IET Microwaves, Antennas & Propagation

Research Article

23:1 Bandwidth ratio quasi-lumped component balun on a multilayer organic substrate

ISSN 1751-8725 Received on 12th September 2015 Revised on 21st December 2015 Accepted on 5th January 2016 doi: 10.1049/iet-map.2015.0589 www.ietdl.org

Binh L. Pham¹ [∞], Hai H. Ta², Anh-Vu Pham¹, Robert E. Leoni³, Yehuda Leviatan⁴

¹Department of Electrical and Computer Engineering, Microwave Microsystems Laboratory, University of California, Davis, Davis, CA 95616, USA

²Skywork solutions, Newbury Park, CA 91320, USA

³Microelectronics Engineering and Technology Department, Raytheon Integrated Defense Systems, Andover, MA 01810, USA

⁴Department of Electrical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

🖂 E-mail: blpham@ucdavis.edu

Abstract: In this study, the authors present the design and development of a novel ultra-wideband coupled-line balun on a multilayer liquid crystal polymer substrate. The balun is designed using a quarter wavelength (λ /4) asymmetric broadside coupled line. The defected ground structure and a lumped phase compensation circuit are developed to achieve wide bandwidth performance for the balun. The balun has a measured bandwidth ratio of 23:1, from 80 to 1860 MHz. Within the operating bandwidth, the experimental results demonstrate that the balun achieves an input return loss of better than 10 dB, an insertion loss of better than 1 dB, an amplitude imbalance of better than ±0.4 dB and a phase imbalance of better than ±10°. The size of the balun is 40.64 mm × 40.64 mm or $0.22\lambda_g \times 0.22\lambda_g$, where λ_g is the guided wavelength at the centre frequency of 970 MHz.

