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Motivation 

Algorithms 
Sampling: MWC and Multicoset 

Recovery 

Challenges and Trade-Offs 

Treatment of Noise 
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Spectrum Saturation 

Licensed frequency bands to Primary Users (PUs): 

     TV, radio stations, mobile carriers, air traffic control…) 

Spectrum is too crowded 

Cannot allocate frequency bands to new users! 
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Spectrum Sparsity 

Spectrum is 
underutilized 

In a given place, at a 
given time, only a 
small number of PUs 
transmit concurrently 

Can we exploit temporarily available spectrum holes for 
opportunistic transmissions? 

Shared Spectrum Company (SSC) – 16-18 Nov 2005 
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Cognitive Radios 

Principle: 

Perform spectrum sensing to search for available 
spectrum holes 

Monitor spectrum during transmission to detect any 
change in PUs’ activity  

Requirements: 

Wideband spectrum sensing 

Real-time 

Reliability 

Minimal hardware and software resources (mobile) 

 

 

Nyquist sampling is not an option! 
How do we efficiently perform detection on a wideband signal? 
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Model 

 

 

Multiband model: 
N – max number of transmissions 

B – max bandwidth of each transmission 

 

Goal: blind detection 

 

Minimal achievable rate: 2NB << fNYQ 
 

 

~ ~ ~ ~ 
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The Modulated Wideband Converter 
(MWC) 

~ ~ ~ ~ 
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Mishali & Eldar ‘10 
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MWC – Mixing & Aliasing 

Mixing function         periodic with period  

 

Examples: 

     … 

 

 

 

Practical considerations: 

Can’t design nice sign patterns at high frequency 

Only periodicity and frequency smoothness matter 
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MWC – Aliasing 

~ ~ ~ ~ 
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MWC – Recovery 

 

 

 

 

 

 

 

 

Support S recovery 

Signal reconstruction: 
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MWC – Support Recovery (CTF) 

 

Solve in the time domain for each n: 
 

Time consuming 

Not robust to noise 

CTF (Continuous To Finite): 

 

 

 

 

 

  

 

 

 

 

Problem: infinite number of linear systems (f is continuous) 

Infinite problem (IMV)  One finite-dimensional problem  
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MWC – Single Channel 

 

 

A system with            provides   
equations for each physical channel 

 

Trade-off: 
Fewer channels: big hardware savings 

Increased rate in each channel 

 

m channels at rate fs 1 channel at rate mfs 

s pf qf q
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Alternative: Multicoset Sampling 

Selection of certain samples from the 
Nyquist grid at rate            :  
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Mishali & Eldar ‘09 
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Multicoset vs. MWC 

Same… 
Minimal sampling rate 

Relation between samples and original signal 

Reconstruction scheme 

 

… But Different 
Difficult to maintain accurate time shifts 

Practical ADCs distort the samples 

 

Easier to implement – less hardware 

Solve digital bottleneck in case of low bandwidth 
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Sub-Nyquist Demonstration 

FM @ 631.2 MHz AM @ 807.8 MHz 

1.
5 

M
H
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10 kHz 100 kHz 

Overlayed sub-Nyquist  
aliasing around 6.171 MHz 

+ + 

FM @ 631.2 MHz AM @ 807.8 MHz Sine @ 981.9 MHz MWC prototype 

Carrier frequencies are chosen to create overlayed aliasing at baseband 

Reconstruction 
(CTF) 

Mishali & Eldar, ‘10 
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But… 

 

Energy detection fails in low SNR regimes 

 

 

Using a property of communication 
signals that is not exhibited by noise 

 

 

Problem: High sensitivity to noise 

Solution: New detection scheme 
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Joint work with Cores, UCLA 
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Cyclostationarity 

Definition: 

Process whose statistical characteristics vary 
periodically with time 

Example: 

Communication signals 

Characterization: 

Spectral correlation function (SCF) 

Exhibits spectral peaks at certain frequency 
locations called cycle frequencies 

 

 

 



18 

SCF – Examples 

AM 
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(Gardner) 
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Results 
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Total # of Samples = 50 x 200

 

 

Nyquist - SNR = 0 dB

Sub-Nyquist - SNR = 0 dB

Sub-Nyquist - SNR = 5 dB

Nyquist - SNR = 5 dB

Sub-Nyquist Nyquist 

Sampling rate 10nyqf GHz 30 12 360sm f MHz MHz   

We can perform recovery from MWC samples in low 
SNR regimes using cyclostationary detection 

Cohen, Rebeiz et. Al, ‘11 
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Conclusions 

Cognitive radios: solve the spectrum 
congestion issue 

 
Crucial task: wideband analog spectrum 
sensing 

 
Sensing mechanism: low-rate, quick, efficient 
and reliable 

 
Robustness to noise: exploit communication 
signals cyclostationarity 
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Thank you 


