Sub-Nyquist Sampling of
Wideband Signals

Deborah Cohen

Technion — Israel Institute of Technology

Sub-Nyquist Sampling (Xampling) —
Smart Sampling Seminar

March 218, 2012



@ Motivation

® Algorithms

@ Sampling: MWC and Multicoset
@ Recovery

@ Challenges and Trade-Offs
@Treatment of Noise



Spectrum Saturation
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@® Licensed frequency bands to Primary Users (PUs):

TV, radio stations, mobile carriers, air traffic control...)
@® Spectrum is too crowded
@ Cannot allocate frequency bands to new users!



Spectrum Sparsity

Measured Spectrum Occupancy in Chicago, IL

PLM, Amatewr, others: 30-54 MHz

TV 2-8, RC: 54-88 MHz

Air fraffic Control, Aero Mav: 108-135 MHz
Foeed Mobile, Amateur, others:138-174 MHz

TV 7-13: 174216 MHz

Maritime Mobile, Amateur, others: 216-225 MHz
Fixed Mobile, Aerg, cthers: 225406 MHz
Amateur, Fixed, Mobile, Radiclocation, 406-470 MHz

TV 14-20: 470-512 MHz

TV 21-36: 512-608 MHz

TV 37-51: 605-698 MHz

TW 52-69: 6956-806 MHz

Cell phone and SMR: 506-902 MHz
Unlicensed: 902-928 MHz

—

IFF, TACAN, GPS, others: 960-1240 MHz

Amatewr: 1240-1300 MHz

Aero Radar, Military: 1300-1400 MHz

Space/Satellite, Fixed Mobile, Telemetry: 1400-1525 MHz
Mobile Satelite, GPS, Meteorologicial: 1525-1710 MHz
Foeed, Fixed Mobile: 1710-1850 MHz

=

PCS, Asyn, |so: 1850-1990 MHz

TV Awc 1990-2110 MHz

Commen Carriers, Private, MDS: 2110-2200 MHz
Space Operation, Fixed: 2200-2300 MHz
Amateur, WCS, DARS: 2300-2360 MHz
Telemetry: 2360-2350 MHz

 —

UPCS, ISM (Unlicensed): 2390-2500 MHz

Paging, SMS, Fixed, BX Awx, and FMS: 925-906 MHz
ITFS, MMDS: 2500-2686 MHz

Surveillance Radar: 2656-2900 MHz

—
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Shared Spectrum Company (S5C) —16-18 Nov 2005

@® Spectrum is
underutilized

@ In a given place, at a
given time, only a
small number of PUs
transmit concurrently

Can we exploit temporarily available spectrum holes for
opportunistic transmissions?




Cognitive Radios

@ Principle:

@ Perform spectrum sensing to search for available
spectrum holes

@ Monitor spectrum during transmission to detect any
change in PUs’ activity
@ Requirements:
@® Wideband spectrum sensing
® Real-time
@ Reliability
@ Minimal hardware and software resources (mobile)

Nyquist sampling is not an option!
How do we efficiently perform detection on a wideband signal?
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@ Multiband model:

@ N — max number of transmissions
@ B — max bandwidth of each transmission

@ Goal: blind detection

@ Minimal achievable rate: 2NB << fyq



The Modulated Wideband Converter
(MWC) Mishali & Eldar ‘10




MWC - Mixing & Aliasing

@ Mixing function p, (t)periodic with period T,

@ Examples:
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Frequency domain

@ Practical considerations:
@ Can’t design nice sign patterns at high frequency
@® Only periodicity and frequency smoothness matter



MWC - Aliasing
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MWC - Recovery
(AM -
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@ Support S recovery

@ Signal reconstruction: zy(f)=Aly(f)



MWC - Support Recovery (CTF)

Problem: infinite number of linear systems (f is continuous)

@Solve in the time domain for each n:
y(f) = Az(f) e—— y[n|=Azn]

@ Time consuming

@ Not robust to noise
@ CTF (Continuous To Finite):

— Q= y[nly"[n] » Q=VV —| V=AU » S =supp(U) —
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MWC - Single Channel

m channels at rate f, [—> [ 1 channel at rate mf,

@ A system with f,=af, provides g
equations for each physical channel

@ Trade-off:

@ Fewer channels: big hardware savings
@ Increased rate in each channel



Alternative: Multicoset Sampling

Mishali & Eldar ‘09

@ Selection of certain samples from the

. . 1 .
Nyquist grid at rate f,=—:

X, [n]=x(nMT +cT), 0<c <M-1
Time shifts 1<1<m
t=nMT
At=c,t /— x%,[n]
EOR )
t=nMT

— At=c, t 7 — % [n]




Multicoset vs. MWC

@ Same...
® Minimal sampling rate
@ Relation between samples and original signal
@ Reconstruction scheme

@ ... But Different

X Difficult to maintain accurate time shifts
x PI‘aCthal ADCS dlstort the sam pleS Model of a practical ADC device
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v Easier to implement — less hardware
¥ Solve digital bottleneck in case of low bandwidth



Sub-Nyquist Demonstration

Mishali & Eldar, ‘10

Carrier frequencies are chosen to create overlayed aliasing at baseband

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz MWC prototype aliasing around 6.171 MHz

10 kHz o 100 kHz
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FM @ 631.2 MHz AM @ 807.8 MHz



But...

Joint work with Cores, UCLA

Problem: High sensitivity to noise

@ Energy detection fails in low SNR regimes

Solution: New detection scheme

® Using a property of communication
signals that is not exhibited by noise




Cyclostationarity

@ Definition:

@ Process whose statistical characteristics vary
periodically with time

@ Example:

® Communication signals

@ Characterization:
@ Spectral correlation function (SCF)

@ Exhibits spectral peaks at certain frequency
locations called cycle frequencies



SCF — Examples
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Results

Cohen, Rebeiz et. Al, ‘11
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Sampling rate fnyq =10GHz m- fS =30-12MHz = 360MHz

We can perform recovery from MWC samples in low

SNR regimes using cyclostationary detection




Conclusions

@ Cognitive radios: solve the spectrum
congestion 1ssue

@ Crucial task: wideband analog spectrum
sensing

@ Sensing mechanism: low-rate, quick, efficient
and reliable

@ Robustness to noise: exploit communication
signals cyclostationarity
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