, 1) entries

or are uniformly distributed over the sphere with radius
√

d.
Then, there exists absolute constants c1, c2 > 0 such that
whenever m < c1d

log d , with probability 1 − 2ed−2,

‖A(X̄0)‖2

σmin(AT )
≤ c2

√
m log d

d
.

Proof: Let Vi = vivT
i . Without loss of generality, assume

vi’s are uniformly distributed over the sphere with radius
√

d.
To lower bound σmin(AT ), we estimate the coherence of its
columns, defined by,

μ(AT ) = max
i�=j

| 〈Vi,Vj〉 |
‖Vi‖F ‖Vj‖F

=
(vT

i vj)2

d2
.

[51, Sec. 5.2.5] states that the sub-gaussian norm of vi is
bounded by an absolute constant. Hence, conditioned on vj

(which satisfies ‖vj‖2 =
√

d), (vT
i vj)

2

d is a subexponential
random variable with mean 1. Using Definition 5, there exists
a constant c > 0 such that,

P

(
(vT

i vj)2

d
> c log d

)
≤ ed−4.

Union bounding over all i, j pairs ensures that with
probability ed−2 we have μ(AT ) ≤ c log d

d . Next, we use
the standard result that for a matrix with columns of equal
length, σmin(AT ) ≥ d(1 − (m − 1)μ). The reader is referred
to [52, Proposition 1]. Hence, m ≤ d

2c log d , gives
σmin(AT ) ≥ d

2 .
It remains to upper bound ‖A(X̄0)‖2. The ith entry

of A(X̄0) is equal to |vT
i ā|2, hence it is subexponential.

Consequently, there exists a constant c′ so that each entry is
upper bounded by c′

2 log d with probability 1 − ed−3. Union
bounding, and using m ≤ d, we find that ‖A(X̄0)‖2 ≤
c′
2

√
m log d with probability 1 − ed−2. Combining with the

estimate of σmin(AT ) completes the proof.
Comparison to Existing Literature: Proposition 4 is useful

to estimate the performance of the sparse phase retrieval
problem, in which a is a k sparse vector, and we minimize
a combination of the �1 norm and the nuclear norm to
recover X0. Combined with Theorem 1, Proposition 4
gives that, whenever m ≤ c1d

log d and c2
√

m log d
d ≤

min{ ‖X̄0‖1
d , ‖X̄0‖�√

d
}, recovery fails with high probability.

Since ‖X̄0‖� = 1 and ‖X̄0‖1 = ‖ā‖2
1, the failure condition

reduces to,

m ≤ c

log2 d
min{‖ā‖4

1, d}.

When ā is a k-sparse vector with ±1 entries, in a
similar flavor to Theorem 3, the right hand side has the
form c

log2 d
min{k2, d}.

We emphasize that the lower bound provided in [26]
is directly comparable to our results. The authors in [26]

consider the same problem and give two results: first, if
m ≥ O (‖ā‖2

1k log d
)

then minimizing ‖X‖1 + λ tr (X)
for suitable value of λ over the set of PSD matrices will
exactly recover X0 with high probability. Secondly, their
Theorem 1.3 provides a necessary condition (lower bound) on
the number of measurements, under which the recovery pro-
gram fails to recover X0 with high probability. In particular,
their failure condition is m ≤ min{m0,

d
40 log d} where

m0 = max(‖ā‖2
1−k/2,0)2

500 log2 d
.

Observe that both results require m ≤ O
(

d
log d

)
. Focusing

on the sparsity requirements, when the nonzero entries are suf-
ficiently diffused (i.e. ‖a‖2

1 ≈ k) both results yield O( ‖ā‖4

log2 d
)

as a lower bound. On the other hand, if ‖ā‖1 ≤ √
k/2,

their lower bound becomes trivial while our lower bound still
requires O( ‖ā‖4

log2 d
) measurements. ‖ā‖1 ≤ √

k/2 can happen
as soon as the nonzero entries are spiky, i.e. some of the entries
are much larger than the rest. In this sense, our bounds are
tighter. On the other hand, their lower bound includes the
PSD constraint unlike ours.

D. Asymptotic Regime

While we discussed two cases in the nonasymptotic setup,
we believe significantly more general results can be stated
asymptotically (m, n → ∞). For instance, under finite
fourth moment constraint, thanks to the Bai-Yin law [53],
asymptotically, the smallest singular value of a matrix with
i.i.d. unit variance entries concentrates around

√
n − √

m.
Similarly, ‖Ax̄0‖2

2 is the sum of independent variables; hence
thanks to the law of large numbers, we will have ‖Ax̄0‖2

2
m → 1.

Together, these yield ‖Ax̄0‖2
σmin(AT ) →

√
m√

n−√
m

.

V. UPPER BOUNDS

We now state an upper bound on the simultaneous optimiza-
tion for Gaussian measurement ensemble. Our upper bound
will be in terms of distance to the dilated subdifferentials.

To accomplish this, we make use of the recent theory
on the sample complexity of linear inverse problems. It has
been recently shown that (3) exhibits a phase transition
from failure with high probability to success with high
probability when the number of Gaussian measurements are
around the quantity mPT = D(cone(∂f(x0)))2 [9], [49].
This phenomenon was first observed by Donoho and Tanner,
who calculated the phase transitions for �1 minimization and
showed that D(cone(∂‖x0‖1))2 ≤ 2k log en

k for a k-sparse
vector in R

n [54]. All of these works focus on signals with
a single structure and do not study properties of a penalty
that is a combination of norms. The next theorem relates
the phase transition point of the joint optimization (3) to the
individual subdifferentials.

Theorem 4: Suppose A has i.i.d. N (0, 1) entries and
let f(x) =

∑τ
i=1 λi‖x‖(i). For positive scalars {αi}τ

i=1,

let λ̄i = λiα
−1
i�

τ
i=1 λiα

−1
i

and define,

mup({αi}τ
i=1) :=

(
∑

i

λ̄iD(αi∂‖x0‖(i))

)2

.
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If m ≥ (√mup + t)2 + 1, then program (3) will succeed with

probability 1 − 2 exp(− t2

2 ).
Proof: Fix h as an i.i.d. standard normal vector. Let

gi be such that αigi is closest to h over αi∂‖x0‖(i).
Let γ = (

∑
i

λi

αi
)−1. Then, we may write,

inf
g′∈cone(∂f(x0))

‖h− g′‖2 ≤ inf
g∈∂f(x0)

‖h− γg‖2

≤ ‖h− γ
∑

i

λigi‖2

= ‖h− γ
∑

i

λi

αi
αigi‖2

= ‖h−
∑

i

λ̄iαigi‖2

≤
∑

i

λ̄i‖h− αigi‖2

=
∑

i

λ̄i inf
g′

i∈∂‖x0‖(i)

‖h− αig′
i‖2.

Taking the expectations of both sides and using the
definition of D(·), we find that

D(cone(∂f(x0))) ≤
∑

i

λ̄iD(αi∂‖x0‖(i)),

and mup ≥ D(cone(∂f(x0)))2. The result then follows from
the fact that, when m ≥ (D(cone(∂f(x0)))+t)2+1, recovery
succeeds with probability 1−2 exp(− t2

2 ). To see this, first, as
discussed in [9, Proposition 3.6], D(cone(∂f(x0))) is equal to
the Gaussian width of the “tangent cone intersected with the
unit ball” (see Theorem 6 for a definition of Gaussian width).
Then, [9, Corollary 3.3] yields the probabilistic statement.

For Theorem 4 to be useful, choices of αi should be made
wisely. An obvious choice is letting,

α∗
i = arg min

αi≥0
D(αi∂‖x0‖(i)). (7)

With this choice, our upper bounds can be related to
the individual sample complexities, which is equal to
D(cone(∂‖x0‖(i)))2. [55, Proposition 1] shows that, if ‖ · ‖(i)

is a decomposable norm, then,

0 ≤ D(α∗
i ∂‖x0‖(i)) − D(cone(∂‖x0‖(i))) ≤ 6.

Decomposability is defined and discussed in detail
in Section VI-D. In particular, �1, �1,2 and the nuclear
norm are decomposable. With this assumption, our upper
bound suggests that the sample complexity of the simultaneous
optimization is smaller than a certain convex combination of
individual sample complexities.

Corollary 3: Suppose A has i.i.d N (0, 1) entries and let
f(x) =

∑τ
i=1 λi‖x‖(i) for decomposable norms {‖ · ‖(i)}τ

i=1.
Let {α∗

i }τ
i=1 be as in (7) and assume they are strictly positive.

Let λ̄∗
i = λi(α

∗
i )−1

�τ
i=1 λi(α∗

i )−1 and define

√
mup({α∗

i }τ
i=1) :=

∑

i

λ̄∗
i D(cone(∂‖x0‖(i))) + 6.

If m ≥ (√mup + t)2 + 1, then program (3) will succeed with

probability 1 − 2 exp(− t2

2 ).

Here, we used the fact that
∑

i λ̄∗
i = 1 to take 6 out of the

sum over i. We note that Corollaries 1 and 3 can be related
in the case of sparse and low-rank matrices. For norms of
interest, roughly speaking,

• nκ2
i is proportional to the sample complexity

D(cone(∂‖x0‖(i)))2.

• Li is proportional to
√

n
α∗

i
.

Consequently, the sample complexity of (3) will be upper and
lower bounded by similar convex combinations.

A. Upper Bounds for the S&L Model

We now apply the bound of Theorem 4 to S&L matrices.
To obtain simple and closed form bounds, we make use of
existing results in the literature.

• [55, Table II]: If x0 ∈ R
n is a k sparse vector, choosing

α�1 =
√

2 log n
k , D(α�1∂‖x0‖1)2 ≤ 2k log en

k .
• [56, Table III]: If X0 ∈ R

d×d is a rank r matrix,
choosing α� = 2

√
d, D(α�∂‖X0‖�)2 ≤ 6dr + 2d.

Proposition 5: Suppose A has i.i.d N (0, 1) entries and
X0 ∈ R

d×d is a rank r matrix whose nonzero entries lie on a
k × k submatrix. For 0 ≤ β ≤ 1, let f(X) = λ�1‖X‖1 +
λ�‖X‖� where λ�1 = β

√
log d

k and λ� = (1 − β)
√

d.
Then, whenever,

m ≥
(

2βk

√

log
ed

k
+ (1 − β)

√
6dr + 2d + t

)2

+ 1,

X0 can be recovered via (3) with probability 1− 2 exp(− t2

2 ).

Proof: To apply Theorem 4, we choose α�1 =
√

4 log d
k

and α� = 2
√

d. X0 is effectively an (at most) k2 sparse vector

of size d2. Hence, α�1 =
√

2 log d2

k2 and D(α�1‖X0‖1)2 ≤
4k2 log ed

k .
Now, for the choice of α�, we have, D(α�‖X0‖�)2 ≤

6dr + 2d. Observe that α−1
�1

λ�1 = β
2 , α−1

� λ� = 1−β
2 and

apply Theorem 4 to conclude.

VI. GENERAL SIMULTANEOUSLY STRUCTURED

MODEL RECOVERY

Recall the setup from Section II where we consider a
vector x0 ∈ R

n whose structures are associated with a family
of norms {‖ · ‖(i)}τ

i=1 and x0 satisfies the cone constraint
x0 ∈ C. This section is dedicated to the proofs of theorems
in Section III-A and additional side results where the goal is
to find lower bounds on the required number of measurements
to recover x0.

The following definitions will be helpful for the rest of
our discussion. For a subspace M , denote its orthogonal
complement by M⊥. For a convex set M and a point x,
we define the projection operator as

PM (x) = arg min
u∈M

‖x − u‖2 .

Given a cone C, denote its dual cone by C∗ and polar cone
by C◦ = −C∗, where C∗ is defined as

C∗ = {z∣∣ 〈z,v〉 ≥ 0 for all v ∈ C}.
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A. Preliminary Lemmas

We first show that the objective function max1≤i≤τ
‖x‖(i)

‖x0‖(i)

can be viewed as the ‘best’ among the functions mentioned
in (3) for recovery of x0.

Lemma 1: Consider the class of recovery programs in (3).
If the program

minimize
x∈C

fbest(x) � max
i=1,...,τ

‖x‖(i)

‖x0‖(i)

subject to A(x) = A(x0) (8)

fails to recover x0, then any member of this class will also
fail to recover x0.

Proof: Suppose (8) does not have x0 as an optimal
solution and there exists x′ such that fbest(x′) ≤ fbest(x0).
Then

1
‖x0‖(i)

‖x′‖(i) ≤ fbest(x′) ≤ fbest(x0) = 1,

for i = 1, . . . , τ . This implies that

‖x′‖(i) ≤ ‖x0‖(i), for all i = 1, . . . , τ. (9)

Conversely, given (9), we have fbest(x′) ≤ fbest(x0) from the
definition of fbest.

Furthermore, since we assume h(·) in (3) is non-decreasing
in its arguments and increasing in at least one of them,
(9) implies f(x′) ≤ f(x0) for any such function f(·). Thus,
failure of fbest(·) in recovery of x0 implies failure of any other
function in (3).

The following lemma provides necessary conditions for x0

to be a minimizer of the problem (3).
Lemma 2: If x0 is a minimizer of the program (3), then

there exist v ∈ C∗, z, and g ∈ ∂f(x0) such that

g − v − AT z = 0 and 〈x0,v〉 = 0.

The proof of Lemma 2 follows from the KKT conditions
for (3) to have x0 as an optimal solution [57, Sec. 4.7].

The next lemma describes the subdifferential of any
general function f(x) = h(‖x‖(1), . . . , ‖x‖(τ)) as discussed
in Section II-B.

Lemma 3: For any subgradient of the function f(x) =
h(‖x‖(1), . . . , ‖x‖(τ)) at x �= 0 defined by convex function
h(·), there exists non-negative constants wi, i = 1, . . . , τ
such that

g =
τ∑

i=1

wigi

where gi ∈ ∂‖x0‖(i).
Proof: Consider the function N(x) =

[‖x‖(1), . . . ,

‖x‖(τ)

]T
by which we have f(x) = h(N(x)).

By [58, Th. 10.49] we have

∂f(x) =
⋃{

∂(yT N(x)) : y ∈ ∂h(N(x))
}

where we used the convexity of f and h. Now notice that
any y ∈ ∂h(N(x)) is a non-negative vector because of
the monotonicity assumption on h(·). This implies that any
subgradient g ∈ ∂f(x) is in the form of ∂(wT N(x)) for

some nonnegative vector w. The desired result simply follows
because subgradients of conic combinations of norms are conic
combinations of their subgradients (see [59]).

Using Lemmas 2 and 3, we now provide the proofs of
Theorems 1 and 2.

B. Proof of Theorem 1

We prove the more general version of Theorem 1, which can
take care of the cone constraint and alignment of subgradients
over arbitrary subspaces. This will require us to extend the
definition of correlation to handle subspaces. For a linear
subspace R ∈ R

n and a set S ∈ R
n, we define,

ρ(R, S) = inf
0�=s∈S

‖PR(s)‖2

‖s‖2
.

Proposition 6: Let

σC(AT ) = inf
‖z‖2=1

‖PC(AT z)‖2

‖AT z‖2
.

Let R be an arbitrary linear subspace orthogonal to the
following cone,

{y ∈ R
n
∣∣xT

0 y = 0, y ∈ C∗}. (10)

Suppose,

ρ(R, ∂f(x0)) := inf
g∈∂f(x0)

‖PR(g)‖2

‖g‖2

>
σmax(PR(AT ))

σC(AT )σmin(AT )
. (11)

Then, x0 is not a minimizer of (3).
Proof: Suppose x0 is a minimizer of (3). From Lemma 2,

there exist a g ∈ ∂f(x0), z ∈ R
m and v ∈ C∗ such that

g = AT z + v (12)

and 〈x0,v〉 = 0 . We first eliminate the contribution of v in
equation (12). Projecting both sides of (12) onto the subspace
R gives,

PR(g) = PR(AT z) = PR(AT )z. (13)

Taking the �2 norms,

‖PR(g)‖2 = ‖PR(AT )z‖2 ≤ σmax(PR(AT ))‖z‖2. (14)

Since v ∈ C∗, from Lemma 5 we have PC(−v) =
PC(AT z − g) = 0. Using Corollary 4,

‖g‖2 ≥ ‖PC(AT z)‖2. (15)

From the initial assumption, for any z ∈ R
m, we have,

σC(AT )‖AT z‖2 ≤ ‖PC(AT z)‖2 (16)

Combining (15) and (16) yields ‖g‖2 ≥ σC(AT )‖AT z‖2.
Further incorporating (14), we find,

‖PR(g)‖2

σmax(PR(AT ))
≤ ‖z‖2 ≤ ‖AT z‖2

σmin(AT )

≤ ‖g‖2

σC(AT )σmin(AT )
.



2898 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 5, MAY 2015

Hence, if x0 is recoverable, then there exists g ∈ ∂f(x0)
satisfying

‖PR(g)‖2

‖g‖2
≤ σmax(PR(AT ))

σC(AT )σmin(AT )
,

completing the proof.
To obtain Theorem 1, choose R = span({x0}) and C = R

n.
This choice of R yields σmax(PR(AT )) = ‖x̄0x̄T

0 AT ‖2 =
‖Ax̄0‖2 and ‖PR(g)‖2 = |x̄T

0 g|. Choosing C = R
n yields

σC(A) = 1. Also note that, for any choice of C, x0 is
orthogonal to (10) by definition.

C. Proof of Theorem 2

Rotational invariance of Gaussian measurements allows
us to make full use of Proposition 6. The following is a
generalization of Theorem 2.

Proposition 7: Consider the setup in Proposition 6 where A
has i.i.d N (0, 1) entries. Let,

mlow =
n(1 − D̄(C))ρ(R, ∂f(x0))2

100
,

and suppose that dim(R) ≤ mlow. Then, whenever
m ≤ mlow, with probability 1 − 10 exp(− 1

16 min{mlow,
(1 − D̄(C))2n}), (3) will fail for all functions f(·).

Proof: More measurements can only increase the
chance of success. Hence, without losing generality, assume
m = mlow and dim(R) ≤ m. The result will follow
from Proposition 6. Recall that m ≤ (1−D̄(C))n

100 .

• PR(AT ) is statistically identical to a dim(R)×m matrix
with i.i.d. N (0, 1) entries under proper unitary rotation.
Hence, using [51, Corollary 5.35], with probability
1 − 2 exp(−m

8 ), σmax(PR(AT )) ≤ 1.5
√

m +√
dim(R) ≤ 2.5

√
m. With the same probability,

σmin(AT ) ≥ √
n − 1.5

√
m .

• From Theorem 7, using m ≤ (1−D̄(C))n
100 , with proba-

bility 1 − 6 exp(− (1−D̄(C))2n
16 ), σ2

C(AT ) ≥ 1−D̄(C)
4(1+D̄(C))

≥
1−D̄(C)

8 .

Since m
n ≤ 1

30 , combining these, with the desired probability,

σmax(PR(AT ))
σC(AT )σmin(AT )

≤
√

8
1 − D̄(C)

2.5
√

m√
n − 1.5

√
m

<
10

√
m

√
(1 − D̄(C))n

.

Finally, using Proposition 6 and the fact that

m ≤ n(1−D̄(C))
100 ρ(R, ∂f(x0))2, with the same probability (3)

fails.
To prove Theorem 2, choose R = span({x0}) and use the

first statement of Proposition 1.
To show Corollary 1, choose R = span({x0}) and use the

second statement of Proposition 1.

D. Enhanced Lower Bounds

From our initial results, it may look like our lower bounds
are suboptimal. For instance, considering only the �1 norm,

κ = ‖x̄0‖1√
n

lies between 1√
n

and
√

k
n for a k sparse signal.

Combined with Theorem 2, this gives a lower bound of ‖x̄0‖2
1

measurements. On the other hand, clearly, we need at least
O(k) measurements to estimate a k sparse vector.

Indeed, Proposition 6 gives such a bound with a
better choice of R. In particular, let us choose
R = span({sign(x0)}). For any g ∈ ∂‖x0‖1, we have
that,

〈
g, sign(x0)√

k

〉

L
=

√
k

n
=⇒ ρ(sign(x0), ∂‖x0‖1) =

√
k

n
.

Hence, we immediately have m ≥ O (k) as a lower bound.
The idea of choosing such sign vectors can be generalized to
the so-called decomposable norms.

Definition 7 (Decomposable Norm): A norm ‖·‖ is decom-
posable at x ∈ R

n if there exist a subspace T ⊂ R
n and

a vector e ∈ T such that the subdifferential at x has the
form

∂‖x‖ = {z ∈ R
n : PT (z) = e , ‖PT⊥(z)‖∗ ≤ 1}.

We refer to T as the support and e as the sign vector of x
with respect to ‖ · ‖ .

Similar definitions are used in [13] and [60]. Our definition
is simpler and less strict compared to these works. Note
that L is a global property of the norm while e and T
depend on both the norm and the point under consideration
(decomposability is a local property in this sense).

To give some intuition for Definition 7, we review examples
of norms that arise when considering simultaneously sparse
and low rank matrices. For a matrix X ∈ R

d1×d2 , let Xi,j ,
Xi,. and X.,j denote its (i, j) entry, ith row and jth column
respectively.

Lemma 4 (See [60]): The �1 norm, the �1,2 norm and the
nuclear norm are decomposable as follows.

• �1 norm is decomposable at every x ∈ R
n, with sign

e = sgn (x) , and support

T = supp (x) = {y ∈ R
n : xi = 0 ⇒ yi = 0 ∀ i ≤ n}.

• �1,2 norm is decomposable at every X ∈ R
d1×d2 . The

support is

T =
{
Y ∈ R

d1×d2 : X.,i = 0 ⇒ Y.,i = 0 ∀ i ≤ d2

}
,

and the sign vector e ∈ R
d1×d2 is obtained by normal-

izing the columns of X present in the support,
e.,j = X.,j

‖X.,j‖2
if ‖X.,j‖2 �= 0, and setting the rest

of the columns to zero.
• Nuclear norm is decomposable at every X ∈ R

d1×d2 .
For a matrix X with rank r and compact singular value
decomposition X = UΣVT where Σ ∈ R

r×r, we have
e = UVT and

T =
{
Y ∈ R

d1×d2 : (I − UUT )Y(I − VVT ) = 0
}

=
{
Z1VT + UZT

2 | Z1 ∈ R
d1×r,Z2 ∈ R

d2×r
}
.

The next lemma shows that the sign vector e will yield the
largest correlation with the subdifferential and the best lower
bound for such norms.
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Fig. 4. An example of a decomposable norm: �1 norm is decomposable
at x0 = (1, 0). The sign vector e, the support T , and shifted subspace T⊥
are illustrated. A subgradient g at x0 and its projection onto T⊥ are also
shown.

Lemma 5: Let ‖·‖ be a decomposable norm with support T
and sign vector e. For any v �= 0, we have that,

ρ(v, ∂‖x0‖) ≤ ρ(e, ∂‖x0‖) (17)

Also ρ(e, ∂‖x0‖) ≥ ‖e‖2
L .

Proof: Let v be a unit vector. Without losing generality,
assume vT e ≥ 0. Pick a vector z ∈ T⊥ with ‖z‖∗ = 1 such
that zT v ≤ 0 (otherwise pick −z). Now, consider the class of
subgradients g(α) = e + αz for 1 ≥ α ≥ −1. Then,

inf
−1≤α≤1

|vT g(α)|
‖g(α)‖2

= inf
0≤α≤1

|vT g(α)|
‖g(α)‖2

= inf
0≤α≤1

|eTv − α|zT v||
(‖e‖2

2 + α2‖z‖2
2)1/2

.

If |zT v| ≥ eTv, then, the numerator can be made 0 and
ρ(v, ∂‖x0‖) = 0. Otherwise, the right hand side is decreasing
function of α, hence the minimum is achieved at α = 1, which
gives,

inf
−1≤α≤1

|vT g(α)|
‖g(α)‖2

=
|eTv − |zT v||

(‖e‖2
2 + ‖z‖2

2)1/2

≤ |eTv|
(‖e‖2

2 + ‖z‖2
2)1/2

≤ ‖e‖2

(‖e‖2
2 + ‖z‖2

2)1/2

= inf
−1≤α≤1

|ēTg(α)|
‖g(α)‖2

where we used eTg(α) = eTe = ‖e‖2
2. Hence, along any

direction z, e yields a higher minimum correlation than v.
To obtain (17), further take the infimum over all z ∈ T⊥,
‖z‖∗ ≤ 1 which yields the infimum over ∂‖x0‖. Finally, use
‖g(α)‖2 ≤ L to lower bound ρ(e, ∂‖x0‖).

Based on Lemma 5, the individual lower bounds
are O(‖e‖2

2
L2

)
n. Calculating ‖e‖2

2
L2 n for the norms in Lemma 4,

reveals that, this quantity is k for a k sparse vector, cd1

for a c-column sparse matrix and r max{d1, d2} for a rank
r matrix. Compared to bounds obtained by using x̄0, these
new quantities are directly proportional to the true model
complexities. Finally, we remark that, these new bounds
correspond to choosing x0 that maximizes the value of

‖x̄0‖1, ‖x̄0‖� or ‖x̄0‖1,2 while keeping sparsity, rank or
column sparsity fixed. In particular, in these examples, e has
the same sparsity, rank, column sparsity as x0.

The next proposition derives a correlation bound for the
combination of decomposable norms as well as a simple lower
bound on the sample complexity.

Proposition 8: Given decomposable norms ‖ · ‖(i) with
supports Ti and sign vectors ei. Let T∩ =

⋂
1≤i≤τ Ti. Choose

the subspace R to be a subset of T∩.

• Assume 〈PR(ei),PR(ej)〉 ≥ 0 for all i, j and
min1≤i≤τ

‖PR(ei)‖2
‖ei‖2

≥ υ. Then,

ρ(R, ∂f(x0)) ≥ υ√
τ

min
1≤i≤τ

ρ(ei, ∂‖x0‖(i)).

• Consider Proposition 6 with Gaussian measurements and
suppose R is orthogonal to the set (10). Let f(x) =∑τ

i=1 λi‖x‖(i) for some nonnegative {λi}’s. Then, if
m < dim(R), (3) fails with probability 1.

Proof: Let g =
∑τ

i=1 wigi for some gi ∈ ∂‖x0‖(i).
First, ‖g‖2 ≤ ∑τ

i=1 wi‖gi‖2. Next,

‖PR(g)‖2
2 = ‖

τ∑

i=1

wiPR(ei)‖2
2 ≥

τ∑

i=1

w2
i ‖PR(ei)‖2

2

≥ υ2
τ∑

i=1

w2
i ‖ei‖2

2 ≥ υ2

τ
(

τ∑

i=1

wi‖ei‖2)2.

To see the second statement, consider the line (13) from the
proof of Proposition 6. PR(g) =

∑τ
i=1 λiPR(ei). On the

other hand, the column space of PR(AT ) is an m-dimensional
random subspace of R. If m < dim(R), PR(g) is linearly
independent of PR(AT ) with probability 1 and (13) will not
hold.

In the next section, we show how better choices of R (based
on the decomposability assumption) can improve the lower
bounds for S&L recovery.

VII. PROOFS FOR SECTION III-B

Using the general framework of Section III-A, we now
prove Theorem 3, which states various convex and nonconvex
recovery results for the S&L models. We start with proofs of
the convex recovery.

A. Convex Recovery Results for S&L

In this section, we prove the statements of
Theorem 3 regarding convex approaches, using
Theorem 2 and Proposition 7. We make use of the
decomposable norms to obtain better lower bounds. Hence,
we first state a result on the sign vectors and the supports of
the S&L model following Lemma 4. The proof is provided
in Appendix B.

Lemma 6: Denote the norm ‖XT ‖1,2 by ‖ ·T ‖1,2. Given
a matrix X0 ∈ R

d1×d2 , let E�,Ec,Er and T�, Tc, Tr be the
sign vectors and supports for the norms ‖ ·‖�, ‖ ·‖1,2, ‖ ·T ‖1,2

respectively. Then,

• E�,Er,Ec ∈ T� ∩ Tc ∩ Tr,
• 〈E�,Er〉 ≥ 0, 〈E�,Ec〉 ≥ 0, and 〈Ec,Er〉 ≥ 0.
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1) Proof of Theorem 3 Convex Cases:
Proof of (a1): We use the functions ‖ · ‖1,2, ‖ ·T ‖1,2 and

‖ · ‖� without the cone constraint, i.e., C = R
d1×d2 . We will

apply Proposition 7 with R = T�∩Tc∩Tr. From Lemma 6 all
the sign vectors lie on R and they have pairwise nonnegative
inner products. Consequently, applying Proposition 8

ρ(R, ∂f(X0))2 ≥ 1
3

min{k1

d1
,
k2

d2
,

r

min{d1, d2}}.

If m < dim(R), then we have failure with probability 1.
Hence, assume m ≥ dim(R). Now, apply Proposition 7 with
the given mlow.

Proof of (b1): In this case, we apply Lemma 12.
We choose R = T�∩Tc∩Tr∩S

n, the norms are the same as in
the general model, and υ ≥ 1√

2
. Also, pairwise inner products

are positive, hence, using Proposition 8, ρ(R, ∂f(X0))2 ≥
1
4 min{k

d , r
d}. Again, we may assume m ≥ dim(R). Finally,

based on Corollary 10, for the PSD cone we have D̄(C) ≥
√

3
2 .

The result follows from Proposition 7 with the given mlow.
Proof of (c1): For the PSD cone, D̄(C) ≥

√
3

2 and
we simply use Theorem 2 to obtain the result by using

κ2
�1

= ‖X̄0‖2
1

d2 and κ2
� = ‖X̄0‖2

�

d .

2) Proof of Corollary 2: To show this, we use Theorem 1
and substitute κ’s corresponding to �1 and the nuclear

norm. κ� = ‖X̄0‖�√
d

and κ�1 = ‖X̄0‖�1
d . Also observe that,

λ�1L�1 = βd and λ�L� = (1 − β)d. Hence,
∑2

i=1 λ̄iκi =
α‖X̄0‖1 + (1 − α)‖X̄0‖�

√
d. We then use Proposition 2 to

conclude with sufficiently small c1, c2 > 0.

B. Nonconvex Recovery Results for S&L

While Theorem 3 states the result for Gaussian measure-
ments, we prove the nonconvex recovery for the more general
sub-gaussian measurements. We first state a lemma that will be
useful in proving the nonconvex results. The proof is provided
in Appendix C and uses standard arguments.

Lemma 7: Consider the set of matrices M in R
d1×d2

that are supported over an s1 × s2 submatrix with rank at
most q. There exists a constant c > 0 such that whenever
m ≥ c min{(s1 + s2)q, s1 log d1

s1
, s2 log d2

s2
}, with probability

1 − 2 exp(−cm), A(·) : R
d1×d2 → R

m with i.i.d. zero-mean
and isotropic sub-gaussian rows satisfies

A(X) �= 0, for all X ∈ M. (18)

1) Proof of Theorem 3 Nonconvex Cases: Denote the sphere
in R

d1×d2 with unit Frobenius norm by Sd1×d2 .
Proof of (a2): Observe that the function f(X) =

‖X‖0,2
‖X0‖0,2

+ ‖XT ‖0,2

‖XT
0 ‖0,2

+ rank(X)
rank(X0) satisfies the triangle inequality

and we have f(X0) = 3. Hence, if all null space elements
W ∈ Null(A) satisfy f(W) > 6, we have

f(X) ≥ f(X − X0) − f(−X0) > 3,

for all feasible X which implies X0 being the unique
minimizer.

Consider the set M of matrices, which are supported over
a 6k1 × 6k2 submatrix with rank at most 6r. Observe that
any Z satisfying f(Z) ≤ 6 belongs to M . Hence ensuring

Null(A) ∩ M = {0} would ensure f(W) > 6 for all
W ∈ Null(A). Since M is a cone, this is equivalent to
Null(A) ∩ (M ∩ Sd1×d2) = ∅. Now, applying Lemma 7 with
set M and s1 = 6k1, s2 = 6k2, q = 6r we find the desired
result.

Proof of (b2): Observe that due to the symmetry
constraint,

f(X) =
‖X‖0,2

‖X0‖0,2
+

‖XT ‖0,2

‖XT
0 ‖0,2

+
rank(X)
rank(X0)

.

Hence, the minimization is the same as (a2), the matrix is
rank r contained in a k × k submatrix and we additionally
have the positive semidefinite constraint which can only reduce
the amount of required measurements compared to (a2).
Consequently, the result follows by applying Lemma 7,
similar to (a2).

Proof of (c2): Let C = {X �= 0
∣
∣f(X) ≤ f(X0)}. Since

rank(X0) = 1, if f(X) ≤ f(X0) = 2, then rank(X) = 1.
With the symmetry constraint, this means X = ±xxT for
some l-sparse x. Observe that X−X0 has rank at most 2 and
is contained in a 2k × 2k submatrix as l ≤ k. Let M be the
set of matrices that are symmetric and whose support lies in a
2k× 2k submatrix. Using Lemma 7 with q = 2, s1 = s2 = 2k,
whenever m ≥ ck log n

k , with desired probability all nonzero
W ∈ M will satisfy A(W) �= 0. Consequently, any X ∈ C
has A(X) �= A(X0), so that X0 is the unique minimizer.

C. Existence of a Matrix With Large κ’s

We now argue that, there exists an S&L matrix that
has large κ�1 , κ�1,2 and κ� simultaneously. We provide have
a deterministic construction that is close to optimal. Our
construction is based on Hadamard matrices. Hn ∈ R

n×n is
called a Hadamard matrix if it has ±1 entries and orthogonal
rows. Hadamard matrices exist for n that is an integer
power of 2.

Using Hn, our aim is to construct a d1×d2 S&L (k1, k2, r)
matrix X0 that satisfies ‖X̄0‖2

1 ≈ k1k2, ‖X̄0‖2
� ≈ r,

‖X̄0‖2
1,2 ≈ k2 and ‖X̄T

0 ‖2
1,2 ≈ k1. To do this, we construct a

k1 × k2 matrix and then embed it into a larger d1×d2 matrix.
The following lemma summarizes the construction.

Lemma 8: Without loss of generality, assume k2 ≥ k1 ≥ r.
Let H := H�log2 k2�. Let X ∈ R

k1×k2 be such that its ith row
is equal to [i − 1 (mod r)] + 1’th row of H followed by 0’s
for 1 ≤ i ≤ k1. Then,

‖X̄0‖2
1 ≥ k1k2

2
, ‖X̄0‖2

� ≥ r

2
,

‖X̄0‖2
1,2 ≥ k2

2
, ‖X̄T

0 ‖2
1,2 = k1.

In particular, if k1 ≡ 0 (mod r) and k2 is an integer power of 2,
then,

‖X̄0‖2
1 = k1k2, ‖X̄0‖2

� = r,

‖X̄0‖2
1,2 = k2, ‖X̄T

0 ‖2
1,2 = k1.

Proof: The left k1 × 2�log2 k2� entries of X are ±1,
and the remaining entries are 0. This makes the calculation
of �1 and �1,2 and Frobenius norms trivial.
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Fig. 5. Performance of the recovery program minimizing

max{ tr(X)
tr(X0)

,
‖X‖1,2
‖X0‖1,2

} with a PSD constraint. The dark region corresponds

to the experimental region of failure due to insufficient measurements.
As predicted by Theorem 3, the number of required measurements increases
linearly with rd.

In particular, ‖X0‖2
F = ‖X0‖1 = k12�log2 k2�, ‖X0‖1,2 =√

k12�log2 k2� and ‖XT
0 ‖1,2 = k12

�log2 k2�
2 . Substituting these

yield the results for these norms.
To lower bound the nuclear norm, observe that, each of

the first r rows of H are repeated at least �k1
r � times in X.

Combined with orthogonality, this ensures that each singular
value of X that is associated with the jth row of H is at least√

2�log2 k2��k1
r � for all 1 ≤ j ≤ r. Consequently

‖X‖� ≥ r

√

2�log2 k2��k1

r
�.

Hence,

‖X̄‖� ≥
r
√

2�log2 k2��k1
r �

√
k12�log2 k2�

= r

√
1
k1

�k1

r
�.

Finally, we use the fact that �k1
r � ≥ k1

2r as k1 ≥ r.
If we are allowed to use complex numbers, then

one can apply the same idea with the Discrete Fourier
Transform (DFT) matrix. Similar to Hn, DFT has orthogonal
rows and its entries have the same absolute value. However,
it exists for any n ≥ 1 which makes the argument more
concise.

VIII. NUMERICAL EXPERIMENTS

In this section, we numerically verify our theoretical bounds
on the number of measurements for the sparse and low-rank
recovery problem. We demonstrate the empirical performance
of the weighted maximum of the norms fbest (see Lemma 1),
as well as the weighted sum of norms.

The experimental setup is as follows. Our goal is to explore
how the number of required measurements m scales with the
size of the matrix d. We consider a grid of (m, d) values,
and generate at least 100 test instances for each grid point
(in the boundary areas, we increase the number of instances
to at least 200).

We generate the target matrix X0 by generating a k × r
i.i.d. Gaussian matrix G, and inserting the k×k matrix GGT

Fig. 6. Performance of the recovery program minimizing

max{ tr(X)
tr(X0)

,
‖X‖1
‖X0‖1

} with a PSD constraint. r = 1, k = 8 and d is

allowed to vary. The plot shows m versus d to illustrate the lower bound
Ω(min{k2, dr}) predicted by Theorem 3.

in an d × d matrix of zeros. We take r = 1 and k = 8
in all of the following experiments; even with these small
values, we can observe the scaling predicted by our
bounds. In each test, we measure the normalized recovery
error ‖X−X0‖F

‖X0‖F
and declare successful recovery when this

error is less than 10−4. The optimization programs are solved
using the CVX package [61], which calls the SDP solver
SeDuMi [62].

We first test our bound in part (b) of Theorem 3,
Ω(rd), on the number of measurements for recovery in
the case of minimizing max{ tr(X)

tr(X0) ,
‖X‖1,2
‖X0‖1,2

} over the set
of PSD matrices. Figure 5 shows the results, which
demonstrates m scaling linearly with d (note that r = 1).

Next, we replace the �1,2 norm with the �1 norm and
consider a recovery program that emphasizes entry-wise
sparsity rather than block sparsity. Figure 6 demonstrates the
lower bound Ω(min{k2, d}) in Part (c) of Theorem 3 where
we attempt to recover a rank-1 PSD matrix X0 by minimizing
max{ tr(X)

tr(X0) ,
‖X‖1
‖X0‖1

} subject to the measurements and a
PSD constraint. The dashed green curve in the figure shows the
empirical 95% failure boundary, depicting the region of failure
with high probability that our results have predicted. It starts
off growing linearly with d, when the term rd dominates
the term k2, and then saturates as d grows and the k2 term
(which is a constant in our experiments) becomes dominant.

The penalty function max{ tr(X)
tr(X0) ,

‖X‖1
‖X0‖1

} depends on the
norm of X0. In practice the norm of the solution is not
known beforehand; a weighted sum of norms is used instead.
In Figure 7 we examine the performance of the weighted sum
of norms penalty in recovery of a rank-1 PSD matrix, for
different weights. We pick λ = 0.20 and λ = 0.35 for a
randomly generated matrix X0. It can be seen that we get a
reasonable result which is comparable to the performance of
max{ tr(X)

tr(X0) ,
‖X‖1
‖X0‖1

}.

In addition, we consider the amount of error in the recovery
when the program fails. Figure 8 shows two curves below
which we get a 90% failure, where for the upper (green) curve
the normalized error threshold for declaring failure is 10−4,
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Fig. 7. Performance of the recovery program minimizing tr (X) + λ‖X‖1

with a PSD constraint, for λ = 0.2 (left) and λ = 0.35 (right).

Fig. 8. 90% frequency of failure where the threshold of recovery is 10−4 for

the green (upper) and 0.05 for the red (lower) curve. max{ tr(X)
tr(X0)

, ‖X‖1
‖X0‖1

}
is minimized subject to the PSD constraint and the measurements.

and for the lower (red) curve it is a larger value of 0.05.
We minimize max{ tr(X)

tr(X0)
, ‖X‖1
‖X0‖1

} as the objective.
We observe that when the recovery program has an
error, it is very likely that this error is large, as the curves
for 10−4 and 0.05 almost overlap. Thus, when the program
fails, it fails badly. This observation agrees with intuition
from similar problems in compressed sensing where sharp
phase transition is observed.

As a final comment, observe that, in Figures 6, 7 and 8
the required amount of measurements slowly increases even
when d is large and k2 = 64 is the dominant constant term.
While this is consistent with our lower bound of Ω(k2, d),

Fig. 9. We compare sample complexities of different approaches for a rank 1,
40×40 matrix as function of sparsity. The sample complexities were estimated
by a search over m, where we chose the m with success rate closest to 50%
(over 100 iterations).

the slow increase for constant k, can be explained by the fact
that, as d gets larger, sparsity becomes the dominant structure
and �1 minimization by itself requires O (

k2 log d
k

)
measure-

ments rather than O (
k2

)
. Hence for large d, the number of

measurements can be expected to grow logarithmically in d.
In Figure 9, we compare the estimated phase transition

points for different approaches for varying sparsity levels.
The algorithms we compare are,

• Minimize �1 norm,
• Minimize �1 norm subject to the positive-semidefinite

constraint,
• Minimize trace norm subject to the positive-semidefinite

constraint,
• Minimize max{ tr(X)

tr(X0)
, ‖X‖1
‖X0‖1

} subject to the
positive-semidefinite constraint.

Not surprisingly, the last option outperforms the rest in all
cases. On the other hand, its performance is highly comparable
to the minimum of the second and third approaches. For all
regimes of sparsity, we observe that, measurements required
by the last method is at least half as much as the minimum
of the second and third methods.

IX. DISCUSSION

We have considered the problem of recovery of a
simultaneously structured object from limited measurements.
It is common in practice to combine known norm penalties
corresponding to the individual structures (also known as
regularizers in statistics and machine learning applications),
and minimize this combined objective in order to recover
the object of interest. The common use of this approach
motivated us to analyze its performance, in terms of the
smallest number of generic measurements needed for correct
recovery. We showed that, under a certain assumption on the
norms involved, the combined penalty requires more generic
measurements than one would expect based on the degrees
of freedom of the desired object. Our lower bounds on the
required number of measurements implies that the combined
norm penalty cannot perform significantly better than the best
individual norm.
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These results raise several interesting questions, and lead
to directions for future work. We briefly outline some of
these directions, as well as connections to some related
problems.

A. Quantifying Recovery Failure via Error Bounds

We observe from the recovery error plots shown in Figure 8
that whenever our recovery program fails, it fails with a
significant recovery error. The figure shows two curves under
which recovery fails with high probability, where failure is
defined by the normalized error ‖X − X0‖F /‖X0‖F being
above 10−4 and 0.05. The two curves almost coincide. This
observation leads to the question of whether we can
characterize how large the error is with a high probability
over the random measurements. A lower bound on the
recovery error as a function of the number of problem
parameters will be very insightful.

B. Defining New Atoms for Simultaneously
Structured Models

Our results show that combinations of individual norms
do not exhibit a strong recovery performance. On the other
hand, the seminal paper [9] proposes a remarkably general
construction for an appropriate penalty given a set of atoms.
Can we revisit a simultaneously structured recovery problem,
and define new atoms that capture all structures at the same
time? And can we obtain a new norm penalty induced by
the convex hull of the atoms? Abstractly, the answer is yes,
but such convex hulls may be hard to characterize, and the
corresponding penalty may not be efficiently computable. It is
interesting to find special cases where this construction can
be carried out and results in a tractable problem. Recent
developments in this direction include the “square norm”
proposed by [40] for the low-rank tensor recovery which
provably outperforms (2) for Gaussian measurements and the
(k, q)-trace norm introduced by Richard et al. to estimate
S&L matrices [63].

C. Algorithms for Minimizing Combination of Norms

Despite the limitation in their theoretical performance,
in practice one may still need to solve convex relaxations that
combine the different norms, i.e., problem (3). Consider the
special case of sparse and low-rank matrix recovery.
All corresponding optimization problems mentioned
in Theorem 3 can be expressed as a semidefinite program and
solved by standard solvers; for example, for the numerical
experiments in Section VIII we used the interior-point solver
SeDuMi [62] via the modeling environment CVX [61].
However, interior point methods do not scale for problems
with tens of thousands of matrix entries, which are common in
machine learning applications. One future research direction
is to explore first-order methods, which have been successful
in solving problems with a single structure (for example �1 or
nuclear norm regularization alone). In particular, Alternating
Directions Methods of Multipliers (ADMM) appears to be a
promising candidate.

D. Characterizing the Tightness of the Lower Bounds

The results provided in this paper are negative in nature,
as we characterize the lower bounds on the required amount
of measurements for mixed convex recovery problems.
However, it would be interesting to see how much we
can gain by making use of multiple norms and how tight
are these lower bounds. In [64], the authors investigate a
specific simultaneous model where a signal x ∈ R

n is
sparse in both time and frequency domains,
i.e., x and Dx are k1, k2 sparse respectively where D is the
Discrete Fourier Transform matrix. For recovery, the authors
consider minimizing ‖x‖1+λ‖Dx‖1 subject to measurements.
Intuitively, results of this paper would suggest the necessity
of Ω(min{k1, k2}) measurements for successful recovery.
On the other hand, best of the individual functions (�1 norms)
will require Ω(min{k1 log n

k1
, k2 log n

k2
}) measurements.

In [64], it is shown that the mixed approach will require as
little as max{k1, k2} log log n under mild assumptions.

This shows that the mixed approach can result in a
logarithmic improvement over the individual functions when
k1 ≈ k2 and the lower bound given by this paper might be
achievable up to a small factor.

E. Connection to Sparse PCA

The sparse PCA problem (see [65]–[67]) seeks sparse
principal components given a (possibly noisy) data matrix.
Several formulations for this problem exist, and many
algorithms have been proposed. In particular, a popular
algorithm is the SDP relaxation proposed in [67], which is
based on the following formulation.

For the first principal component to be sparse, we seek an
x ∈ R

n that maximizes xTAx for a given data matrix A,
and minimizes ‖x‖0. Similar to the sparse phase retrieval
problem, this problem can be reformulated in terms of
a rank-1, PSD matrix X = xxT which is also row- and
column-sparse. Thus we seek a simultaneously low-rank
and sparse X. This problem is different from the recovery
problem studied in this paper, since we do not have m random
measurements of X. Yet, it will be interesting to connect
this paper’s results to the sparse PCA problem to potentially
provide new insights for sparse PCA.

APPENDIX A
PROPERTIES OF CONES

In this appendix, we state some results regarding cones
which are used in the proof of general recovery. Recall the
definitions of polar and dual cones from Section II.

Theorem 5 (Moreau’s Decomposition Theorem, [68]): Let
C be a closed and convex cone in R

n. Then, for any x ∈ R
n,

we have
• x = PC(x) + PC◦(x).
• 〈PC(x),PC◦(x)〉 = 0.
Lemma 9 (Projection is Nonexpansive): Let C ∈ R

n be a
closed and convex set and a,b ∈ R

n be vectors. Then,

‖PC(a) − PC(b)‖2 ≤ ‖a− b‖2.
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Corollary 4: Let C be a closed convex cone and a,b be
vectors satisfying PC(a − b) = 0. Then

‖b‖2 ≥ ‖PC(a)‖2.

Proof: Using Lemma 9, we have ‖PC(a)‖2 = ‖PC(a) −
PC(a − b)‖2 ≤ ‖b‖2.

The unit sphere in R
n will be denoted by Sn−1 for the

following theorems.
Theorem 6 (Escape Through a Mesh, [69]): For a given

set D ∈ Sn−1, define the Gaussian width as

ω(D) = E

[
sup
x∈D

〈x,g〉
]
,

in which g ∈ R
n has i.i.d. standard Gaussian entries. Given m,

let d =
√

n − m − 1
4
√

n−m
. Provided that ω(D) ≤ d a

random m−dimensional subspace which is uniformly drawn
w.r.t. Haar measure will have no intersection with D with
probability at least

1 − 3.5 exp(−(d − ω(D))2). (A.1)

Theorem 7: Consider a random Gaussian map
G : R

n → R
m with i.i.d. entires and the corresponding

adjoint operator G∗. Let C be a closed and convex cone and
recalling Definition 3, let

ζ(C) := 1 − D̄(C), γ(C) := 2

√
1 + D̄(C)
1 − D̄(C)

.

where D̄(C) = D(C)√
n

. Then, if m ≤ 7ζ(C)
16 n, with probability

at least 1 − 6 exp(−( ζ(C)
4 )2n), for all z ∈ R

n we have

‖G∗(z)‖2 ≤ γ(C)‖PC(G∗(z))‖2. (A.2)

Proof: For notational simplicity, let ζ = ζ(C) and
γ = γ(C). Consider the set

D =
{
x ∈ Sn−1 : ‖x‖2 ≥ γ‖PC(x)‖2

}

and we are going to show that with high probability, the range
of G∗ misses D. Using Theorem 5, for any x ∈ D, we may
write

〈x,g〉 = 〈PC(x) + PC◦(x),PC(g) + PC◦(g)〉
≤ 〈PC(x),PC(g)〉 + 〈PC◦(x),PC◦(g)〉
≤ ‖PC(x)‖2‖PC(g)‖2 + ‖PC◦(x)‖2‖PC◦(g)‖2

≤ γ−1‖PC(g)‖2 + ‖PC◦(g)‖2 (A.3)

where in (A.3) we used the fact that elements of C and C◦

have nonpositive inner products and ‖PC(x)‖2 ≤ ‖x‖2 is
by Lemma 9. Hence, from the definition of Gaussian width,

ω(D) = E

[
sup
x∈D

〈x,g〉
]

≤ γ−1
E [‖PC(g)‖2] + E [‖PC◦(g)‖2]

≤ √
n(γ−1D̄(C◦) + D̄(C)) ≤ 2 − ζ

2
√

n.

Where we used the fact that γ ≥ 2D̄(C◦)

1−D̄(C)
; which follows

from D̄(C)2 + D̄(C◦)2 ≤ 1 (see Theorem 5 above). Hence,
whenever,

m ≤ 7ζ

16
n ≤ (1 − (

4 − ζ

4
)2)n = m′,

using the upper bound on ω(D), we have,

(
√

n − m − ω(D) − 1
4
√

n − m
)2

≥ (
√

n − m − ω(D))2 − 1
2
≥ (

ζ

4
)2n − 1

2
.

Now, using Theorem 6, the range space of G∗ will miss the
undesired set D with probability at least 1 − 3.5 exp(−( ζ

4 )2

n + 1
2 ) ≥ 1 − 6 exp(−( ζ

4 )2n).
Lemma 10: Consider the cones S

d and S
d
+ in the space

R
d×d. Then, D̄(Sd) < 1√

2
and D̄(Sd

+) <
√

3
2 .

Proof: Let G be a d×d matrix with i.i.d. standard normal
entries. Set of symmetric matrices S

d is an d(d+1)
2 dimensional

subspace of R
d×d. Hence, E ‖PSd(G)‖2

F = d(d+1)
2 and

E ‖P(Sd)◦(G)‖2
F = d(d−1)

2 . Hence,

D̄(Sd) =

√
d(d − 1)

2d2
<

1√
2
.

To prove the second statement, observe that projection of a
matrix A ∈ R

d×d onto S
d
+ is obtained by first projecting A

onto S
d and then taking the matrix induced by the positive

eigenvalues of PSd(A). Since, G and −G are identically
distributed and S

d
+ is a self dual cone, P

S
d
+
(G) is identically

distributed as −P
S

d
−
(G) where S

d
− = (Sd

+)◦ stands for
negative semidefinite matrices. Hence,

E ‖P
S

d
+
(G)‖2

F =
E ‖PSd(G)‖2

F

2
=

d(d + 1)
4

,

E ‖P(Sd
+)◦(G)‖2

F =
d(3d − 1)

4
.

Consequently, D̄(Sd
+) =

√
3
4 − 1

4d <
√

3
4 .

APPENDIX B
NORMS IN SPARSE AND LOW-RANK MODEL

A. Relevant Notation for the Proofs

Let [k] denote the set {1, 2, . . . , k}. Let Sc, Sr denote the
indexes of the nonzero columns and rows of X0 so that
nonzero entries of X0 lies on Sr×Sc submatrix. Sc,Sr denotes
the k1, k2 dimensional subspaces of vectors whose nonzero
entries lie on Sc and Sr respectively.

Let X0 have singular value decomposition UΣVT such that
Σ ∈ R

r×r and columns of U,V lies on Sc,Sr respectively.

B. Proof of Lemma 6

Proof: Observe that Tc = R
d × Sc and Tr = Sr × R

d

hence Tc∩Tr is the set of matrices that lie on Sr×Sc. Hence,
E� = UVT ∈ Tc ∩Tr. Similarly, Ec and Er are the matrices
obtained by scaling columns and rows of X0 to have unit size.
As a result, they also lie on Sr ×Sc and Tc ∩Tr. E� ∈ T� by
definition.

Next, we may write Ec = X0Dc where Dc is the
scaling nonnegative diagonal matrix. Consequently, Ec lies
on the range space of X0 and belongs to T�. This follows
from definition of T� in Lemma 4 and the fact that
(I − UUT )Ec = 0.
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In the exact same way, Er = DrX0 for some nonnegative
diagonal Dr and lies on the range space of XT and hence lies
on T�. Consequently, E�,Ec,Er lies on Tc ∩ Tr ∩ T�.

Now, consider

〈Ec,E�〉 =
〈
X0Dc,UVT

〉
= tr

(
VUT UΣVT Dc

)

= tr
(
VΣVT Dc

) ≥ 0

since both VΣVT and Dc are positive semidefinite matrices.
In the exact same way, we have 〈Ec,E�〉 ≥ 0. Finally,

〈Ec,Er〉 = 〈X0Dc,DrX0〉 = tr
(
DcXT

0 DrX0

) ≥ 0,

since both Dc and XT
0 DrX0 are PSD matrices. Overall, the

pairwise inner products of Er,Ec,E� are nonnegative.

C. Results on the Positive Semidefinite Constraint

Lemma 11: Assume X,Y ∈ S
d
+ have eigenvalue decom-

positions X =
∑rank(X)

i=1 σiuiuT
i and Y =

∑rank(Y)
i=1 civivT

i .
Further, assume 〈Y,X〉 = 0. Then, UT Y = 0 where
U = [u1 u2 . . . urank(X)].

Proof: Observe that,

〈Y,X〉 =
rank(X)∑

i=1

rank(Y)∑

j=1

σicj |uT
i vj |2.

Since σi, cj > 0, right hand side is 0 if and only if uT
i vj = 0

for all i, j. Hence, the result follows.
Lemma 12: Assume X0 ∈ S

d
+ so that in Section IX-A,

Sc = Sr, Tc = Tr, k1 = k2 = k and U = V. Let
R = Tc ∩ Tr ∩ T� ∩ S

d, S� = T� ∩ S
d, and,

Y = {Y∣∣Y ∈ (Sd
+)∗, 〈Y,X0〉 = 0},

Then, the following statements hold.

• S� ⊆ span(Y)⊥. Hence, R ⊆ S� and is orthogonal to Y .

• E� ∈ R, ‖PR(Ec)‖F

‖Ec‖F
= ‖PR(Er)‖F

‖Er‖F
≥ 1√

2
.

Proof: The dual of S
d
+ with respect to R

d×d is the set sum
of S

d
+ and Skewd where Skewd is the set of skew-symmetric

matrices. Now, assume, Y ∈ Y and X ∈ S�. Then, 〈Y,X〉 =〈
Z
2 ,X

〉
where Z = Y + YT ∈ S

d
+ and 〈Z,X0〉 = 0. Since

X0, Z are both PSD, applying Lemma 11, we have UT Z = 0
hence (I − UUT )Z(I − UUT ) = Z which means Z ∈ T⊥

� .
Hence, 〈Z,X〉 = 〈Y,X〉 = 0 as X ∈ S� ⊂ T�. Hence,
span(Y) ⊆ S⊥

� .
For the second statement, let T∩ = T� ∩ Tc ∩ Tr. Recalling

Lemma 6, observe that E� ∈ T∩. Since E� is also symmetric,
E� ∈ R. Similarly, Ec,Er ∈ T∩, 〈Ec,Er〉 ≥ 0 and
‖PR(Ec)‖ = ‖Ec+Er

2 ‖F ≥ ‖Ec‖F√
2

. Similar result is true
for Er.

APPENDIX C
RESULTS ON NON-CONVEX RECOVERY

Next two lemmas are standard results on sub-gaussian
measurement operators.

Lemma 13 (Properties of Sub-Gaussian Mappings):
Assume X is an arbitrary matrix with unit Frobenius
norm. A measurement operator A(·) with i.i.d zero-mean

isotropic subgaussian rows (see Section IV) satisfies
the following:

• E[‖A(X)‖2
2] = m.

• There exists an absolute constant c > 0 such that, for all
1 ≥ ε ≥ 0, we have

P(|‖A(X)‖2
2 − m| ≥ εm) ≤ 2 exp(−cε2m).

Proof: Observe that, when ‖X‖F = 1, entries of A(X)
are zero-mean with unit variance. Hence, the first statement
follows directly. For the second statement, we use the fact that
square of a sub-gaussian random variable is sub-exponential
and view ‖A(X)‖2

2 as a sum of m i.i.d. subexponentials with
unit mean. Then, result follows from [51, Corollary 5.17].

For the consequent lemmas, Sd1×d2 denotes the unit
Frobenius norm sphere in R

d1×d2 .
Lemma 14: Let D ∈ R

d1×d2 be an arbitrary cone and
A(·) : R

d1×d2 → R
m be a measurement operator with

i.i.d zero-mean and isotropic sub-gaussian rows. Assume that
the set D̄ = Sd1×d2 ∩ D has ε-covering number bounded
above by η(ε). Then, there exists constants c1, c2 > 0
such that whenever m ≥ c1 log η(1/4), with probability
1 − 2 exp(−c2m), we have

D ∩ Null(A) = {0}.
Proof: Let η = η(1

4 ), and {Xi}η
i=1 be a 1

4 -covering of D̄.
With probability at least 1−2η exp(−cε2m), for all i, we have

(1 − ε)m ≤ ‖A(Xi)‖2
2 ≤ (1 + ε)m.

Now, let Xsup = arg supX∈D̄ ‖A(X)‖2. Choose 1 ≤ a ≤ η
such that ‖Xa − Xsup‖2 ≤ 1/4. Then:

‖A(Xsup)‖2 ≤ ‖A(Xa)‖2 + ‖A(Xsup − Xa)‖2

≤ (1 + ε)m +
1
4
‖A(Xsup)‖2.

Hence, ‖A(Xsup)‖2 ≤ 4
3 (1 + ε)m. Similarly, let

Xinf = arg infX∈D̄ ‖A(X)‖2. Choose 1 ≤ b ≤ η satisfying
‖Xb − Xinf‖ ≤ 1/4. Then,

‖A(Xinf)‖2 ≥ ‖A(Xb)‖2 − ‖A(Xinf − Xb)‖2

≥ (1 − ε)m − 1
3
(1 + ε)m.

This yields ‖A(Xinf)‖2 ≥ 2−4ε
3 m. Choosing ε = 1/4

whenever m ≥ 32
c log(η) with the desired probability,

‖A(Xinf)‖2 > 0. Equivalently, D̄ ∩ Null(A) = ∅. Since
A(·) is linear and D is a cone, the claim is proved.

The following lemma gives a covering number of the set of
low rank matrices.

Lemma 15 (Candes and Plan, [11]): Let M be the set of
matrices in R

d1×d2 with rank at most r. Then, for any ε > 0,
there exists a covering of Sd1×d2 ∩ M with size at most
( c3

ε )(d1+d2)r where c3 is an absolute constant. In particular,
log(η(1/4)) is upper bounded by C(d1+d2)r for some
constant C > 0.

Now, we use Lemma 15 to find the covering number of the
set of simultaneously low rank and sparse matrices.
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A. Proof of Lemma 7

Proof: Assume M has 1
4 -covering number N . Then, using

Lemma 14, whenever m ≥ c1 log N , (18) will hold. What
remains is to find N . To do this, we cover each individual
s1×s2 submatrix and then take the union of the covers. For a
fixed submatrix, using Lemma 15, 1

4 -covering number is given
by C(s1+s2)q . In total there are

(
d1
s1

)×(
d2
s2

)
distinct submatrices.

Consequently, by using log
(
d
s

) ≈ s log d
s + s, we find

log N ≤ log
((

d1

s1

)
×

(
d2

s2

)
C(s1+s2)q

)

≤ s1 log
d1

s1
+ s1 + s2 log

d2

s2
+ s2 + (s1 + s2)q log C,

and obtain the desired result.
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