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Abstract— The use of models of fictitious elemental current
sources, located inside the scatterer to simulate the scattered
field, has proved to be an efficient computational technique for
analyzing scattering by metallic bodies. This paper presents a
novel modification of the technique in which the omnidirectional
elemental sources are arranged in groups of array sources with
directional radiation patterns, and the boundary testing points
are arranged in groups of testing arrays with directional receiving
patterns. This modification which is motivated by physical under-
standing is equivalent to mathematical basis transformations. It
renders the system matrix more localized and thereby enables
the analysis of larger bodies. The new approach is applied to the
case of TM scattering by a perfectly conducting square cylinder
with side-length of 20\. Reduction of 50% in the number of the
nonzero elements of the system matrix is achieved with virtually
no degradation in the accuracy of the radar cross section (RCS)
calculations.

radiate directional beams. Likewise, the set of boundary testing
points which individually are isotropic receptors is divided
into groups to form testing arrays with directional receiving
patterns. This process can be equivalently effected, however,
by simply applying appropriate basis transformations to the
original matrix equation obtained, based on a conventional
current-model solution.

The paper is organized as follows. In Section II, the ficti-
tious source formulation is briefly outlined and notations are
established. Section III, which constitutes the main body of
the paper, is devoted to the presentation of general bases-
transformations from both the physical and mathematical
points of view. In Sections IV and V, two useful transfor-
mations are described. Section VI contains the results of an
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Fig. 1. The fictitious array approach. The fictitious sources near the smooth
parts of the scatterer (circles) are arranged in M, groups of array sources
{S("')}f.\n/f‘zl. The sources near the rapidly varying parts of the boundary
are considered individually, and we refer to this group of sources as the
(M, +1)th group. The testing points (crosses) are arranged in a similar way.
Those on the smooth parts of the boundary are arranged in M; groups of
testing arrays {P(™)}%t,  while the ones on the rapidly varying parts of
the boundary are considered individually, and we refer to this latter group
as the (M; + 1)th group. The vector of unknown source amplitudes, Im),
is then derived from a vector of unknown array amplitudes A(™) through a
linear transformation [T)(™) representing the amplitudes of the mth array
when radiating in different spatial directions. Likewise, the known vector of
source excitations, V(") is transformed to a vector of array excitations B(®)
via a linear transformation [Q]("). The significant elements of the modified
impedance matrix [Z] would be only those corresponding to strong coupling
between the array sources and the matching arrays. Strong coupling would
occur when the direction of an array source main beam coincides with a
direction of maximum reception of a testing array.

where I is an N,-element vector of the unknown amplitudes,
V is an N,-element excitation vector whose mth element is
—E"(t,,), and [Z] is an N; x N, system (or impedance)
matrix whose mnth element is G(t,,,r,). Namely, the mnth
element of [Z] is the field at testing point £,, due to a unit-
amplitude source centered at r,.

III. BASIS TRANSFORMATIONS

In this section, the transformation which modifies the con-
ventional system matrix [Z] to the one corresponding to
the directional array sources and directional testing arrays is
described. Specific examples will follow in the sequel.

Throughout the following, two concepts are intertwined.
One is the physical point of view which stimulated the idea of
transforming the omnidirectional sources into directional array
sources. The other is the idea of basis transformation via matrix
multiplications which facilitates the necessary mathematical
tools.

Let us divide the set of source points {r{} into groups of
{8 M1 each composed of the elements (TN,
Each of the first M, groups is treated as an array source. In
the (M, +1)th group, the sources are considered individually.
As a general practice, the first M, groups are located near
and associated with the smooth parts of the scatterer, while
the (M, + 1) group is composed of the sources located near
and associated with the irregular parts of the scatterer such as
comners and sharp edges (see Fig. 1).

We now explore a transformation [T](™) that associates with
the vector ﬂm), composed of N (m) independent amplitudes of
omnidirectional sources, a vector A(™), composed of N,(‘m) (£
N(™)) independent amplitudes of directional array sources.
Each array source is formed by a combination of omnidi-
rectional sources and corresponds to a specific excitation of
these omnidirectional sources. Towards this end, we construct
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a matrix [T])(™ in which the pth column consists of the
amplitudes of the single sources used to form a unit-amplitude
array source (A{™ = 1). Thus, we have

7 = 7)™ ™), A3)
Combining the transformations associated with the various

groups into one source-transformation matrix [T, satisfying
I = [T]A, we obtain

[Ty

7 = — @

[Inma+1)]

where [Iy(m,+n] is the square identity matrix of size
N(M:+1) " This identity matrix is due to the fact that the
S(M,+1) group remains unchanged.

Thus, (2) can be written as

V=[2)]= 2T\ = (244 (5)
where
[24) £ [Z)(T). ®)

It is important to draw attention again to the physical inter-
pretation of the transformation. [Z,] is composed of M, + 1
groups of columns. The mth group of columns is the result
of multiplying the corresponding columns of [Z] with [T (m),
Thus, the (g, p) element in this group represents the field at the
gth testing point due to a unit amplitude excitation of the pth
array source in the mth set of array sources (A;m) = 1). Since
this array source is a directional one, we expect that for testing
points that fall within the main lobe of its radiation pattern,
the value of the corresponding elements in the matrix will be
relatively large. On the other hand, for testing points that do
not fall within its main lobe, this value will be relatively small.

Similar operations can be practiced with the testing points.
Accordingly, the testing points are divided into M;+1 groups,
{P™}M:+1 " and transformations [Q](™) are introduced that
associate with the excitation vector V™, a vector B™
composed of the weighted excitations of the testing array. We
have

QI™WV™ = B™, €

The structure of [Q](“) can be explained as follows: The gth
row of [Q](™ is the weighting of the individual testing points,
equivalent to a unit weighting of the testing array BS").

Combining the transformations associated with the various
groups into one testing-transformation matrix [Q)], satisfying
[Q]V = B, we obtain

(@™

Q= ®)

Q)

[Ine+n)]

where the notations follow the previously described ones.
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Thus, (2) reduces to
[QV = B = [QIIZ)[714 = [2][4] ©)

where
(2] £ [QZ][T).

As described earlier, the magnitude spread of the elements of
the new matrix [Z] will be less uniform than that of [Z]. That
is, only a few elements will be of large values (array source
and testing array direction coincidence), while most of the
other elements will be extremely small (direction mismatch).

Since [T'] and [Q)] are block-diagonal, the matrix [Z] consists
of (M; + 1) x (M, + 1) blocks [Z](™™) given by

[Z])m) = Q)™ [Z](n,m)[T](m)

(10)

an

where [Z](*™) is the block in the original matrix [Z], corre-
sponding to the nth testing array and the mth array source. For
physical interpretation, we shall express the (g, p) element in
[2]0v™) explicitly as

N{m) N(n)

215 = Y- Y QP21

=1 =1

(12)

The physical interpretation of [Z],(Itl,;m) is as follows: it de-
scribes the field produced by the pth set of excitations of the
mth array source (the pth column in [T](™)) at any point i of
the nth testing array, weighted by the gth set of weighting (gth
row of [Q]™)). Consequently, it is anticipated that [Z)§m
will be significant only if both the pth set of array excitation
of {S}(™) will enhance radiation toward {P}™ and if the gth
set of weighting of the test array {P}(™) will be matched for
radiation from the direction of {S}(™ (see Fig. 1).

It should be mentioned that the last column of blocks (the
(M, + 1)th) in [Z] is given by

[Z]0mMet1) - Q™[ z)(™M:+1) a13)
and describes the radiation by point sources that are located
near the edges and are not treated collectively as arrays.
Similarly, the last row of blocks (the (M; + 1)th) is given by

[Z](M,,+1,m) - [Z](M'+l’m)[T](m) ‘ (14)
and accounts for reception by individual test points that are
located near the edges. Note also that

[Z2](MeA1M.+1) [Z](Mt+1,Ms+1)‘ (15)

In the following sections, two transformations will be in-
troduced. Before proceeding further, however, the following
aspects which can aid when comparing between these trans-
formations should be noted.

* Sparseness of matrix versus thresholding value—
Thresholding is the (nonlinear) process of equating to
zero all the matrix elements with magnitude below
a specified threshold. This process produces a sparse
matrix. The matrix sparseness is defined as the ratio
of the number of zero-elements in the matrix and the
total number of elements. To eliminate the influence
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Fig. 2. (a) Problem definition. (b) Schematic location of source points (“0”)

and testing points (“X”) (see details in text). The numbers on the axes are
in units of wavelength.

of a constant multiplier, the threshold is performed on
a “normalized” matrix, a matrix in which the largest
element is of unit magnitude. We anticipate that for any
given threshold, the transformed matrix will be sparser
due to the fact that its elements are less uniformly
distributed. This, in turn, is due to the directivity of the
sources which strongly effect the interaction between
sources and test points.

* Sparseness of matrix versus solution accuracy—By spec-
ifying a magnitude threshold and setting to zero all the
elements of [Z] that fall below this level, a sparse matrix
is obtained. The solution accuracy, however, may be
strongly affected by this nonlinear operation. The solution
should therefore be compared to the exact one under the
criterion of interest, be it the near-field, far-field, or any
other quantity.

* Computational complexity—The transformations de-
scribed require extra computations above those needed for
computing [Z]. This is expected to be compensated for,
however, by the advantages gained from the sparseness
of the matrix.

* Condition number of [Z]—The condition number gives
an estimate of how small an element should be so that
it might be set to zero without significantly affecting the
result. It also serves as a good estimate to the solution
(of the matrix inversion problem) convergence rate. As
will be seen shortly, however, the transformations used
are unitary, and thus the condition number of [Z] is not
altered by the transformations. Moreover, the condition
number of [Z] strongly depends on parameters associated
with the fictitious-sources method (i.e., distance between
the sources and the surface, the spacing between sources).
Thus, we will not discuss the condition number in detail
because it is much more a characteristic of the underlying
fictitious source model method rather than a feature of
the transformations.

It should be clear that in all cases the effectiveness of
the transformation is inherently related to the geometry of
the problem. Thus, the results which follow may only be
indicative for other configurations and transformations. Here
we consider the case of the scattering of a plane-wave by
a perfectly-conducting square cylinder with side length of
20). The geometry of the problem together with a schematic
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representation of the location of the sources and testing points
is shown in Fig. 2. A source-model solution of this kind has
already been applied to a similar problem in [6]. The sources
are located as follows: There are four side segments, each
retracted by 0.3\ from the corresponding side of the body.
Considerations as to the proper choice of source locations can
be found in [7]. Each side segment consists of 84 equispaced
sources and extends 18 in length. In addition, there are eight
corner segments, each comprising ten equispaced sources,
extending from the corners to a point (1, 0.3)\) interior to the
body. The testing points are located on the cylinder perimeter.
There is a total of 208 testing points per side (twice the number
of source points).

IV. DFT TRANSFORMATION (LINEAR ARRAYS)

Perhaps the simplest and most direct way to transform the
source amplitude-vector I™) 1o the array amplitude vector
A(™) is by the use of the discrete Fourier transform (DFT).
Following (3), while assuming N (m) (the number of elements
in the group S(™)) is odd, the elements of I™ and A(™) are
related via

(N —1)/2
M= 3 wraAr (16)
p=—(N(m)—1)/2
where
W = \/ﬁ exp ( s lp). (17)
Writing (16) in a matrix form, yields
1™ = [w]m A (18)

where [W](™) is the DFT matrix, defined by (17). Note that to
facilitate a simple physical interpretation of the transformation,
the indexes we use are in the symmetric interval [—(N (™) —
1)/2, (N — 1)/2]. Equation (18) is a special case of (3)
with [T](™) — [W](™), This choice suggests the following
interpretation for the coefficients A,(,m). If the source points
in the m groug; are colinear and equispaced, then the new
variables {A,(,m } represent coefficients of linear arrays. Each
array of this kind is composed of identical sources, all with
the same amplitude and each with a progressive phase of
(2w /N™)Ip). Thus, A§,’") correspond to a linearly phased
array whose radiation angle with respect to the broadside
direction satisfies

_ A A

= Nmgm? T pm P

Here, D(™) denotes the total length of the mth array, and d(™
denotes the distance between the array elements. Note that for
positive value of p, the array main beam is on the right-hand
side of broadside, whereas for negative values of p it is on the
left-hand side of broadside. Note that only terms with
Dm)
ol < ——
correspond to propagating beams. For |p| > D(™) /), the phase
gradient between the elements is larger than the wavenumber

sin(p{™) 19)

(20)
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Fig. 3. (a) Original set of omnidirectional sources which are transformed via
[T)21x21: {Tmn} = exp(j(27/21) - m - n) to a set of directional linear
array sources. (b) Radiation patterns of the array sources (all patterns are
far-field patterns).

k, and the array generates an evanescent field which is
localized in the near vicinity of the array. Thus, the mth group
is essentially comprised of

Dm)
Po = 2 [TJ +1

arrays that emanate propagating beams. Often, the elements
are arranged in sizable groups. Hence D) > ), and there
is a large number of propagating beams. All the other arrays
generate eventually evanescent fields. The largest wavenumber
along the array, k. ___, is given by

@n

or 1 N(m)—1~l 2
dm 2 T Nm)y T 9 gm)

ktm ax

(22)

where the approximate expression applies, provided that
N({™) > 1. Note that near the smooth section of the boundary
one may choose to increase the distance d(™) between the
elements. In view of (21), this will not reduce the sampling
rate of the real spectrum, but (22) implies that this will limit the
maximum wavenumber described by the source distribution.
For example, k;_. =~ 2k yields d™ ~ /4.

Fig. 3 gives a pictorial illustration of how the transformation
works. Fig. 3(a) shows a set of N (m) = 21 single sources
which are taken to form a group. We assume, for future
purposes, that the sources are equispaced and colinear. Using
[Tl21x21: {Twmn} = exp(j(27/21) - m - n), the original
set of omnidirectional sources is transformed to a set of
directional linear array sources. Hence, instead of using the
21 independent amplitudes of the omnidirectional sources,
we deal now with 21 new, independent amplitudes which
relate to directional arrays. The far-field radiation patterns
of the array sources are depicted in Fig. 3(b). From (20), it
follows that there is a total of nine propagating beams and 12
evanescent fields. Shown are the broad-side pattern and the
patterns on its right-hand side. The patterns on the left-hand
side of broadside (not shown) are, of course, symmetrical to
those on the right-hand side. Here, the broadside pattern and
the first four patterns on its right correspond to propagating
beams. The other patterns shown correspond to evanescent
fields. It should be clear that in this figure’s configuration, any
radiation pattern attainable by the 21 independent sources is
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Fig. 4. Structure of the impedance matrix (elements of higher magnitude are shown darker) for the cases: (a) single sources (no transformation), (b) linear
array sources, and (c) double-layer array sources. Marked on the horizontal and vertical axes are the matrix row and column numbers, respectively.

also achievable by the 21 array sources, and vice-versa, which
is also evident from the fact that [T](™) is invertible.

In a similar manner, the same transformation is applied to
the testing points. We denote this transformation by [W](™).
The tilde is used to indicate that this transformation may be
different from [W](™) as there may be more testing points
than sources. Thus, we let

[W](H)V'(n) = B™ (23)
and readily obtain the new impedance matrix
2] = W][Z]W]. (24)

The grouping of the sourceftesting points in the specific
scattering problem we consider is as follows: Each of the
side segments is divided into four groups of sources, each
comprising 21 sources. The sources in the eight corner seg-
ments are combined into one group which is left unchanged
by the transformation. The testing points are grouped in a
similar manner. The structure of [Z] and [Z] is shown in
Fig. 4(a) and (b), respectively. In both cases, dotted lines
were drawn to mark the different five regions: the first four
describe the interaction between the four side segments of
the square (each containing four array sources), and the fifth
region describes interaction involving the single elements near
the corners. In Fig. 4(a), the structure of the conventional
(i.e., before transformation) impedance matrix is shown. The
only parameter determining magnitude of the elements is the
distance between the source point and the testing point. Thus,
the elements on the diagonal are large in magnitude, and this
element magnitude falls as one recedes from the diagonal.
The effect of the array directivity is readily observed in
Fig. 4(b), especially in the part of the matrix corresponding
to the intersection of the first four blocks of columns and
rows. This region describes the interaction of array sources
and test arrays. If the main lobes of the receiving and radiation
patterns do not coincide, the corresponding diagonal elements
are small even when the source array and testing array are
close. Also, clearly seen is the partition of each side to four
arrays. The curvature of the pattern of dark lines in the matrix
stems from the dynamics of the array source and testing

array coupling. A smaller degree of sparseness is exhibited
by the fifth block of columns and the fifth block of rows: they
describe, respectively, the interactions of the array sources
along the sides with the individual testing points near the
comers and the interactions of the individual point sources
near the corners with the testing arrays along the sides, and
are given, respectively, in (13) and (15).

V. DOUBLE-LAYER ARRAYS

This section takes the previously discussed ideas one step
further. As noted earlier, the radiation field produced by
the linear array sources is directed not only towards the
nearby boundary in front of them, but also backwards towards
the interior of the object. Hence, when the direction of
the array-source main beam coincides with the maximum
direction-of-reception of the testing array, the corresponding
elements in the matrix £ may be quite significant (see Fig. 1
for an illustrated description of such a coupling).

A sparser matrix could therefore be achieved if the sources
are arranged so that they can be grouped into new kinds of
arrays which radiate only in the forward direction. An array
that has this desired property can be constructed by adding to
each linear array an identical parallel array which is retracted
a distance h towards the interior of the body. The amplitudes
of respective elements in the two arrays are not independent.
The amplitudes of the rear elements are the same as those
of the front ones except for a ¢ = e/** phase lead. With
a proper choice of h, the radiation of the double-layer array
towards the interior of the body can be strongly suppressed.
For example, the choice of h = A/4 and a corresponding phase
lead of ¢ = 7 /2 would yield a null in the backward broad-side
direction. A double-layer array with h = A\/4 and ¢ = 7/2 is
depicted in Fig. 5. A similar idea of constructing directional
sources via the combination of electric and magnetic currents
can be found in [8].

To construct double-layer arrays for the square-cylinder
scattering problem, one can start with the previously described
configuration of sources and then add to the side segments a
parallel set of sources retracted by A/4 towards the interior of
the body. Next, we construct the conventional impedance ma-
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Fig. 5. Double-layer array: (a) Element locations and amplitude relations
and (b) Radiation patterns, analogous to those shown in Fig. 3(b) for the
single-layer arrays.

trices, say [Z](™™), for the interaction between the individual
elements comprising the mth double-layer array source and
the individual testing points comprising the nth testing array
as though they were all independent sources. Then, we use
the transformation matrix

(7)™ = [e]’(w/z) W]

to transform the sources amplitude vector 1™ to the (double-
layer) array amplitudes A(™) via (18). Similarly, we use
[Q)(™ = [W]™ to transform V(™) into the testing array vector
B®™ via (23). Finally, we evaluate [2] using (10).

The structure of the resulting impedance matrix [Z] is
shown in Fig. 4(c). Comparing Fig. 4(c) with (b), one observes
that the directivity of the arrays almost totally eliminates the
interaction between the array on one side of the cylinder and
the testing points on the opposite side.

VI. SIMULATION RESULTS AND DISCUSSION

In this section we turn to investigate the two transfor-
mations (DFT and double-layer) according to the previously
described aspects and compare them with the regular (non-
transformation) case. This is done on the previously described
configuration of TM scattering by a large, square cylinder.

* Matrix sparseness versus threshold value—In Fig. 6 the
sparseness of the impedance matrices is described as a
function of the threshold. From the figure it is clear
that for a given threshold, the transformed matrices are
much sparser than the original one (note that the scale is
logarithmic).

* Sparseness of matrix versus accuracy of solution—
Fig. 7(a) describes the scattering width obtained based
on the conventional source-model solution without any
thresholding. The results have been compared with a
reference solution [9] (not shown), which is based on the
generalized multipole technique [10], [11]. The agreement
between our result and the result of the reference solution
is impeccable. Fig. 7(b) shows results for the scattering
width and exemplifies how even a slight thresholding of
the impedance matrix affects the accuracy. Next, Fig. 8(a)
describes the scattering width obtained using linear arrays
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Fig. 6. Sparseness of impedance matrix as a function of threshold value for
the three cases: (a) Single sources (nontransformation) (dash-dot line), (b) Four
array sources per side (DFT transformation) (solid line), and (c) Double-layer
array (dotted line).

(DFT transformation) and a subsequent thresholding
operation which leaves 87% of the matrix elements
unaffected while setting the remaining elements equal to
zero. Note that the accuracy achieved with this reduced
number of matrix elements is excellent. This accuracy
remains quite reasonable even when the thresholding
operation is carried further to yield a fractional number of
nonzero matrix elements of approximately two-thirds. In
this latter case, shown in Fig. 8(b), the deviation from the
accurate solution becomes noticeable. Finally, Fig. 9(a)
describes the scattering width obtained using double-layer
arrays and a subsequent thresholding operation which
leaves 51.6% of the matrix elements unaffected while
setting the remaining elements equal to zero. Note that the
accuracy achieved with this reduction to nearly half the
number of matrix elements is remarkable. This accuracy
remains quite reasonable even when the fractional number
of nonzero matrix elements is further reduced up to
approximately one-third. In this latter case, shown in
Fig. 9(b), the deviation from the accurate solution again
becomes noticeable. Clearly, the use of the proposed
transformations enables one to substantially reduce the
number of significant elements in the impedance matrix.
It is also interesting to mention that, as expected, the
dominant elements in the solution (i.e., the p and m for
which Ag,m) is the largest) correspond to arrays radiating
in the anticipated directions predicated by geometrical
optics.

o Computational complexity—In the case of the DFT based
transformations, one can resort to existing effective tech-
niques for fast computation of the transform (FFT). The
sparseness of the matrix enables us to use the special
functions in Matlab-4.2 that deal exclusively with sparse
matrices. These functions exploit the fact that for a
sparse matrix both a smaller storage space is needed
and fast multiplication algorithms exist. They do not,
however, take advantage of the special banded structure
characterizing the previously described matrices.

VII. COMPARISON WITH RELATED METHODS

An idea very similar to that advocated here has been
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Fig. 7. Bistatic scattering width obtained based on the conventional source-model solution (a) with no thresholding and (b) with a relatively slight
reduction in the number of matrix elements.

a
45
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Fig. 8. Bistatic scattering width obtained using linear array sources and thresholding operations which leave (a) 87% and (b) 65% of the matrix elements
unaffected while setting the remaining elements equal to zero.

Fig. 9. Bistatic scattering width obtained using double-layer array sources and thresholding which leaves (a) 51.6% and (b) 35.8% of the matrix elements
unaffected while setting the remaining elements equal to zero.

utilized in the impedance matrix localization (IML) method, IML method, the starting point is a method of moments
suggested by Canning [2]-[5]. Others have also suggested (MoM) formulation of the problem using pulse-basis functions.
the use of directional fictitious sources [12], [13]. In the A transformation which yields piecewise constant functions
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smoother than pulses is then applied to the sources and hence
to the impedance matrix. Compared with Canning’s solution,
the present approach has two merits. The first attractive feature
is related to the basic advantage of the source-model technique
over the standard MoM. It lies in the more appropriate
approximation of the unknown surface current by means of
smooth rather than by piecewise constant expansion functions.
The other merit is the simplicity and versatility afforded in
synthesizing new array sources for the fields and similarly
new receiving arrays for testing, both with directional patterns
designed as per requirement.

VIII. SUMMARY AND CONCLUSIONS

The use of models of fictitious sources has been known
as a technique for solving scattering problems for quite some
time. By using a basis transformation based on physical insight
(directivity of sources), a more sparse representation of the
impedance matrix was readily achieved. This was further
improved by applying a similar idea to the testing points. Two
different transformations have been described, each yielding
a sparse matrix without a considerable loss in the solution
accuracy. As mentioned in the text, the transformation is
related to the geometry of the problem. Another case of interest
is that of concave bodies. In this case, arrays located along the
inwardly curved parts of the body will face one another and
have strong interaction between them. Hence, the resultant
impedance matrix will generally be less localized. To achieve
higher localization in this case, one can resort to a design
of arrays other than linear ones. Thus, future directions may
include the examination of other array patterns tailored to
match specific problems. Moreover, even for a given geometry
and a given sources locations, it is still an open question
which of the array modes should be preferred. These ideas
are currently under investigation.
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