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Abstract: We present a scheme for recovering the complex input field 
launched into a waveguide array, from partial measurements of its output 
intensity, given advance knowledge that the input is sparse. In spite of the 
fact that in general the inversion problem is ill-conditioned, we demonstrate 
experimentally and in simulations that the prior knowledge of sparsity helps 
overcome the loss of information. Our method is based on GESPAR, a 
recently proposed efficient phase retrieval algorithm. Possible applications 
include optical interconnects and quantum state tomography, and the ideas 
are extendable to other multiple input and multiple output (MIMO) 
communication schemes. 
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Introduction 

The ever-increasing demand in processing speed is pushing to the limits of current inter-chip 
and inter-module bandwidth. In this context, especially important are on-chip optical 
interconnects, which hold the promise of increasing communication bandwidth to meet 
performance demands, while maintaining low power dissipation [1]. As in any information 
processing systems, power dissipation is a major issue also for on-chip systems, with 
interconnects taking an increasingly big part of the power, as process size gets smaller [2]. 
Clearly, minimizing the number of detectors in on-chip optical interconnects would be of 
major importance: it will save power, reduce system size, and decrease fabrication 
complexity. 

Here, we propose and demonstrate an experimental proof of concept of an optical scheme 
that decreases the number of detectors needed to detect a given number of bits, assuming that 
the input is sparse. Such scenarios naturally arise for example in waveguide-based photonic 
devices, which usually serve as some kind of logic gate with only a small number of excited 
inputs at a given time. In addition, the proposed scheme allows recovery of phase information 
from intensity measurements – which may allow encoding information in the signal's optical 
phase while not requiring coherent detection. The use of fewer detectors is made possible by 
using ideas emerging from the recent work on sparsity-based sub-wavelength imaging [3–7], 
and sparse phase retrieval [8–10] which are related to an area in information processing 
referred to as compressed sensing (CS) [11–13]. CS exploits prior information that a sought 
signal is sparse – i.e. contains only a few nonzero values, in order to recover the full signal 
from a small number of measurements. Traditional CS techniques deal with measurements 
that are linear in the sought signal [13,14]. However, as was recently shown [5,8–10,15,16], 
sparsity-based concepts are useful also when the measurements are quadratic, such as in the 
problem of phase-retrieval: recovering the complex input field from measurements of 
intensity only. In this work, we utilize sparsity to recover the complex input field launched 
into a waveguide array from only partial measurements of its output intensity – without any 
phase measurement whatsoever. Since this yields a quadratic problem, we use a nonlinear 
(quadratic) extension of CS [5,9]. In particular, our algorithm uses the GESPAR method to 
our setting [9]. 

Before describing the current work, a short introduction of CS is instructive. In principle, 
CS [11,12] is a signal processing method aimed at reducing the number of measurements 
necessary to recover an input signal that goes through a non-invertible system. In CS, the 
information loss associated with the passage of the signal through the system is compensated 
by prior information that the input signal is sparse - i.e. contains only a few non-zero 
coefficients. The recovery is performed by finding the sparsest solution out of all possible 
solutions that are consistent with the measurements. Although the resulting problem is in 
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general difficult to solve, under appropriate conditions it can be shown that a unique sparse 
input can be found using computationally feasible algorithms [14]. An essential condition for 
CS recovery to work well is that each measurement needs to contain information, i.e. an 
impulse input signal should get 'smeared' as much as possible in the measurement domain. 

Scheme Description 

The scheme in the current work consists of an array of evanescently-coupled single mode 
waveguides, where light couples from one waveguide to its neighbors. The propagation of 
light from plane z = 0 to plane z = z0, under tight-binding approximation, is described by the 
following coupling equation [17]: 

 ( )1 1 0k k ki a c a a
z − +

∂ + + =
∂

 (1) 

where ka  is the complex modal amplitude in waveguide k. The impulse response of a one-
dimensional array of coupled waveguides, namely, the solution to Eq. (1) with input 

0 0( 0) 1, ( 0) 0ka z a z≠= = = =  [17]: 

 [ ] ( )02k
kh k i J cz=  (2) 

with [ ]h k representing the complex modal amplitude in waveguide k, Jk being the k-order 

Bessel function, and c being the coupling coefficient, as shown in Fig. 1(a). The input signal 
is a discrete vector of complex mode-coefficients. As such, the signal propagation at every 
plane is given by convolution of the input signal with the impulse response at that plane, as 
shown in Fig. 1(b). We aim to recover this input signal from measurements of the intensity 
(only) at the output facet of the waveguide array, based on the advance knowledge that the 
input signal is sparse, i.e., the number of non-zero elements in the input signal is small. As 
known from the field of CS, sparsity-based signal recovery works best if the measurements 
are carried out in a basis that is least correlated with the basis in which the signal is sparse. It 
is therefore important to notice that, for sufficiently large value of cz0, the input signal is 
smeared by the impulse response of the system (see Fig. 1, showing the spreading of the 
signal with propagation distance). This means that performing measurements at the output of 
a sufficiently long waveguide array facilitates the use of sparsity-based methods. As shown 
below, we exploit this feature for reconstructing the input information using fewer detectors, 
and without performing any phase measurements. 

 

Fig. 1. (a) Impulse response for light propagating in a periodic waveguide array (intensity). The 
light is launched into the central waveguide (#0), and evolves such that the envelope 
corresponds to the absolute value squared of the expression in Eq. (1), from left to right. Each 
row represents an individual waveguide. (b) A different input signal would yield a 
correspondingly different propagation pattern. 
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The scheme consists of the following idea: Using a coupled waveguide array of n 
waveguides, we transmit a k-sparse input signal. That is, at 0z = , light is launched into k of 
the n waveguides with some unknown phase and amplitude distribution (where k n<< , and 
k  may also be unknown). The complex amplitudes of the light launched into the waveguides 
are the signal we wish to recover from intensity measurements at some other plane. The 
detection at plane 0z z=  is done by m  detectors (where m n< ), either by grouping several 
adjacent waveguides into a single detector and integrating over their output intensities, or 
simply by selecting a sub-group of detectors (e.g. for demultiplexing purposes). Note that 
without any prior knowledge on the input signal, this system is highly ill-posed due to the loss 
of phase information, and therefore practically non invertible in the presence of noise. 

Problem Formulation 

To formulate the problem mathematically, we denote the sought input vector, containing the 
complex amplitudes of the n possible input waveguides by n∈x , and the measurement 

vector, containing m measured output intensities (with m n< ) by m∈y . Considering the 
case where the measurements simply consist of a subset M of size m out of all waveguide 
output intensities - the input-output relations of the discrete system can be formulated by the 
following set of equations: 

 
2 * ,i i iy i M= ⋅ = ∈h x x H x  (3) 

where n
i ∈h  is the i-th row of the Toeplitz matrix representing the system’s transfer 

function, namely, [ ]jkH h j k= − , where [ ]h k  is the impulse response given by Eq. (2). 
n n

i
×∈ H  is a matrix defined by *

i i i=H h h , where * represents the conjugate transpose 
operator. Here we assumed that the measurements are taken far from the edges of the array, so 
that boundary effects are negligible. 

Recovery of the unknown vector from the set of equations in Eq. (3) is an ill-posed 
problem: not only is the number of equations smaller than the unknowns ( m n< ), but also the 
phase of the output signal is not measured – so the equations are in fact quadratic. Our 
problem is therefore to find a complex solution to m quadratic equations in n variables, with 
m n< , given only absolute value measurements. However, we have the prior information that 
our input signal is sparse. Relying on recent work [5,9] that deals with the similar problem of 
finding sparse solutions to the phase-retrieval problem (which constitutes a quadratic 
compressed sensing problem) – we employ the algorithm presented in [9]. GESPAR was 
originally intended to solve the sparse phase retrieval problem of recovering a sparse signal 
from measurements of its Fourier magnitude, but it can also be used to solve the more general 
sparse quadratic problem [9]. 

The physical system considered in the paper, consisting of many equally spaced identical 
waveguides –is shift invariant (the number of waveguides is practically infinite, as long as the 
propagation does not approach the last waveguide on either side). This is the reason for the 
Toeplitz form of the system's transfer matrix H . However, this shift invariance is by no 
means a fundamental constraint – the solution method will be identical for a disordered 
system or a system with reflections from the boundaries. The only difference would be that an 
appropriate system matrix H  will be used. 

Solution method – GESPAR 

GESPAR [9] is a method developed to solve the sparse phase retrieval problem, which is a 
special case of a sparse quadratic problem. In fact, it can be posed in the same way as Eq. (3), 
with an appropriately defined set of matrices i

H  [9]. The sparse quadratic problem that is 
actually solved is the following: 
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x
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where the parameter s is an upper limit to the number of excited waveguides. The cost 

function is denoted by ( )2

1

*( )
m

i
iif y

=

= − x x H x . 

In order to find a sparse solution x̂  to Eq. (4), we use GESPAR with the set of matrices 

i
H  relevant to our problem. This in fact requires no modification to the formulation in [9] 

other than defining i
H  to correspond to our system. The stages in GESPAR are summarized 

below - for a more detailed description see [9]: 

1. Select an initial random support for x , namely the initial guessed locations of the 
excited waveguides. 

2. Given the support, the problem defined by Eq. (4) reduces to a nonlinear least squares 
problem, which we solve by the damped-Gauss-Newton algorithm [18] that is 
commonly used for this type of problems. The damped-Gauss-Newton procedure 
produces an estimate x . 

3. Calculate the cost function ( )f x along with its gradient around the current estimate. 

4. Perform a local search by index swapping: replace an index i from the support 
containing a small absolute valued element with an index j containing a high 
absolute gradient value. Perform a damped-Gauss-Newton procedure given the new 
support, obtain sx  and calculate the cost function ( )sf x . 

5. Update support: If the cost function is improved, i.e. ( ) ( )sf f<x x , then the support is 
updated - i.e. the index i is removed from the support and the index j is added to it . 
Go to step 3. Otherwise, go to 4, until a predetermined number of swaps has been 
performed. If there is no possible improvement in the cost function by swapping - go 
to step 1. 

The procedure stops after a predetermined number of swaps. The final answer is 
thresholded, zeroing all elements with amplitudes smaller than a parameter T. 

Experimental demonstration 

We demonstrate the concept experimentally with the setup shown in Fig. 2. A collimated 
808nm laser beam is illuminating a one-dimensional Spatial-Light-Modulator (128 pixel CRI 
SLM in phase and amplitude shaping mode, between two crossed polarizers). The output of 
the SLM is then imaged onto the input facet of a 25 mm long waveguide array (femtosecond 
laser micro-fabricated bulk glass waveguides [19]), containing 100 waveguides with 18μm 
inter-waveguide separation (producing a coupling constant of c = 1.44 cm−1, such that cz = 
3.61), with each waveguide mapped by 2 pixels in the SLM, so that the spatial modulation of 
the SLM determines the input signal. The light propagates through the array, and the output 
facet is imaged onto a CCD camera, where the light intensity distribution is measured. 
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Fig. 2. Experimental scheme. The EM field emerging from the 1D SLM (working in amplitude 
mode between two crossed polarizers) is imaged onto the input facet of the waveguide array. 
The light undergoes discrete diffraction in the array. The output intensity is imaged onto a 
CCD camera. 

The measured output intensity distribution is then used to algorithmically recover the 
input field – amplitude and phase. Note again that the measurement contains only partial 
information about the output field, namely, it contains no phase information, and its resolution 
is considerably lower than the minimum required for recovering the input field through 
traditional deconvolution methods. The intensity is first discretized into a discrete vector with 
each element corresponding to the output intensity of a single waveguide, and then the 
GESPAR algorithm [9] is used to recover the input field. The prior knowledge of sparsity is 
used since only a small number of waveguides are excited at the input of the array. 

In the first experiment, shown in Fig. 3, we demonstrate recovery of a signal (amplitude 
and phase of the input field) from the complete set of available intensity measurements. Three 
waveguides are excited with different amplitudes and phases, and the light intensity and the 
output of 22 waveguides containing signal is measured (Fig. 3(a)). The signal is then 
discretized as a 1D vector – shown by the blue circles in Fig. 3(b). Using our technique, we 
are able to recover which waveguides were excited, at what amplitudes and with which 
relative phases (Fig. 3(c) and 3(d) respectively), by seeking the sparsest solution consistent 
with the measurements. Note that due to trivial ambiguity in an absolute-phase shift, the phase 
of the central waveguide is arbitrarily chosen as 0. The consistency with the measurements is 
shown by the green x’s in Fig. 3(b) – corresponding to the light intensity at output facet that 
the recovered signal would yield. Comparing the recovered signal with the original input 
(green and blue circles in Fig. 3) clearly shows that our sparsity-based technique performs 
phase retrieval accurately. 

 

Fig. 3. Recovery from the complete set of measurements: (a)measured output intensity, (b) 
discretized measurements vector, and recovery results of (c) amplitude and (d) phase. 
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Next, we demonstrate phase retrieval from partial measurements, that is, combining phase 
retrieval with super-resolution. Conceptually, this experiment corresponds to a discrete 
version of recent work on sparsity-based sub-wavelength coherent diffractive imaging [6,7]. 

Figure 4 presents the results of experiments showing the recovery of a 3-sparse signal 
(Figs. 4(b) and 4(d) show the signal’s amplitude and phase, respectively), from one half of the 
available measurements (optical intensities at the output of the waveguides), obtained by 
discarding every other measurement. Figure 4(e) shows the used part of the discretized 
measurements. The measured point-spread-function of the system is shown in Fig. 4(a), and 
the measured output intensities before discretization is shown in Fig. 4(c). Figure 4(f) 
demonstrates the super-resolution effect achieved by the method – where the non-measured 
intensities (every other waveguide) are in fact recovered with high accuracy. Here, waveguide 
13 (the left input waveguide) is chosen as having phase = 0. The correspondence between the 
amplitude and phase of the recovered signal and the amplitude and phase of original input, 
displayed in Figs. 4(b), 4(d), demonstrates that our sparsity-based technique performs super-
resolution with phase retrieval accurately. 

 

Fig. 4. Recovery from partial measurements. (a) Point spread function of the system. (b) Input 
and recovered amplitudes. (c) Measured output intensities. (d) Input and recovered phases. (e) 
The 11 measurements used and the consistency of the recovered signal at the system's output. 
(f) Super-resolution: accurate recovery of the  non-measured output intensities (blue) using half 
of the output intensities (dashed blue). 

Numerical simulations 

Having demonstrated the power of our sparsity-based method in phase-retrieval combined 
with super-resolution, it is important to study the generality of the method in terms of sparsity 
and noise. To do that, we perform numerical simulations, displayed in Fig. 5(a). In the 
simulations, we generate random complex input signals, which yield their corresponding 
partial output intensities using the transfer function of Eq. (1). We use GESPAR to recover 
the input signal from part of the measurements vector. Figure 5(a) shows the normalized 

reconstruction error, defined as 2

2

rec−x x
x

, vs. the input signal's sparsity level k, for different 

SNR levels. In these simulations, one half of the intensity measurements are used for 
reconstruction (20 out of 40), obtained by keeping only every other output waveguide 
intensity information. Each input signal is composed of k non-zero elements at randomly 
chosen locations with uniformly random phase in the range [0,2 ]π , and uniformly distributed 
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magnitude in the range [1,2] . Each data point is the averaged result of 100 iterations. Figure 
5(a) shows that good signal recovery (amplitude and phase recovery with error comparable to 
the noise level) of up to a sparsity level of 4. That is, our method facilitates super-resolution 
combined with phase retrieval when up to 4 waveguides are excited out of the possible 21 
waveguides at the center of our array, given 20 intensity measurements and SNR of 30 
(corresponding to ~3% of noise) and higher. 

Another aspect we investigate numerically is the number of measurements necessary to 
recover a signal robustly for different sparsity levels. Figure 5(b) shows the probability to 
correctly recover the excited waveguides (the support of the signal), as a function of signal 
sparsity, for various levels of m – the number of measurements. The measurements are 
distributed evenly in the output plane, and the SNR is 40. As can be seen, the support 
recovery probability is very high (>95%) for sparsity of 4, using 24 measurements, out of the 
possible 40 over which the discrete diffraction pattern can extend given the propagation 
distance z and coupling constant c, which were taken such that 4cz = . If the sparsity is very 
low (k = 2), 16 measurements empirically guarantee a robust recovery under the conditions of 
the simulation. 

 

Fig. 5. (a) Reconstruction error vs. sparsity level (k) for various SNR values. (b) Support 
location vs. sparsity levels for different values of m - number of evenly spaced intensity 
measurements 

Discussion 

An interesting aspect to investigate is the uniqueness of the system, namely, under what 
circumstances does a set of measurements correspond to a unique input vector. More 
practically, in the presence of noise – when is it guaranteed that the recovered input vector is 
close to the true input? Without using the sparsity information, the system is very ill posed, 
and multiple, significantly different, input signals produce very similar output intensities. This 
can be easily verified by using GESPAR with a large sparsity parameter s and obtaining 
arbitrary non-sparse signals that are local minima of the problem in Eq. (4). However, as the 
simulations indicate, using the sparsity prior regularizes the inverse problem, allowing robust 
recovery of sparse signals with high probability. 

In this context, we note that, while theoretical guarantees of robust sparse recovery from 
quadratic measurements do exist in the context of random measurements [16], the 
measurements in our system are structured, and therefore these guarantees do not directly 
apply. In other related recent work [20], uniqueness guarantees and recovery robustness of 
general phase-retrieval problems have been studied - but for general (non-sparse) signals, 
yielding sufficient uniqueness conditions on the measurement matrix, that are very hard to 
verify. However, in our case, the additional prior knowledge of signal sparsity may 
significantly improve these guarantees. Robustness guarantees for structured measurements of 
sparse signals are the subject of current work in progress, see for example [21]. 
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One interesting property that the coupled waveguide system possesses is the following 
specific phase ambiguity: Denoting a certain excited waveguide at the input as waveguide 0 
and setting its arbitrary phase to 0, then an identical output intensity will be attained by 
transforming the phase of all input waveguides according to: k kkφ π φ→ −  where k is the 
waveguide index. This ambiguity is a mathematical property of the transfer function, and as 
such it is inherent in the system, similar to the mirroring and shifting ambiguities occurring in 
the Fourier phase retrieval problem. This ambiguity exists here even in the completely 
noiseless case. 

Another aspect to be examined is the application of the scheme as a communication 
device. For example, when will it be beneficial to use the suggested scheme over simply using 
m uncoupled waveguides? On one hand, limiting the input signal to be sparse decreases the 
number of different possible transmittable signals. On the other hand, only by using coupling, 
one can recover the input phase information (In this sense the system can be seen as an 
interference measurement), so that a new degree of freedom to encode information is 
introduced. Whether using the sparse mode coupled system is beneficial will depend on the 
specific properties of the system, namely signal to noise ratio (SNR), coupling coefficient, 
etc., but a general framework of comparing certain aspects of the two approaches is presented. 

To make a fair comparison, we allow multilevel intensity detection in both cases. Let us 
first consider a system of m uncoupled waveguides, with m intensity measurements. 
Multilevel detection implies non binary quantization of the input signal, and we denote by q  
the number of quantization levels that would allow a robust recovery (up to a pre-determined 
bit error rate) given the system’s SNR. The number of different transmittable signals in the 
system is therefore m

ucn q=  . 

Moving on to the coupled-waveguide system – we denote by 'aq  and 'pq the number of 

quantization levels in a k sparse signal’s amplitude and phase, respectively, that would allow 
its recovery using an array of n waveguides, given m intensity measurements . The number of 
possible signals is in this case is given by: 

 ( )
' ' !

' '
! !

k k
a pk k

c a p

q q mm
n q q

k k m k

⋅ ⋅ = ⋅ ⋅ =  − 
 (5) 

Using the coupled mode system will therefore be beneficial in the sense of the number of 
possible transmittable signals if: 
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The above discussion is only partial, and many other considerations apply to an actual 
communication system, e.g. the process necessary to recover the input given the output. For 
example, in an actual communication application, the signal recovery would have to be very 
fast in order for the scheme to be useful. The exact performance details will depend on the 
implementation and on signal size and sparsity level, however, GESPAR has been shown to 
outperform existing phase retrieval algorithms in terms of computational speed as well as 
recovery performance [9]. For small enough signal sizes and sparsity the algorithm is very 
fast, requiring a small number of matrix inversions, the size of which is linear in the number 
of waveguides times the sparsity level. 

Finally, it should be noted that having additional prior information on the input signal can 
improve the recovery performance. Adding prior information in addition to sparsity in order 
to improve recovery performance has been recently suggested in the context of image 
interpolation [22]. In our case, such additional information may be the total power in the 
system, a known amplitude relation between the input waveguides (e.g. all input waveguides 
have identical input amplitude - a binary input signal), or known phase relation - e.g. all input 

#193517 - $15.00 USD Received 9 Jul 2013; revised 2 Sep 2013; accepted 17 Sep 2013; published 1 Oct 2013
(C) 2013 OSA 7 October 2013 | Vol. 21,  No. 20 | DOI:10.1364/OE.21.024015 | OPTICS EXPRESS  24023



waveguides have the same input phase. The latter can be easily incorporated into GESPAR, as 
it can be viewed as a real (rather than complex) input signal, which is the case dealt with in 
[9]. 

Conclusion 

In conclusion, we have demonstrated numerically and experimentally super-resolution phase-
retrieval in an array of coupled waveguides. This is a generalization of sparsity based super 
resolution combined with phase retrieval [6] to a system with a transfer function different than 
free space propagation. This waveguide array serves as a model for a general system of 
optical interconnects, characterized by a specific transfer function. The work presented here 
has studied a one dimensional array, but naturally, interconnects can also have a higher 
dimensionality – depending on the number of nearest neighbors coupled to every specific site. 
From the recent paper on super-resolution coherent diffractive imaging, we conjecture that 
two dimensional interconnects would most probably also allow sparsity-based super-
resolution phase-retrieval. It is most certainly interesting to explore phase retrieval in 
interconnects of a higher dimensionality. In a more general context, the method proposed here 
can be applied to various other multiple-input multiple-output (MIMO) communication 
schemes – for instance schemes based on multimode or multi-core fibers. 

In addition, the technique can serve as the basis for super-resolution in quantum 
coincidence measurements in a waveguide array setting [23–25]. The ability to efficiently 
measure super-positions of states consisting of several photons is essential the 
characterization of quantum optical systems and computation units [26,27]. Such 
measurements are typically coincidence measurements. However, high-order coincidence 
measurements, which are required for the characterization of systems of more than two 
photons, are very hard to implement experimentally, and the number of different 
measurements required for the n-fold coincidence grows very fast with n. Sparsity may be 
used to reduce the number and the dimension of the required coincidence measurements, and 
a coupled waveguide array system can be suitable for an experimental demonstration of this 
concept [28]. 
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